
                                                                                                                                    

Punctual Pade approximants as a regularization procedure 
for divergent and oscillatory partial wave expansions of the 
scattering amplitude8

) 
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Previous theorems on the convergence of the [n, n + m 1 punctual Pade approximants to the scattering 
amplitude are extended. The new proofs include the cases of nonforward and backward scattering 
corresponding to potentials having 1/ rand 1/ r 2 long-range behaviors, for which the partial wave 
expansions are divergent and oscillatory, respectively. In this way, the ability of the approximation 
scheme as a summation method is established for all of the long-range potentials of interest in potential 
scattering. 

1. INTRODUCTION 

In precedent papers1,2 we have studied the evaluation 
of the scattering amplitude starting from its partial 
wave expansion 

(1. 1) 

where aL = (2L + 1)[exp(2ioL ) - 1]/(2ik), k is the magni­
tude of the wave vector, i.e., k=(2J.1.E/n2)1/2, J.1.isthe 
reduced mass of the system, the PL are the Legendre 
polynomials, and the Or. the phase shifts. We have con­
sidered interactions usual in atomic and molecular 
collision processes, which are characterized by long 
range potentials. This feature of the interactions deter­
mines, depending on J.1. and the energy E involved in the 
processes, a slow convergence of expansion (1, 1). We 
dealt with potentials V(r), which at great distances have 
the behavior 

V(r) - A/r",+2, ll!:;" 0 (1. 2) 
r-~ 

where A is a constant and ll! an integer. For these 
cases, and when the series (1. 1) is convergent, a large 
number of phase shifts is usually required to attain a 
reasonable accuracy when calculating differential cross­
sections. To avoid this difficulty, its summation with 
the Punctual Pade Approximants (PPA) was proposed. 
A set of theorems were proven which showed that the 
rate of convergence of the PPA is higher, for any value 
of the scattering angle 8 and of the coupling constant, 
than that of the partial wave sums of (1. 1), when the 
latter are convergent. 

From the mathematical point of view, we studied 
the convergence properties of the PPA when applied 
to sequences {Sm}, characterized by the asymptotic 
behavior 

Sm - j+A(m+a)-""1/2 sin(m8+b) (1.3b) 
m-~ 

and 
S«l - j + (± l)m A(m + a)-" m m~~ , (1. 3b) 
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where, following the nomenclature introduced by 
Shanks, 3 j is the base of the sequence, n is a positive 
integer, and A, a, b, and 8 are parameters which de­
fine the convergent mathematical transients. The 
theorems proved in Ref. 1 for these cases represent 
a wide generalization of those by Wynn, 4 for mono­
tonous and oscillating convergent Newton sequences, 
i. e., the sequences of Eq. (1. 3b) with n = L 

In Ref. 2 we showed the numerical efficiency of the 
approach when calculating the differential cross section 
for e-He elastic scattering at intermediate energies 
and for the scattering by a Lennard-Jones potential. 
Furthermore, we also found fast numerical conver­
gence in the cases of the scattering by Coulombian and 
repulsive inverse square potentials. In both cases, j( 8) 
is well defined for nonforward directions, although the 
partial wave expansion is divergent for any 8 in the 
first, and oscillating for 8 = 1T in the second. This sug­
gested that the domain of convergence of the PPA is 
actually larger than that to which the theorems were 
restricted in Ref. 1. 

In this paper we extend the convergence proofs for 
the PPA, to sequences {Sm} with asymptotic behaviors 
of the type 

(1. 4) 

with f3 a nonpositive integer complex number. They 
have the interesting property of being capable of having, 
depending on the values of the parameters, divergent 
or purely oscillating mathematical tranSients. In this 
way, we are able to include in our formalism, all of 
the long-range forces of interest in potential scattering 
covering all the cases for whichj(8) has finite mean­
ingful values. 

In Sec. 2 we introduce the PPA, and a set of lemmas 
are proven regarding their convergence when applied 
to sequences of the type satisfying Eqs. (1. 4). By using 
these results in Sec. 3, we establish the convergence 
theorems for the PPA to the nonforward scattering 
amplitude, including the cases for which the partial 
wave expansions involved are divergent or oscillatory. 
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2. PUNCTUAL PADE APPROXIMANTS 

Given a formal power series 

"" 
C(z) = ~ brzT

, 

,=0 

its [N, Mhz) Pade approximant (PA) is defined5 by 

[N, Mhz) =RM(z)/QN(Z), QN(O) = 1, 

where RM(z) and QN(Z) are polynomials in z of orders 
M and N, respectively, whose coefficients are uniquely 
determined by the requirements 

C(z) Q N(Z) - RM(z) =O(zM+N+ll. 

The partial wave expansion (1. 1) of f(B) can be seen 
as a power series, by introducing a variable x and 
defining 

C(x) = 6 aLPL (cosB) XL • 
L=O 

Then f( B) = C(1) and we shall have an approximation for 
f(B) by evaluating the PA to C(x), calculated at x = 1. 
The punctual Pade approximants (PPA) to the scatter­
ing amplitude, 1 so defined, determine a doubly infinite 
array of rational approximations. In this work, we 
shall restrict ourselves to consider the PPA 
[n, n + mlf(8), with n, m? O. 

Let us define the partial sums of expansion (1. 1) by 
m 

Sm=~ aLPL(coS B). 
L=O 

Then, [n, n + ml 1(8) can be expressed in the following 
way, 4 

[n, n + ml 1(8) = [n, n + m lIST) 

H~zt!{Sr} H;.2l{~TSm} 
= H~m>{~2SJ = H;2){~TSm} , (2. 1) 

where, for r? 1, ~TSm = ~r.1Sm+1 - ~r.ISm' ~oSm =Sm, 

and the Hankel determinants are defined for a given 
sequence {IT}' by 

fm+1 fm+k 

Furthermore, by using Eq. (2.1) it can be easily shown 
that if Sr =A + BS;, then 

(2.2) 

Let us note that, for large n, the PPA are not readily 
computable with these determinantal quotients. Recur­
rent algorithms exist, however, which allow for an 
efficient calculation of the approximants. 2 

In what follows, we shall prove a set of lemmas 
which will be used in the next section, to derive our 
main proofs regarding the convergence of the 
(n,n+ml,(B)' 

Lemma 2. 1: Given the sequence 

R"~,a = (m + ~)a sinA m , (2.3) 
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where Am=(m + 1) B- 1T!4, 0< B< 1T, and 13*0, 1,2,3,"" 
is a complex number, the sequences {g;/} defined for 
fixed r? ° by the recurrent relation 

(2.4) 

have, for large m, the following asymptotic behavior, 

g~,a - (_ 2 sinB)'[13lT(m + ~ )a.T sin(A
m 

_ Y1T!2) +O[ma.T.1l, 

(2.5) 

with [13]. = 13(13 - I)' •• (13 - n + 1), for n'? 1 and [/3]0 = 1. 

Proof: Replacing (2. 3) into (2. 4) for r = 0, it is easily 
seen that 

(2.6) 

Assuming now that 

gl,a=_£ [n[(_1)~gi.I,a.J<+gj.l,a-kl (2,7) 
m k:l k! m+1 m.l, 

it follows by using (2.4) that (2.7) holds also for i re­
placed by i + 1, and then, by indUction, that it is valid 
for all i? 1. The asymptotic equation (2.5) for r = 1, 
can be readily obtained by replacing (2.3) into (2.6) 
and it is easily proven for r ~ 1, again by induction, 
using Eq. (2.7). 

Owing to the algebraic nature of the proof of Theorem 
4.1 in Ref. 1, it is actually valid for any sequence to 
which a family of sequences may be associated by 
Eq. (2.4), and having the asymptotic behaviors given 
by Eq. (2" 5) for all y? 0. This holds as long as /3 is 
restricted as in Lemma 2. 1. Then, performing straight­
forward modifications in the statement of the theorem 
mentioned above, we can state the follOWing: 

Lemma 2.2: The PPA [n, n + 111] applied to the se­
quence {gro,a}, defined in Lemma 2.1, have, for fixed 
n and large tn, the following asymptotic behavior, 

[n, n + mlcro,a) 
T 

_ (sin8)2(n-NI[13]NNl (sinAm+.)2(2N.nl+l(m + ~)a.2N . 

22 Cn.N >[sin( B /2) )2. , 

(sinAm+n * 0), 

where N = nl2 for even 11, and N = (n - 1)/2 for odd n. 
As in Ref. 1, it should be noted that when sinAm+n = 0 
for a given B, the asymptotic order of magnitude of the 
[n, n + m l(g~,d) is somewhat smaller for even n, and 
somewhat larger for odd n, than that generally pre­
dicted by Eq. (2.8) without the oscillatory factor 
sinAm+n • 

Lemma 2.3: The [n, n + m] PPA to the sequence 

G~=(-l)'[(Y+i)"+El, (2c9) 

where E is a constant and v a nonzero complex number 
have, for fixed n:> ° and large m, the following 
asymptotic behavior, 

[n,n+ m]IG") - (_I)m+n2·2n (m +iJ"·2n 
T 

1
-(n-l)![vjn+l; Rev<O, 

>< n![v]n; Rev'-O, any E, 

or Rev$O, E=O. 

E*O, 

C.R. Garbotti and F.F. Grinstein 

(2. lOa) 

(2. lOb) 
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Proof: We note that 

A2G~ :== G~.2 + G~ - 2G~.l 

-- 4G~.l +O[r"-2], 

and replace the first order asymptotic approximation 
for A2G~ thus obtained, in the expression (2.1) for the 
PPA (n,n+m]{G"I' to get 

T 

H~"l.){G~} 
[n,n+m]{G~I= H!ml{A2G~} 

(_l)"'("'l)H!:l){(-l)rG~} 
m:'" (_l)n(m+2)4nH~"'·1){(_l)TG~r 

(20 11) 

Let us first consider the case Rev < 0, E"* O. Operat­
ing on the determinant H;S){(_l)rG~} and using (2 0 9), we 
have 

H;S){(_ 1rG~}:==H:O){AT(_1)sG~} 

=EH;:l{AT(S +~)"} +H!O){AT(s +~)"}. (2.12) 

These Hankel determinants can be evaluated 
asymptotically by noting that 

AT(S +~)" -[v].(s +~)"_T, 

and the equality6 

n_l 
H~m~[V]T}=rr [v]m+p(-1)Ppl 

p=o 

in order to obtain, 

H(S){(_l)rG"} - (s+~)("-P)(P-ll [E(_l)P-l[v]p 
P T s-~ 2. v(p-l)l 

+(s+~)"J Prl [/I]t(-1} t tl 
t=o 

(2.13) 

(2.14) 

_ E(s + ~) ("-P l (p-l) ( _ l)p-I[V]p Il~:~[ v M _ l)tt! 
• -~ v(p-1)! 

(2.15) 

In the other cases, i. e., Rev> 0 and any E, or Rev.,;; 0 
and E = 0, it is clear that 

G~ T:'" (_l)r(r+~)", 

and consequently, 

H;S){(_ l)'G~} s:~ H;Ol{AT
(_ l)S(s +~ )"} 

=H;O>{Ar(s +~n 

where we have used Eqs. (2 0 13) and (2 0 14), as before 

By using the asymptotic estimates given by Eqs. 
(2.15) and (2.16), in (2.11), Eqso (2.10) follow. 

3. THE NONFORWARD SCATTERING AMPLITUDE 
FOR LONG-RANGE POTENTIALS 

Let us consider a central potential V(r), which be­
haves at large distances as 

(3.1) 

where A is a constant and O! an integer. We show in 
the Appendix that the corresponding partial wave ampli­
tudes aL in expansion (1. 1), have, for large angular 
momentum L, the following asymptotic behavior, 
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where for O! ? 0, J = 2, 

Bl = _ Ak'" -11"" B2 = (i;2)A 2k2'" _11~, 

i31 =-0i, i32 =-20!-1, i3a =-20!-2, 

while for C\' =-1, J= 1, and 

B1=-i/k, 

(31 = 1 + iX, (32 = - 1 + iX, 

(3.2) 

It:/. is a numeric factor dependent on a, and X =A;k. By 
noting the well-known properties of the Legendre 
polynomials 

P L (cosO) L:'" (~) 1/2 cosUL(L + i)_l /2 +O[L-3 /2] 
11 SlUu 

(0<0<1T, UL =(L+i)0-1T/4), (3.3) 

and 

PL (-l)=(-l)L, (3.4) 

it follows that the sequence {Sm} of partial sums of 
expansion (1. 1), 

m 

Sm(O) = ~ aLPL(coSO), (3.5) 
L =0 

for the nonforward directions, is divergent for all e 
when a = - 1, oscillatory for 0 = 1T when a = 0, and 
convergent otherwise. The scattering amplitude is well 
defined, for these anomalous cases. In what follows, 
we shall restrict ourselves to 0"* 0, and show the ability 
of the PPA to regularize the sequence (3.5) in those 
situations . 

Let us introduce the regularizing factor7 (1 - cosO) 
in (3.5), to obtain 

m _ ('111 + 1) ('111 + 1) 
(1- cosO)S",= ~ aLPL + -2 + 3 am+l P m - -2 + 1 a",P",+it 

L =0 111 111 

(3.6) 

where the coefficients 

(3.7) 

are those of the expansion 

'" 
(1- cosO)f(O) = ~ (lLPL(COS(J). (3.8) 

L=O 

Taking account of the asymptotic behavior of the aL as 
given by Eq. (3.2), it is easy to show that 

(3.9) 

and by using a procedure similar to that used to prove 
Lemma (3.1) of Ref. 1 we find for large m 

(30 lOa) 

(3. lOb) 

This shows that expansion (3.8) will be convergent 
for the cases here considered, and we can then write, 

C.R. Garbotti and F.F. Grinstein 2407 



                                                                                                                                    

S",(e)=f(e)-(l-cose>-IL~+1 aLPL 

111+1 m+1 ] 
- 2m + 3 am+l

P 
m + 2m + 1 amP m+l (3.11) 

and by using Eqs. (3,3), (3.4), and (3010) we have for 
large m, 

f( 8) + D( 8) sinAmBI (111 + ~ )Bl-l /2 +U[a
m 

m-3 / 2 J 

(0< 8< 71) 

(3. 12a) 
.r I B i 1 

f() 
(_1)'" 6 Bi(m +]") +U[am m- J 

71 + 2 1=1 

(3. 12b) 

where D(e) = - [271 sine sin2(e/2)]-1/2, A", = (m + 1) e - 71/4, 
and J the {B,} and {13,}, are defined as in Eq. (3.2). 

By inspection of Eqs. (3 012) our previous assertions 
regarding the divergent and oscillatory nature of the 
sequence of partial wave sums can be clearly seen for 
the cases O! = 0, - 1, i. e., f3 1 = 0, and 13 1 = 1 + iX, which 
correspond to potentials having long-range behavior 
of the type 1/? and 11r, respectively. We can now state 
the following theorem: 

Theorem 3.1: The PPA [11,n+m]f(9) to the scattering 
amplitude corresponding to a central potential having 
the long range tail 

V(r) T::'" A/r",+2, Q? - 1, 

where A is a constant and Q an integer, has for fixed 
n and large 111, the following asymptotic behavior: 

[11,n+m],(9) ",:,,,,, 

D( 8) Bl (sine)2 (n_N )[f31 IN N t (sinAm+n)2 (2N -n )+1 
fee ) + 22(n-N )(sin~ o)2n(111 + ~ )2NJll+l/2 , 

(0 <:I < 71, sinAm+. * 0) 

(3. 13a) 

[n,n+mlf(~) ",:,,,,, 

B1(- 1)",+n2-2n-1(111 +i )8 1_2. nt [f31ln 
f(7I) + (0'*0) (3. 13b) 

B I2-1
(_ 1)mO•O + B2(- 1)"'2-2

.-
1(m +i t l

-2nY.(n + 1) 1 
(O!=O), 

(3. 13c) 

where the coeffiCients B; and 13, are dependent on O! and 
defined as in Eqo (3 0 2), Yn = (n - 1)[ for n > 0, Y. = 1 
for n = 0, D(O) and Am are those of Eqo (3. 12a), N = n/2 
for even n, and N = (n - 1)/2 for odd n, 

Proof: We first note that according to Eqso (3.12), 

Sm(e)m:,,,,,j(8)+D(O)B1 g!h-I / 2 , 0<8<71 (3.14) 

(3.15) 

where{gOh-I/~ is the sequence defined in Lemma 2.1, 
and {G~J is that of Lemma 2.3 with 

2408 

lJ=-O!, El=Bd2, E=O, forO!"O, 

lJ = - 1, El = B2/2, E = B 11B2, for O! = 0, 

lJ = 1 + iX, E1 = B1/2, E = 0, for O! = - 1, 
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and by using Lemmas 202 and 2.3, and property (2.2) 
of the PPA, Eqs. (3.13) are readily obtained. 

Theorem 3.1 generalizes Corollary 4.1 of Ref. 1. 8 

It includes the latter for ° < () < 71 when Cl' "" 0, and for 
8 = 71 when 0' > O. Two new results are established: The 
convergence of the PPA [n, n + mJ to the nonforward 
scattering amplitude corresponding to a potential having 
a Coulombian long-range behavior, for n"" 2 when () * 71, 
and for n"" 1 when () =71 [see Eqs. (3. 13a)-(3.13b)] and 
to the backward scattering amplitude for the case in 
which the behavior included is of the 1/yZ type, for 
n"" 1 [see Eq. (3. 13c)]. This shows that the PPA are 
able to transform divergent or OScillatory sequences 
into others that converge to the right values, thus 
providing regularized sequences for the corresponding 
partial wave sums. Moreover the rate of convergence 
of the former is seen to increase rapidly with n. 

The real physical interest in summing in a direct 
way the partial wave expansion when Coulomb forces 
are present, could be questioned. The usual method 
in this case, is to subtract in a closed form the Coulomb 
scattering amplitude, and to concentrate in the remain­
ing convergent expansion. 9 However, the latter will be 
rapidly convergent only if the other forces of interest 
are short-range ones and the energy involved is rela­
tively low. Otherwise, it will be poorly convergent and 
a summation method such as that of the PPA will be of 
value. This is the usual situation, for example, when 
studying ion-ion collisions, where long-range distor­
sion and polarization forces are present, apart from the 
Coulomb interaction. The PPA approach allows us to 
treat all of the long-range forces present in atomic 
and molecular collision processes, in a closed way, 
without further distinction. 10 

Finally, let us note that owing to the rational nature 
of the apprOXimations, and their good behavior for 
phySical values of cos B, they can be expected to be a 
valuable means for the analytical continuation of the 
scattering amplitude in the complex cosB plane. This 
possibility deserves further study. 

APPENDIX: ASYMPTOTIC BEHAVIOR OF THE 
PARTIAL WAVE AMPLITUDES FOR lONG­
RANGE POTENTIALS 

The partial wave amplitudes aL are defined in terms 
of the phase shifts 0L by 

_ ~ {exp[2ioL 1- 1}(2L + 1)/(2ik), 

aL - texP[2ioL ](2L+1)/(2ik), 

O!? 0, 

O! = - 1, 
(AI) 

where Cl' characterizes the dominant long-range compo­
nent of the potential [see Eq. (3.1)]. Moreover, it is 
well known that for these type of potentials the 0L have 
the following asymptotic behavior, for Cl'? 0 

(A2a) 
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1T/2, a=O, 

(a -1)1 1 1T 
even a> 0, 

la = al! 2' 

(a -1)11 
odd a, 

al! 

while for (lI = - 1, one has 

0L L:~ ~ log(L+t)+U[L-2], (A2b) 

which can be obtained by considering the behavior of 
the Coulomb phase shifts, 

0L =argr[L + 1 + iA/(2k)], 

for L»l, \A\/(2k). 

F or a? ° we expand exp[2i 0L] in powers of 0L, in 
order to obtain, by using Eq. (A2a), 

aL =(L+t)(26L +i261+ ooo )/k 

_Aka -i /", iA2k2"'-1/ 2 

L:~ (L+t)'" + 2(L+t)2"'~1 +0[L-
2
o<-2], (A3) 

and using Eq. (A2b), we obtain, for a = - 1 

2409 J. Math Phys., Vol. 19, No. 12, December 1978 

aL = - i(L + t) exp[2i 6L ]/ k 

L -: .. - i(L + t )l+iX /k +O[L -1+1X ], 

with X =A/k. 

lC.R. Garibotti and F. F. Grinstein, J. Math. Phys. 19, 
821 (1978). 

(A4) 

2C. R. Garibotti and F. F. Grin stein, "Summation of partial 
wave expansions in the scattering by long range potentials. 
n. Numerical applications," to be published in J. Math. Phys. 

3D. Shanks, J. Math. Phys. Cambridge Mass. 34, 1 (1955). 
4p. Wynn, SIAM J. Num. Anal. 3, 91 (1966). 
5G. A. Baker, Jr., Essentials of Pade Approximants 
(Academic, New York, 1975). 

6This equation can be obtained by using the same techniques 
applied in Appendix B 2 of Ref. 1. 

lG.H. Hardy, Divergent Series (Oxford, London, 1949), 
p. 43; D. R. Yennie, D. G. Ravenhall, and R. N. Wilson, 
Phys. Rev. 95, 500 (1954). 

8This theorem can also be seen as an extension of Theorem 
11.4 of Ref. 5 on the convergence of PA to power series 
with "smooth" coefficients. We acknowledge the referee 
for pointing this out. 

9L. Schiff, Quantum Mechanics (McGraw Hill, New York, 
1968), p. 144. 

10 An alternative approach to the summation of partial wave 
expansions in potential scattering has been proposed 
recently, by using Legendre Pade approximants, by A. K. 
Common and T. Stacey (preprints UKC, England, April and 
July 1977). Other approaches, within the framework of 
Pade-type approximations, are referred to in Ref. 1. 

C.R. Garbotti and F.F. Grinstein 2409 



                                                                                                                                    

Spectral and scattering inverse problemsa) 

Pierre C. Saba tier 

Laborato~re de Physique Mathematique. b) UniversiUi des Sciences et Techniques du Languedoc. 34060 
Montpellter Cedex. France 
(Received 24 April 1978) 

The reconstruction of a differential operator form discrete spectra is reduced to its reconstruction from an 
S ·matrix. This method makes it possible to solve the singular Sturm-Liouville problems which determine 
certain modes of a sphere. The results pave the way for handling studies in which information on modes 
and .scattering results would all be taken into account. They are applied to the earth inverse problem and 
partial answers are given to a well·known conjecture. Finally the relevance of the JWKB approximation in 
this kind of problem is briefly discussed. 

1. INTRODUCTION 

This paper is part of a study in which our purpose is 
to construct a method able to take into account alto­
gether scattering and discrete spectra results in order 
to reconstruct the parameters of a differential system o 

Here we first show, in two general examples, how the 
problem of constructing the parameters of a second or­
der differential equation on a finite domain from its 
"modes," the so-called "inverse Sturm Liouville prob­
lem," can be reduced to "inverse scattering problems." 
Such an approach, in some way, goes backwards in the 
sense of history. Inverse Sturm- Liouville problems 
were either studied for themselves, 1,2 or studied for 
their numerical analysis, 3 or studied for introducing 
and solving the fundamental analysis, or the numerical 
analysis, of inverse scattering problems. 4,5 But the 
various studies of collision theory have been so rich 
that it is now" a priori" justified to try this way of 
working, BeSides, this is clearly a correct approach to 
the more general study quoted at the beginning, "In 
fine, " we feel justified by the results which have been 
obtained, both from the mathematical and from the 
physical point of view 0 

In Sec. 2, we consider a second-order linear differ­
ential problem on a finite interval of 1R, in which the 
solution is imposed to vanish at the two end points. In 
a regular case, this is the usual inverse Sturm­
Liouville problem. But thanks to the "scattering 
approach," nonintegrable Singularities like R-2

, can be 
taken into account without additional difficulties, and the 
problem is completely solved. 

In Sec. 3, again we consider a second order differ­
ential problem, on a finite interval of 1R, but now the 
derivative of the solution should vanish at one or both 
end points. Again, the regular case reduces to the 
usual inverse Sturm-Liouville problem. Again, thanks 
to our approach, important singularities can be taken 
into account in a trivial way. 

The physical justifications of our two general ex­
amples are clarified in Sec. 4. The first example is 
an acceptable scheme for the radial modes of a liquid 
ball. The second one is an acceptable scheme for the 

a)This work was completed under R. C. P. Grant No. 264: 
Interdisciplinary study of inverse problems. 

b) Physique Mathematique et Theorique, Equipe de Recherche 
Associee au C. N. R. S. 

toroidal modes of a solid ball. The results are used to 
study a well-known conjecture concerning the earth 
inverse problem. In this problem, one tries to infer 
the density p and Lame parameters A, Il of the "spheri­
cal" earth, as functions of the radial variable R, from 
the information that is contained in the free oscillations. 
The central question is to determine what pieces of in­
formation are necessary and sufficient to determine 
the parameters. Backus and Gilbert6 conjectured that 
the eigenvalues of three normal mode sequences are a 
sufficient amount of information. Our answer is more 
peSSimistic. Let us state it as follows: 

(1) Suppose that in a liquid ball, of radius R~, p and 
A are finite positive and twice differentiable functions 
of R for any O<Roi. R

K
, with zero derivative at 0 and 

R~, and do not depend on e or ~0, and suppose the 
gravity can be neglected (this and the zero derivative 
assumptions are just for the sake of simplicity). 

Suppose then we know: 

(a) The sequences of radial mode eigenvalues {WI, n} 
for two values of the angular momentum L 

(b) The sequences of the corresponding values of 
either the derivative of the modes in the surface or 
the normalization factors. These sequences can be 
derived from the response to a fully analyzed known 
source. 

Then we can reconstruct p(R) and A (R) for any Ro 

(2) Suppose that in a solid ball, of radius R K , with a 
liquid core, of radius Re , P and A are finite, positive, 
twice differentiable functions of R for any 0 ~ R ~ R~, 
with zero derivative at 0 and R~, whereas Il is finite, 
positive, twice differentiable for any Re < R ~ R~, with 
zero derivative at R~, and is (R - Re)f> times a twice 
differentiable function as R goes to R e , with 0", a < 2. 

Suppose then we know the toroidal modes for two 
nontrivial values of l, again with both the eigenvalues 
and the normalization factors, or the amplitudes of the 
modes at R~ 0 Then we can reconstruct p (10 and J1- (R) 
for R> R c ' The asymptotic behavior of the eigenvalues 
readily gives the value of C\', which determines the meth­
od of reconstructiOlL 

If Il was strictly positive for any R ~ Re (i. eo, a = 0), 
this toroidal modes problem would be an ordinary 
Sturm-Liouville problem and the result, henceforth, 
would be well known. 1 But for a '* 0 which is probably 
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the physical case, the problem is singular, and, re­
markably, it is simpler to treat it by the scattering 
approach than (with the same approach) in the regular 
case, 

Suppose now that 1 < Q' < 2, and that we know in addi­
tion the I = 0 radial modes, again in the sense of knowing 
both the eigenvalues and the normalization factors or 
the equivalent. Then, we can completely reconstruct 
>-(R), p(R), and /J-(R) for any Rc<R"'R~. 

Hence three spectra are sufficient to determine 
>-(R), p(R), and /J-(R), but only if we know altogether the 
eigenvalues and the normalization factors, or equivalent 
information which follows from the response to a known 
source (e. g., toroidal mode amplitudes at R~, or deri­
vative of the radial mode amplitudes at R~). 

Let us emphasize at this point that we only pretend 
to give a reconstruction of existing parameters. Hence 
we do not try to clarify the necessary conditions (inter­
lacing, asymptotic behaviors, etc.) that these spectra 
certainly must satisfy to correspond to a set of para­
metersc This question deserves a study by itself. 

Of course, it would be interesting to study the infor­
mation which is contained in several spheroidal modes, 
thus generalizing the "liquid" case to the "solid" one. 
Again, we know that it is possible to reduce the problem 
to a scattering problem, which is fully similar with one 
we have already studiedc 7 Unfortunately, this is a 
coupled channel pYoblem, and only partial solutions of 
the inverse problem are known in scattering theory. 
Again, this deserves a study by itself, and we shall 
not try to do it hereo 

Let us come back to the more general phySical motiva­
tion of our study 0 Seismological problems often have 
two aspects, viz" a normal mode aspect, and a scat­
tering aspect, Both have been taken in account in local 
(and oversimplified) studies, with respect to the direct 
problem. But, up to our knowledge, there never has 
been any global study, and taking into account altogether 
direct and inverse problems, altogether modes and scat­
tering result. We tried to make a global study of the 
scattering results in previous papers, 7,10 but the finite­
ness of the earth was not taken into account. Only here 
do we really begin such a general studyo At this point, 
a very natural question arises, What is the importance 
of our assumptions? . 

First there are assumptions which are there only to 
simplify, or clarify, the results. The reader who is 
interested can drop them and follow our argument 
point for point, except for some complications or addi­
tional work. Such assumptions are of zero derivative 
of the parameters at end points and neglecting the 
gravity, A nonzero derivative at the origin can produce 
a R-1 singularity in the equivalent potential, and the 
remainders in inequalities get logarithmic terms. A 
nonzero derivative at R~ makes it necessary to investi­
gate a little bit more carefully the asymptotic behavior 
of the eigenvalues, Taking into account the gravity in 
the 1 = 0 radial mode is triviaL 

It is likely that the assumption 1 < Q' < 2 in the earth 
problem can also easily be weakened up to 0 ~ Q' < 2, 
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Much more important is the differentiability condition, 
It is not physical. We should allow the parameters to be 
only piecewise continuous, with jumps. Unfortunately, 
these jumps produce 6' functions in the equivalent scat­
tering problem, which is too singular to be treated in 
known generalizations of potential scattering theory. 6,9 

Extending the scattering theory to these cases has been 
partially done, but many points deserve a study by 
themselves, and we shall not do it here. 

The positivity condition is essential. It is connected 
with excluding the possibility of holes. A hole is a 
finite continuous domain in which p or at least two of 
the parameters are identically zero. When holes do not 
cut the domain in disconnected parts, they can be taken 
into account, and introduce important modifications in 
the theory (see for instance the problem of the "shape of 
a drum,,1,9), In our radial case, a hole would introduce 
a cutoff between two parts of the ball, and hence a com­
plete cutoff of the information. Thus it is not surprising 
that we cannot take it into account in our scattering 
approach. 

In a short section (Sec. 5), we sketch the JWKB ap­
proximation of these problems. This just serves a 
pedagogical purpose, to understand certain points in 
the analysis of the eigenvalues, and to make a guess 
on the way to take into account various pieces of infor­
mation. But when this method will be fully justified for 
piecewise continuous parameters, methods using its, 
as in the RKR method, can certainl\' be Of interest in 
the earth inverse problem. It will be usefully combined 
with the ray theory, to which it is intimately connected. 

To finish this Introduction, let us note that we do not 
pretend to give practical ways of reconstruction. We 
stop our study as soon as we get the scattering matrix, 
provided there exists a method like the Gel'fand-Levitan 
method, or Marchenko's method, or one of their gener­
alizations, enabling us to obtain the functions we seek. 
In fact, we could have very easily used our results to 
describe reconstruction methods foy singular inverse 
Sturm-Liollville problems, but this was not our pur­
pose in the present paper, and we feel comfortable when 
a piece of information has been proved sufficient for 
deriving the parameters. The fact that such reconstruc­
tion methods are not deeply hidden in our results is 
very clear if one notices that the "external range" we 
have to introduce for R > R~ is artifiCial, and the 
parameters are, to a large extent, arbitrary. Needless 
to say, when we shall try to analyze simultaneously 
modes and scattering results, the physical support will 
appear much more clearly. 

Technical remarks: (1) It may be amusing to notice 
that the 1 = 0 radial mode in Sec. 2 could have been 
studied by the method which is described in Sec. 4, 
provided the interest is focused on p-1dfl/ dR instead 
of IT. 

(2) With the differentiability assumptions, there are 
three formulations of the problem (space formulation, 
time formulation, Schrodinger formulation). We have 
thought it interesting to base the analysis of modes in 
certain cases on one formulation, for others on other 
formulations, The most physical one is the space formu-
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lation, but in the present paper all the necessary analy­
tic and asymptotic properties are derived in the 
Schrodinger formulation. 

(3) Although they are very well known in scattering 
theory, techniques which are actually based on the use 
of R-matrix theory or of dispersion relations are given 
in such an elementary way that the paper is self con­
tained even for a reader who is not acquainted with themo 
The properties of information which are behind these 
techniques (causality, etc 0 ) are not recalled. We think 
it better to postpone remarks of this kind after a study 
of the problem for discontinuous media, where some of 
them may be modified. 

2. DIFFERENTIAL PROBLEM OF THE FIRST KIND 

We study the set of equations 

(2.1) 

in which 1 runs through the nonnegative integers, p and 
JI. are nonnegative piecewise continuous functions, and 
w is a real or complex continuous parameter. Equation 
(2 0 1) is completed by the following conditions: 

R - nl (w, R) should be absolutely continuous, (2. 2a) 

R_p-l d~nl(W,R) should be absolutely continuous, 

(2.2b) 

(2.2c) 

The condition (2.2) can be satisfied only for a certain set 
of values of w, {w In}, which will be called the eigen­
values of the differential problem (2.1), (2.2), or its 
modes, The direct problem is that of deriving the 
sequences {w1,n} from p and A. In the inverse problem 
we want to identify sets {w I, n} or related information 
which is sufficient to construct peR) and JI.(RL Because 
R is the variable in (2. 1), we call this formulation of 
the problem its space formulation, 

Time formulation: We introduce the physical assump­
tion 

pA *0 for any R. (2.3) 

This assumption enables us to introduce a new variable, 
called the time, which is bijectively related with R by 

(2.4) 

where the "local celerity" c is equal to 

(2 0 5) 

Thus we obtain the "time formulation" of (201), 

( 
2 d -2 d 2 1 (l + 1 )c~ IT ( (» 

Z a:r Z dT +w - R2 -; j w,R T. =0, (2.6) 
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where the "impedance" Z is 

and the conditions (2,2) are to be replaced by 

T- Ilj(w,R(T» absolutely continuous, 

T - Z 0

2 ~ absolutely continuous, 
dT 

(2.7) 

(2.8) 

We use the index 00 to denote the values at R = R~ for 
T =T ~ and the notations C(T), Z(T), etc., for c(R(T)), 

Z(R(T», etc" when there is no ambiguity. 

"Schrodinger" formulation: We introduce the strong 
mathematical assumption: p and A are twice differen­
tiable functions of R, going to constants with zero 
derivative as R - 0 or R - R~. It follows that Z is a 
twice differentiable function of T. Setting 

we obtain the "Schrodinger" formulation of (2.1), 

where 

Wj(T)= V(T) -l(l + 1)V(T), 

V(T) = Z d~2 Z-\ VeT) = 7"2 - R"2c2 (2.11) 

are continuous functions on [0, T ~l. 

These formulations are completely similar to those 
of a scattering problem that we formerly studied and 
in which the inverse problem could be solved. The in­
terest of the Schrodinger formulation, and of the strong 
mathematical assumption which enables it, is that many 
analytical properties are readily available, They are 
our main tool in the following. Since we use them in very 
precise forms, we have thought it convenient to sketch 
them and their proofs in Appendix A. 

The scattering problem: We continue JI. and p for 
R > R~ by constant positive values A' and p'. The equa­
tion (1. 1) in this external range simply reads 

(2.12) 

where C'2=/I.'/p'. By this ansatz, Eqs. (2.6) and (2.10) 
are also continued for T> T~. V(T) is identically zero 
in this range. VeT) is not, being exactly T- 2 

- [T - T ~ 
+ Rj C' J2. Thus WeT) is twice differentiable for 0 ~ T 
~ T ~ and for T > T~, and is 0(T-3) as T - 00. Equation 
(1.10) can be considered as the partial wave equation 
for the scattering of a plane wave exp(iwTCOsB) whose 
propagation follows the Schrodinger equation with the 
l-dependent potential WeT). The S-matrix s is diagonal 
and s,(w) is given by the ratio of the Jost functions 
F,(- w)/ FI(w), with 
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F,(w) = (- w)'[j,(w, T)fII;(W, T) - f;(w, T)fII,(w, T)], 

(2.13) 

where the prime indicates the derivative with respect 
to T, f,(w, T) is the solution of (1.10) which asympto­
tically is exp[i(wT+ lrr/2)] as T_oo, and fIIl(W,T) has 
been normalized to be T I +

1/ (2l + 1)!! as T - O. We met 
the same problem (with c' = c~) in our study of explo­
sions in the earth10 and a similar one later. 7 We know 
that, thanks to the positivity of Z, there cannot be7

,l1 

any bound state" Thus, if SI(W) is known for all real 
w~, WI(T) can be reconstructed, for instance, by a 
generalization of Marchenko's method, 5,12 Knowing 
functions s l(W) for all real w's and two values of 1 
enables us to construct two functions W,(T), which 
readily yield V(T) and U(T). In turn, a knowledge of 
V(T) and U(T), together with R~, T~, and Z~ (or equiv­
alent information after c~ is known), enables us to re­
construct A(R) and p(R)" Let us again state this 
argument, 

(a) U(T) should satisfy two consistency conditions, 
First, for T> T~, it must be equal to the exact function 
which was given above. Then for any T, it must be not 
larger than T~2" In general, c' is not c~ so that U(T) 
has a jump at T= T~. We denote by the index 00 the values 
which are in continuity with T ~ T ~. 

(b) For T~T~, a(T)= [r2_ U(7)]-1/2, R(T) and C(T) 
are given by 

(2.14) 

(c) For T=T .. , we know Z~ by assumption, and 
Z-1 (d/ rtr)Z = a (T ~). For T ~ T ~, Z-1 is the continuous 
solution of 

(2.15) 

(d) From Z(T), C(T), T(R), (2.7), and (2.5), we 
readily obtain A(R) and p(R). 

Thus, we are reduced to deriving SI(W) (real w) from 
the free modes of (2. 1). 

Construction of SI(W): Since W is real, f,(w, T) has 
well-known symmetry properties, which can be com­
bined with the parity of fIIl(w, T) when w - - w, to show 
that (F,(w)]*=F,(-w) for real w. Thus we only need to 
construct s,(w) for positive w. Now the equivalence of 
(2,6) and (2.10), together with (2.9) and (2.12), show 
that for T"'- T ~ (or R "'- R~) 

f,(w, T)=exp(- iWT')]/(:', 

where 

T' = R~/ c' - T ~ = A' - T ~. 

R~ + C'(T - T ~)) (T"'- T ~), 
(2.16) 

(2,17a) 

(2. 17b) 

Hence s,(w) can be constructed from T' and the function 

(2,18) 
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which is real for real w. Because of (2.2c), the poles 
of y,(w) are the modes of (2,1), 

Properties Of fII/(w, T~): fII,(w, T .. ) is an even function 
of w. Its zeros are those of OI(w,R.). Besides, 

(a) All zeros are real and simple, 

Proof: Writing (2.1) for two different values of w, w 
and w, we easily obtain 

R2 (Ii -1 don -1 d Ii) - ~ /p dR / - ,p dR I R=R~ 

(2.19) 

Setting w = w *, and noticing that the corresponding 
function 1\ is nothing but the conjugate nr of n" we 
see that if w is a zero of nl(w, R~), RewImw=O. On 
the other hand, it also follows from (2, 1) that 

-(0 R2p-1~0) R', 
I dR I 0 

(2,20) 

For R' = R~, the right-hand side reduces to the first 
term, which is positive, whereas the left-hand side is 
negative if Hew =0, This completes the proof. In addi­
tion, we see that w = ° cannot be a mode and that, for 
w =0, neither n , nor its derivative vanish for any values 
of R (they both remain positive), Incidentally, making 
R' = 00 in (2.20) enables one to prove that there cannot 
be any bound state. Incidentally also, one sees that dif­
ferent modes are orthogonal (weight R2, A -1). It is well 
known that they form a complete sequence in L 2 (0, T ~). 

(b) fII1(w, T~) is an entire function of w 2
, of order t. 

The proof of this well-known result is recalled in Ap­
pendix A" Its very important consequence is that fII, can 
be constructed from the sequence {WI n} by Hadamard's 
product ' 

fII,(w, T j = fII,(O, T~) J]1 (1- w2/ wL), (2,21) 

fII/(O, T .. ) and T .. can be derived from the asymptotic be­
havior of fill for large Iw I in the upper half-plane, for 
instance, for Hew = 0, 

(2.22) 

which follows from formula (A6), and is equivalent to the 
formula 

(2,23) 

which gives the result. Hence the sequence {WI,"} com­
pletely determines the function 'Il(w, T ~), but not 
(a/aT ~)fII,(w, T .. ). 

(c) That sequences {WI,"} do not determine (a/ilT~) 
x fIIl(w, T~) most easily can be seen for l =0, If they did, 
then so(w), and eventually V(T), would be completely 
determined, However, it is clear in (2,6) that if we re-
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place Z by its symmetric with respect to l' = ~T 00' or in 
(2.10) if we replace V by its symmetric with respect to 
l' = ~T~, then symmetric solutions exist, and give the 
same sequences of modes {won}' There are other trans­
formations13 of V keeping {won} (see below in Sec, 2), 
To prove that similar transformations exist also for 
other values of l, we first use Krein-Marchenko's 
transformations5 to prove that there is a regular poten­
tial WI(T), such that, if WI is substituted for [WI 
-l(l + 1)T-2 J in (2.10), the corresponding sequence of 
free oscillations still is {wl,n}' 

Proof: We know5 that if q; is the regular solution of 
the equation 

(2.24) 

and if lPo is any solution of the same equation for W = wo' 
then the function 

(2.25) 

is the regular solution of 

(2.26) 

where 

(2.27) 

In Appendix B, we prove that there exists a value of 
Wo and an irregular solution lPo(w, 1') which has its small­
est zero at l' = T~. Let us use this function in (2.25). It 
is clear in (1,25) that q;l(W, 1') has modes for all W in 
{wln}o From (2,27) it follows 5 that the new potential 
UI + b.UI has centrifugal barrier as r- 0 corresponding 
to (l- 1) instead of l, To go back from UI + b.Up it is 
possible to use the solution W1(W o, 1')= [lPo(W, 1')]-1 in 
the formula 

q;(W, 1') = q;1 (w, T)cp{(Wo, 1') - q;{(w, T)CP1 (w o' 1') 
q;1 (w o, 1') , 

(2.28) 

which has the meaning of an inverse of (2.25). 

Thus the zeros q;1 are also those of q; and both func­
tions correspond to the same sequence {w In}. Using 1 
times this method we are able to destroy the centrifugal 
singularity and construct WI(T). Q. E.D. We can now 
construct potentials that are equivalent to WI(T) like we 
did above, for instance its symmetric one. Going back 
I times, we are thus able to construct potentials which 
have in common with W(T) the same sequence of modes. 
Thus giving the sequence {Win} of normal modes is not 
sufficient to determine WI(T). 

Now suppose that the response to a known source 
enables us to obtain the values of (a/aT oo)q;(WI "' 1'.0) for 
each mode in the l-sequence, up to a multipli~ative 
constant. That such information can be obtained is 
easily seen with the following (slightly heuristic) argu­
menL The Green's function (which is the response to a 
point explosion) can be expanded along with the normal­
ized modes (11), 
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(2,29) 

where R stands for R, e, cp, and Ij Itn stands for the pro­
duct of spherical harmonics, The physical response is 
obtained by taking the Fourier transform (as a limit for 
Imw - 0+) and convoluting with the source function. If 
one can fully analyze this response, one obtains 
nl(w l,", Ro)ITI(WI,n, R1), Now (this is the heuristic part), 
if Ro and R1 are very close to Roo, this product is of the 
order of (R .. -Ro}(R .. -R1 )[(a/aRoo)IT,(wI,n,R .. ):F, One 
can obtain this value rigorously if Ro and R1 are, to­
gether with Roo, in a surface range where the parameters 
are constant, If not, the problem is more complicated 
but can also be disentangled. In all cases, one has to 
use as additional information the following formula, 
readily obtained from (2.19) by letting w go to w"n' 

w=w'n' 

(2.30) 

In the case quoted above, where we "know" (a/aR .. )fi, 
and since we know [from (2,21) and (2. 9)J Z~(a/awm, 
we easily derive from (2.30) the value of (p~/c~) 
x (a/aT oo)q;(w, Too) which is the desired result. Notice 
that it follows from (2.30), that the information (l/p.,) 
x (a/ aR .. m ,(wIn' Roo) is equivalent to the information 
IIn /(w 1.", R)IL 

Thus we know the sequence Lvl(wI,n)) equal to (p../ c.ol 
X (Y/(WI,n))' From it, we can derive :l'1(W) for any w. 

Proof: Let us evaluate the integral of Z-2(Z_W)-lV(Z) 
on an infinite circle in the z plane. Because of the 
asymptotic behavior of y(z) [see (A12)), this integral is 
equal to zero. The residue theorem yields 

where 

(2,32) 

is known up to the multiplicative constant c..l P .. , but 
it follows from (A12) that the leading asymptotic be­
havior of YI(W) as Iw 1- 00 must be wcot(WT -l1T/2). 
Hence the constant can be determined. If [/\'J=/\'c..lP .. , 
we can write. 
p../c .. =2 II~e tf IwHwl,n(j~'(w"n)](W~,n+ IwI2)]-1. 

(2,33) 

Hence, we obtain /\ '(wI,n) from [/\ '(wl,n)J and we can 
insert the result into (2031). It remains to determine 
YI(O). This is done by writing (2,31) for WI =0, obtaining 
:l'~(w), which is perfectly well known, and subtracting 
from (2,31), then taking the limit when Jmw - ce, Rew 
=0, using (A12). This yields the formula 
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X (W~,n)2 + IW 12)]-1_ [wl,nA/(WI,n)(W~n + IwI2)]-1}. 
(2.34) 

Hence YI(W) is completely determined by (2.31) Q. E.D. 

We also know T ~ by (2.23), and therefore fl(w, T~) and 
(a/aT ~)fl(w, T j by (2.16). From y" f" and (a/aT ~)f" 
we readily obtain SI(W) and thus we can construct WI. 
From two values of WI' we first obtain c~, which is 
easily combined with pj c~ to give Z ~, A~, p~, and we 
easily achieve the whole determination of A and p. 

Remark: The assumption that A(R) and p(R) have zero 
derivative for R - R':o is a simplifying assumption, It 
is not essential, but we shall leave to the reader the 
tedious complications which come in when it is 
suppressed. 

3. 01 FFERENTIAL PROBLEM OF THE SECOND KIND 

We study the set of equations 

(3.1) 

in which 1 runs through the positive integers, p and JJ. 
are nonnegative piecewise continuous functions, and 
W is a real or complex continuous parameter. Equation 
(3.1) is completed by the following conditions, in which 
Ra is a positive number: 

R - T I (w, R) should be absolutely continuous, 

d _ 
R - T; = JJ. dR [R 1T I (w, R)] should be absolutely 

continuous, (3.2b) 

(3,2c) 

Again the conditions (3.2) can be satisfied only for a 
certain set of values of W, {wl,n}, which will be called 
the modes. Again, the inverse problem is to determine 
information on the modes which is bijectively related 
to JJ., p, 

Time formulation: We introduce the physical 
assumption 

PJJ. *0 for any R'3~, 

and the new variables 

Thus we obtain the "time formulation" of (3,1), 

(
A-2 !!:A2 !!:+ 2_(l-1)(l+2) 2)t( )-0 

rtr dT W R2 CIT - , 

(3.3) 

(3.4) 

(3.5) 

where tl(T) =R-1T" and the conditions (3.2) are to be 
replaced by 
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T - 1 and T - A2 dtl absolutely continuous, 
, dT 

d 
rtrtl=O forT=OandT=T~. (3.6) 

Schrodinger formulation: Again we introduce the 
strong mathematical assumption: p and JJ. are twice 
diffe rentiable functions, going to constants with ze ro 
derivative as R - R~. It follows that A is a twice differ­
entiable function of T. Setting 

(3.7) 

we obtain the "Schrodinger formulation" of (3.1), 

(3.8) 

where 

(3.9) 

With the assumptions, V is a regular potential for any ° ,,; T ,,; T ~ as well as c2 R- 2
, and XI is the continuously 

differentiable solution of (3.8) which satisfies the bound­
ary conditions 

(3.10) 

Let us now introduce the auxiliary scattering problem. 
For R > R~, we continue /l and p by the positive numbers 
JJ. I and p' which can be equal, or not, to /l ~ and P ... For 
each value of l, we consider the scattering of an S-wave 
by the potential 

(3.11) 

For each potential W(l, T), we can define the (S-wave) 
functions CPo, fo, Fo, so(w), exactly as in Sec. 1. In the 
follOwing, in all functions we drop the index ° referring 
to the absence of centrifugal singularity, and use 1 as 
an additional variable only when we want to refer to a 
particular W(l, T) or emphasize the dependence on l. 
Thus the regular solution of (3.8), which vanishes at 
T=O, will be denoted by cp(w, T), or cp(l,w,T) when it 
is necessary 0 The scattering "matrix" will be denoted 
by s(w) or sU,w) instead of soU,w), which could have 
been used more correctly. Now, thanks to the positivity 
of JJ. and p for any R> R e , no bound state can corre­
spond to a potential W(l, TL Indeed, for such a potential, 
it is well known that w2 necessarily would be negative, 
and the regular solution [cp(l, w, T), or its product by 
[A(T) ]-1, say, rU, w, T)], would decrease exponentially 
as T -00, But r(w, T) would be a solution of (3.5) so that, 
multiplying both sides by r and integrating by parts, 
we would get 

(3. 12) 

which is contradictory for negative w 2
• 
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Hence s(l, w) is bijectively related to W(l, r)o On the 
other hand, it is easy to derive Il and p from the values 
of W(Z, r) for two values of 1 since they give V(r) and 
c'2R-2 from which Il and p can be derived, exactly like 
we did for A and p in Sec. 1, and provided r ~ and Z~ 
(or equivalent information once c. is known) are given. 
Hence we are led to construct s(l, w) from the modes. 
This will be done in three steps. First we study the 
analytic properties of the function X(w, r) in the w plane, 
and those of its Wronskian with j(w, r), which is in 
some sense the "Jost function" of this particular solution 
of the Schrodinger equation. Then we show how the 
modes can give this "Jost function." It remains to show 
how one can get the true Jost function and the S-matrix 
from it. 

Analytic properties ojX(w,r): Let us recall that 
cp(w, r) is the solution of (3.8) which goes to zero, with 
derivative equal to one, as r goes to zero. We define 
the solution l/J(w, r) as the solution of (3.8) which goes 
to one, with zero derivative, as r -0. From (3.7), and 
if we normalize X (w, r) by imposing the value 1 at r = 0, 
we obtain 

A'(O) 
X(w, r) = A(O) cp(w, r) + l/J(w, r). (3.13) 

l/J(w, r) is a solution of Volterra's integral equation 

T sin[w(r - r/)] 
Ij!(w,r)=coswr+ 1 W(r')Ij!(w,r/)dr'o 

o w 
(3014) 

The Green's function which appears in (3014) can be 
bounded by means the formula (A5) (used for 1=0), and 
1 cos wrl can be bounded by C exp [r 11m wi]. Using these 
bounds, we easily prove that Ij!(w, r) is an even entire 
function of w, and satisfies the inequalities14 

IIj!(w,r)-coswrl<c{ IW(r/)ldT ' 1 r, , 
o + w r 

x exp IImw 1 r, (3.15) 

Ij!(w, r) - coswr - W(r/) coswr ' dr' 
I i T sinw(r - r') I 

o w 

(3016) 

The derivative of Ij! with respect to r is given by 

Ij!'(w, r) = - w sinwr + l' cos[w(r - r')]W(r/)Ij!(w, r/)dr' 0 

o 

and satisfies the inequality 

11j!'(w, r) - [- w sinwr + fT cosw(r - r') W(r') coswr' dr']1 

I T IT r'l W(r')ldr' <C IW(r')ldr'exp(IImwlr) l+lwlr' 
o o 

(3. 18) 

Collecting these properties and those of cp(w, r), which 
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are given in Appendix A, and using (3.13) and (3.7), we 
are able to prove that 

(1) X(w, r) and t(w, r) are entire functions of w2
, of 

order t 
(2) X'(w, r) and t'(w, r) are entire functions of w2

, of 
order t. 

(3) For large I wi, and taking into account the dif­
ferentiability of Win (3.13) and (3.18) to integrate by 
parts and evaluate the integral on the left-hand side, 
we obtain for t and t' the asymptotic behavior (r,,; r.) 

t( )_ coswr + sinwr (AI(O) ! l Tw( ')d ,) 
w, r - A(r) wA(r) A(O) + 2 0 r r 

+ o( Iw 1-2 exp IImw Ir), (3.19) 

, ( ) _ wsinwr coswr (AI (0) A' (r) 
t w, r - - ii(T) + A(r) A(O) - A(r) 

+ tf W(r/)dT') + o( 1 w 1-1 exp I Imw Ir). (3.20) 

Construction oj t'(w, r): The modes are the zeros of 
t'(w, r ~). They have the following properties: 

(a) All zeros are real and Simple: From (2.5) we ob­
tain the equation 

(3.21 ) 

where wand ware two different values of w, and t and 
i are the corresponding functions t(w, r). Setting 
W = w *, and noticing that the co rresponding function i is 
nothing but the conjugate t* of t, we see that if w is a 
zero of t(w,r~), Rewlmw=O. On the other hand, it 
also follows from (3.5) that 

= fToo ((Z + 2)(1-1) ~: A2 _ W 2A2) t~(r) dr, (3.22) 
o 

which yields a contradiction if w 2 is negative. Q. E.D. 

In addition, we see that w =0 cannot be a mode, and 
that, for w =0, neither tl nor its derivative vanish for 
any value of Ro They both remain positive. It also fol­
lows from (3.21) that the functions t of two different 
modes are orthogonal on [0, roo] weight A2(r). On the 
other hand, one knows that they form a complete seL 

(b) Since t'I(W, Too) is entire, of order i, and not zero 
for w = 0, it can be constructed from the sequence 
{wI,n} by Hadamard's product 

t' (w, roo) = n (1 - w21 w~) t' (0, T 00)0 
n=l 

It follows from (3.20) that 

_ A(Too?t'(w,roo ) =1+0(lwl-1 ) (Iwl- oo ). 
w sm(wT 00) 

(3.23) 

(3.24) 

Hence, for large imaginary w (w = i 'w I), we obtain roo 
by the formula 
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On the other hand, using Hadamard's product for 
X-I sinx, we easily derive from (3.23) and (3.24) the 
formula 

~ 1+lwI2/w2 

~log 1+lw2IT~7;2n2 
_ 2log( I WiT ~) + log[T ~ A(T ~) t' (0, T .. )] = O( I w 1-1), 

(3.26) 

which yields A(T .. ) t/ (0, T .. ), achieving the determination 
of t' (w, T .. ) up to the constant A .. 0 

(c) That the sequences {WI,,,} do not determine p and 
jJ. has been shown by Gerver and Kazhdano 13 The most 
simple example of nonuniqueness is obtained by replac­
ing A(T) and C(T)/ R(T) in (3.5) by A(T - T J and 
C(T - T .. )/ R(T - T ",lo Obviously t(T - T .. ) is a mode of 
(3.5) with the new parameters if t(T) is a mode with 
the former ones. But clearly also, unless t(T) happens 
to have the same value at ° and T .. , the normalization 
factor f:" t2(T) A2(T) ctr [with t(T) uniformly standardized 
at T =0, e. g., by t(O) =1] is not conserved in this sym­
metry. Other examples have been given13 when A(T) 
and c(T)/ R(T) are periodic functions, with its period 
equal to T .. N-1 (N is a positive integerL Then a sym­
metry (as given above) inside a period is possible and 
transforms a mode into a mode. The new solution of 
(3.5) is easily obtained by the same transformations 
taking care of the continuity of t(T) (since the derivative 
itself is trivially continuous, being zero at both ends of 
any period). 

(d) Suppose now we know in addition either the values 
l(w n , T ,,) (the bar means a normalized function), or the 
normalization factors U; .. t2(w", T) A2(T) dT f /20 They are 
related with each other by the formula 

- A"t(wn , T .. ) (A .. ilT ~;w t(w, T ",)t=w
n 

f
T .. 

==2wn t2(W",T)A2(T)ctr, 
o 

which is obtained from (3 0 21) by setting w == wand 
letting w go to wn• Using it, we easily see that if we 
know [(w n , T .. ) (which is obtained from the Green's func­
tion more easily than in Seco 1), and since we know 
A .. (il2/ilT .. ilwn)t(wm T .. ), we know A:;t("'m T .. ). Calculating 
on an infinite circle of the z plane the integral 
fc[(z - w)t'(z, T .. )]-lt(Z, T .. )dz, and using the asymptotic 
behavior (3.19)-(3.20), we obtain zero. Thus the 
residue theorem yields 

(3.28) 
Comparing the asymptotic behavior of both sides we ob­
tain the value of A;', 

.. 
A:2 = 2 lim £ wn I wi [A:1t(W nT .. )) 

Iwl- .. 1 

x{(w~+ IwI2)il~" [A .. ,t' (w",T .. ))r ' (3.29) 

and reinserting it in (2.27), we obtain 
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(3,30) 

Hence, at this point of our study, we know T .. , A .. , and 
l(w, T .. )/t/(w, T ~)o We are now in a position to calculate 
the 5 matrix. 

(e) For R ~ R~, Eq. (2.1) reduces to 

d2~1 +(~ _ l(l+1)) -0 
dR2 C/2 R2 ~ I - , 

(3031 ) 

where ~1(w,R)=XI(w,T). Hence the Jost solutionfU,w,T) 
[for fo([,w,T)] of (2.8) can be derived for T~T~, This 
Jost function goes to exp[iwT] as T _00, and thus differs 
from (3,17) by the additional factor exp(- ilrr/2), The 
Wronskian H(w) of X (w, T) with f(w, T) is constant. It is 
readily calculated at T=T .. by using (3,7), t(w,T .. ), and 
t'(w, T .. ) [of course, for the S-matrix, which is the 
ratio f(- w, T)/f(w, T), t/t/ is sufficient], Since W is 
real, f(- w, T) is the conjugate of f(w, T), and since 
X(w, T) is an even function, H(- w) is the conjugate of 
H(w), For t == 0, one readily obtains 

H(w) = f(w, O)A'(O)/ A(O) - f'(w, 0) 

and 

I 
f(w,O) _ w F(w) 

m H(w) - IH(w) 12 =Im H(w) , 

whe re F(w) is the J ost function. This result of course 
suggests that we calculate F from H by a dispersion 
relation. We need some analytic and asymptotic proper­
ties of F and H, 

(1) It is well known [and it readily follows from (A13)) 
that F(w) is holomorphic for Hew ~ ° and behaves for 
Iw 1- 00, Hew ~O, like 1 + O( Iw 1-1). Let G(w) be the 

Wronskian of f(w, T) with ljJ(w, T). From (3.14), letting 
T - 00, and using the asymptotic behavior of f(w, T), we 
obtain the formula 

G(w) = - iw + Jo" exp(iwT')W(T')IjJ(W, T') ctr' 

and inserting in (3033) the asymptotic behavior ap­
pearing in (3.15) and (3.18), we obtain that for Hew ~ 0, 
and Iwl _00, 

G(w) = - iw + fo" exp(iwT')W(T') cos(wT') dT' 

+0(lwl-1
), (3035) 

From the definition of H(w) and (3.13), we finally ob­
tain the asymptotic bebavior of H(w) in the upper half­
plane, 

w 
FIG. 1. 
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(
A'(O) f~ ) 

H(w) = - iw + A(O) + 0 exp(iw7')W(7') cosw7' ctr' 

(2) That H(w) has no zero in the upper half-plane can 
be seen as one does for F(w) in ordinary potential scat­
tering. If H(w) had a zero, then for this value X(W,7) 
would be proportional to !(w, 7) and hence would de­
crease exponentially as 7 - 00, This is also so for 
t(W,7), Then writing (3,21) for 7 =00, instead of 7 =7 ""9 

we again prove that Rew =0, Then writing (3,12) for 
t(w, 7) we obtain a contradiction. 

(3) Now, let us calculate the integral, for real w, 

j F(W')/H(W') dw' 
c w-w' , 

where C is given in Fig. 1 and the radius of the half­
circle increases to "", Since F(w)/H(w) is O(lwl- l ) on 
this circle, the corresponding part of the integral 
vanishes, and since H(w) has no zero in the upper 
half-plane, we obtain after separating the real and 
imaginary part, 

Re(F(W)) = ~ V f+~Im[F(w')/H(w')ldw' 
H(w) 1T P _"" w'-w 

1 f+"" W' dw' 
=:rr Vp .~ w'-w IH(w')12 

So F(w) can be calculated from H(w). 

And S(w) is determined from F(w), and W(r') can be 
determined from F(w). This closes this part of our study. 

Case Il - 0 as R - Rc: Since Il = 0 for R z Re, it seems 
necessary to study this case, which makes the Sturm­
Liouville problem Singular. If Il- 0 like (R -Re)CX 
(0' > 0), whereas p remains positive, c goes to zero 
like (R - Rola /2. For Ci '" 2, formula (3.4) cannot define 
T(R) since it does not converge. This case is related 
both to a "physical singularity" (uncontrolled travel 
time), and to a very strong mathematical singularity. 
This case will be discarded in the follOwing. 

For Ci < 2, 7(R) goes to zero like (R - Re)1-a/2, and 
therefore (R-Rc) is 0(72 / 2-,,). A is 0(R_Re)cx/2 or 
0(7("'/2) /(2-"'»). Hence, for 7 - 0, 

V(7)=A-1 d
2 

A=s(s+1)r2 +O(7-l ) (3.38) "(f? , 

where 

s=t(3a - 4)/(2 - a). (3.39) 

The conditions (3.3c) or (3,10) imply that X(w, 7) is the 
solution-say, <P

5
(W,7), of (3 08), which is 0(T1+5) as 

7 - 0, viz. the "regular solution" of (3.8). The modes 
are the zeros of l'(w, 7",,), Now it follows from (3.7) and 
the results of Appendix A on the functions <P 5 and <P~ that 
t'(w, 7~) is an entire function of w2 of order t ~ It can be 
constructed from the sequence (w n} of its zeros o Again 
the formulas (3,21) and (3.22) show that all the zeros 
are real, simple, and w = ° is not one 0 From (A9), 
(All), and (A16), it is easy to see that for any s> - 1, 
there exists a positive number € such that 

(3,40) 
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Hence, for large imaginary w (w=ilwl), we get sand 
7"" by the formula 

It is important to notice that (3,41) is a straightforward 
generalization of (3,25), which would correspond to 
S = - 10 Thus, investigating the asymptotic behavior of 
{wn} is a way to see that Jl goes to zero as R goes to Re' 
Now there are two cases, which correspond to different 
cases in the factorization of cos(w7 ~ - t1TS), 

(a) If s is an odd integer, S = (2k + 1), factorizing 
cos (w7 "" - t1TS) and using (3,40) yields for large I wi, 
and w=ilwl, 

£1 1+lwI 2/w; 
n=l og 1 + 1 w 127~1 n2 1T2 

+ 2k log I WT "" I + 10g[T;:OSt' (0, 7 "") A(7 "") 1 = O( I w 1-<), 
(3,42) 

which reduces to (3,26) for s=k- L 

(b) For other values of s> - 1, we obtain 

t 109{ (1 + 1 w ;
2
) / [1 + (I W 1(7"" : -)~ iS1T) 2J + 8 log I W7 "") I 

"=1 Wn n - 2 1T 

- iSt1T + 10g[7;:05t' (0, T.,) A(T J 1 = O( I w 1-'). 
(3,43) 

Thus we are able to determine t'(O, 7",,) A(T",,), and 
hence f'(w, 7~) A(T",,). Again, the response to a known 
source may give, directly or not, the values l(w n, T ""), 
with an additional and uniform factor which involves Il"" 
and p"", From (A15), (A16) (if -1 < S < 0), (A6), and 
(A9) (for s'" 0), it follows that there exists € positive 
and such that, as I w 1 and Imw - 00, 

(3,44) 

Hence formulas similar to (3.28)-(3.30) can be ob­
tained and yield l(w, T "")/ I' (w, 7 "") and X(w, T J/x' (w 17 ""), 

From this point, this "singular case" is no longer a 
straightforward gene ralization of the regular one, 
because it is simpler! Indeed, since X (w, 7) is now the 
"regular solution, the S-matrix is simply obtained by 
matching X and the Jost solution at T "", Of course, to 
be consistent with the singularity yo2 s(s + 1), we have 
to define the Jost solution!s(w, T) as the solutiort of 
(3.8) which behaves asymptotically like i l exp(iwT), 
The Jost function is the Wronskian of X(w, T) with this 
Jost solution, and the S-matrix is given, for real w, 
by 

S ( 7) = f;(- w, 7 "") X5(w, 7 ",,)/x~(w, 7 "") - f5(- w, T J 
5 W, "" f~(w, T ~lxs(w, 7 Jlx~(w, 7 "") - fs(w, 7~) 

(3045) 

From this S-matrix, using the generalized Marchenko's 
method,12 we construct the effective potential, viz" 
the difference between U,(7) and s(8+1)7'·2 for two 
values of l. Hence we can achieve the determination 
of parameters as in the regular case, 
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4. THE EARTH INVERSE PROBLEM 

In the "liquid" approximation IJ. = 0, where the only 
modes are radial modes, this problem has been fully 
treated in Sec. L In the general case, we shall only 
study the information that is contained in the 1 = ° radial 
modes and in the toroidal modes. For the sake of sim­
plicity, we shall assume that A and p are positive and 
twice differentiable functions of R, with zero derivative 
as R - R~, and that IJ. is identically zero for R < Re, 
is O(R - Re)"', with 1 < Q' < 2, for R - R;, and strictly 
positive and twice diffrentiable for R > R e , with zero 
derivative as R - R"" 

With these assumptions, the toroidal modes problem 
clearly is the one which has been studied in Sec, 2, in 
the solvable "singular" range, Hence, a knowledge of 
two sequences of normal modes, with both eigenvalues 
and surface derivatives or normalization factors, yields 
the functions p(R) and IJ.(R) for Re ~ R ~ R",. Let us now 
study the radial (l = 0) modes, They are given by the 
equations14 

d~ R: + 41J. ~ (R-1R. ) = - pw2 R, 

R.+ = AW2 !£. (R2« ) + 21J. dR. 
dR dR ' 

(4.1) 

(4.2) 

(4,3) 

where R. and R.+ must be continuous functions of R, 
Actually, it follows from our assumptions that R. and 
dR./ dR must be continuous, The condition (4.3) can be 
satisfied only for the spectral values of w, say, wn' 

The Eqs. (4.1)-(4.3) are the space formulation of the 
problem, Setting 

C=(A +21J.)1/2p-1/2, 

T = J R ( c(x ) ]-1 dx, 
o 

(4,4) 

(4.5) 

(4.6) 

and taking into account the differentiability assumptions, 
we obtain the "Schrodinger" formulation of the problem 

~~ + (w 2 
_ WiT) - V(T)] V = 0, 

where 

v(W, T) =ZR2R. (w, R(T)), 

W(T)=4Z-2R-3 dlJ. 
dT ' 

V(T) =Z-1 ~ Z (jTJ , 

(4,7) 

(4,8) 

(4,9) 

(4.10) 

In this section, as in previous ones, we use C(T), etc" 
for c(R(T)), etc., when this is not confusing. Now it 
follows from (404)- (4,6) and the differentiability 
assumptions that V(T) is 2T-2 (1 + 0(T2)] as T - 0, while 
W(T) is identically zero for any T smaller than T(Re) =Te• 
Taking into account (4.3), we see that v(w, T) is the 
regular solution of the P-wave equation (4.7), and 
should satisfy in addition (for W =wn), the second con­
dition (4.3), The potentials V(T) and W(T) are twice 
differentiable for any T> 0, except T c' where V(T) is 
O(T - T cl"'-2 when T - T~, and remains finite when 
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T - T~, and the derivative of W(T) is singular 
like V(T) whereas W(T) itself is continuous. 

The modes are the zeros of R.+(w, Roo). Their proper­
ties can be derived with the help of two equations which 
are easily derived from (4.1), (4.2), and (4.3), by 
USing Wronskian properties as in Secs. 2 and 3, For 
any Ro> 0, and W and W, we can write for regular solu­
tionsR.(w,R) andR(w,R), 

_ fRO pw2R2 dR = (R2R.R,+]R.Ro _ fRO "AR"2 (d~ (R2R.)) 2 dR 

o 0 

f
Ro 

-4 IJ-R. 2 dR (4.11) 
o 

and 

R~(RR,+ - R.k ]R.Ro = (w 2 
- w2

) folio pR.R R2 dR , (4,12) 

If W=W n , and w=w* is the conjugate value, R=R.*, the 
left-hand side in (4.12) vanishes, the integral in the 
right-hand side is positive, and hence Rewn or Imw n is 
zero, But if Rew. was zero, then (4,11), in which the 
first term of the right-hand side vanishes for w = w., 
would be contradictory. Hence all modes are real. They 
are simple because there is only one regular solution, 
It is also easy to prove from (4,11) and (4,12) that there 
is no bound state (same argument with Ro = 00) and from 
(4,11) that w =0 is not a mode, and both R. and R.+ (as 
well as dR. / dR) cannot vanish for R> 0 if w = 0, 

Again, we continue the parameter for R> Roo by con­
stant values (not necessarily those for R = R.,), so that 
(4,1) and (4,2) become there 

(4,13) 

Replacing R by Roo + C' (T - Too) and RR. by v gives the 
corresponding equation in the Schrodinger time formu­
lation, As in previous problems, we are led to con­
struct the logarithmic derivative of v(w, T) at T =T "" 
We shall construct it from R.(w, R..,) and R.+(w, R",). 

The analytic and asymptotic properties of R.(w, Roo) 
and R,+(w, R",) can be derived from those of the P wave, 
v(w, Roo), and its derivative, which are given in 
Appendix A, and the formula 

(4,14) 

which is derived from (4,2) and (4,8). Since the poten­
tial is integrable, (1+iwiT)-1T can be replaced by iwi-1 

in the remainders. 

Thus R.+(w, R.,) is an entire function of w2, of order t 
which does not vanish for w = 0, and can be reconstruct­
ed as Hadamard's product of its zeros w~, 

R,+(w, Roo) =R.+(O, Roo) rl (1 - w2/ w~L 
n:l 

From (A9), we obtain the asymptotic behavior of 
R.+(w, Roo), 

(4,15) 

R.+(w,R .. ) =Zoow-1 sin(wT .. ] + O( Iw 1-2 exp(IImw IT.]), 

(4,16) 
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Hence, we derive T~, and Z:,l /<:(0, R~) by the formulas 

5 1 + 4\ W \2 I W~ 1 
L;log 1+\ 12/ 2 =lwIT~-log2+0(jwl-), (4017) 
~1 W wn 

~ l+lwllw~ P+(w,R~) 1-1 U log 1 +
1 

\22/22+l0g Z ==O(wl), 
"==1 w Too n 1T 00 r -=-

(4018) 

Hence we know Z;!P+(w,R .. ). However, this is not 
sufficient to determine V and W (one can construct 
counterexamples as in previous sections), but let us 
assume in addition that the response to a known source 
has given the normalized values P..(wn , R~)o This is 
tantamount to saying that we know !<.. (wn , R .. ) up to a 
constant factor, since it follows from (4,12) that 

a 
- R!R(w n, R",)-.,/<:(wn, R .. ) =::2wn II P(wn,o) 11 2

• (4,19) 
uw" 

Indeed, Z:.lp+(w,R",,) gives z::(a/awn)p+(wn,R~), which 
can be combined with R.(w n , R.,) to give Z-.; P(w", Roo). 
Thus we know [(a/aw n)!<..+(w n,R.)j-1P(w n ,R .. L The inte­
gral of [(z - w ) P+ (z , R • .) ]-1 R(z, R .. ) on an infinite circle 
in the zplane is zero, thanks to (4,16) and to the cor­
responding formula for R(w, R .. ), 

P(w, R .. ) =:: - w-2(p.C",)ol (2 R:1 cos(wT .,) + O(w-2 exp( IImw I TL 

(4.20) 

The residue theorem yields 

R(w,R .. ) =::-2I: wnR(wn,R .. )~, (4.21) 
P+(w,R",) 1 (a/awn)p+(wn,R.)(wn-w) 

Comparing the asymptotic behavior of both sides, we 
obtain 

R;:Z2,.== lim (- 2t wnlw 1!<..(w",R~) 
Iwl-.. 1 

x[(w~+ Iw1 2
) a~" /<:(w n,R .. )T

1 
(4,22) 

Hence we can construct P(w,R .. ) from (4.21), (4.22), 
and Z:.lP+(w,R .. J, which we already know. From Z .. , 
and since the toroidal modes gave iL", and P"", we can 
derive A .. o Using (4.8) and (4.14), we construct v(w, T "') 
and [dv(w, T)I dT ]T.T .. ' The Jost function in the external 
range T?- T .. is readily obtained from (4.13), and is 
equal to the function given in (2.16) for l==1. Hence 
Sl (w) can be constructed and since there is no bound 
state, one can derive from it W(T) == W(T) + V(T). We 
have now to derive A(R) from this function and a knowl­
edge of p(R), Il(R), A(R .. ), and A'(R .. ) =00 From (4.9) 
and (4.10), and replacing dill dT by iL' (R) C(T), and then 
using (4.6), we obtain for R(T) and Z(T) the system of 
equations 

rf' Z 4iL' (R(T) -
--;Ji2 + R(T) p(R(T)) Z(T) = W(T) Z(T), (4.23) 

Z2(T)=p(R(T»[R(T)j'2 ~ • (4.24) 

So as to reduce this system, we notice that (4.24) is 
equivalent to 

JT Z2(x)dx==JR(T) K2p(R) dR. (4.25) 
Too Roo 

The function R - B = It .. r 2p(t) dt is monotone, and con-
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tinuous, Let D be the inverse function R ==D(B). Instead 
of (4025), we can write down 

(4.26) 

Then inserting (4.26) in (4,23) yields the unique equation 

~; + [F(jT: Z2(x)dx)_ W(T)]Z(T)=O, 

where 

_ 4iL' (D(u» 
F(u) - p(D(u)) D(u) 

(4,27) 

(4.28) 

and Z is the unknown function. Once Z is known, R can 
be derived by (4.26), then C by (4.6), and, from c and 
iL, A is derived by (4.4), 

For l' < T e , Eq. (4.27) reduces to an ordinary linear 
differential equation, which can be solved if we know 
R e , Pc, Ae, and their derivatives with respect to T, all 
these being continuous at Te' Thus we obtain Z(T) for 
0"" l' < T e , but we cannot derive A from Z since we do 
not know p(R) for R < Re' 

Usually W(T), which involves cfZI dT2, has a singu­
larity like (1' _ l' J"~2 for T - 1';, while V is continuous. 
Thus W(T) has the same singularity and, in that case, 
Te is known offhand. If not, Te is known as the value of 
l' for which R (T) ==Re which is known from the function 
Il(R). Hence it is sufficient to study Eq. (4.27) for 
l' > Te' We study it for l' c:: [Te + E, 1' .. 1, where E can be 
arbitrarily small, but must be positive. On this inter­
val, it is a matter of elementary transformations of 
(4.27), taking care of Z and its derivative at T .. , to 
obtain the integral equation 

Z =Zo(T) + J.~ (t - T) {F(j t Z2(X) dx) - W(t)}Z(t) dt, 
TeO 'To 

(4.29) 
where 

(4,30) 

It is proved in Appendix C that (4.29) has a unique 
solution, which can be obtained by a constructive meth­
od. From Z(T), R(T) is derived by (4.25), c by (4.6), 
A by (4.4), A therefore is obtained for any R?- Re' 

Remarks: (1) It is of interest to notice that the method 
we use to study (4.29) in Appendix C can probably be 
generalized to take into account more general behavior 
of iL(R) as R - Re' But since there are many other 
Simplifying assumptions in this paper, we do not think 
it is useful to study generalizations, 

(2) Core oscillations and their coupling with mantle 
oscillations can be studied in the same way, provided 
their coupling can be described in the elastic theory. 
Such a study would make it possible to get A, Il, p, 
from R=O to R=R .. , 

(3) In the regular case, cl R may be a monotone 
function of T. Let us take it as a new variable and make 
a Liouville transform of (3.8). For large l, the trans­
formed equation is the Hankel equation plus a compara­
tively small perturbation, For l- "", it is possible to 
show in this case that two sequences {w In} determine 
the parameters. Compare this with the JWKB result at 
the end of Sec. 5 (for a differentiable potential, the 
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JWKB approximation asymptotically gives the correct 
result). 

5. JWKB INFORMATION 

The Schrodinger equations we obtained can be studied 
by approximate methods. The JWKB method is justified 
for large values of "'n' when the differentiability as­
sumptions hold. It can be used to understand the nature 
of information which is given by the asymptotic behavior 
of the modes. Take the example of toroidal modes, with 
Eq. (3.8), first in the regular case. Then x("', T) is 
approximately 

X(w, T) - [w 2 - WiT) ]-1 /4 coS<Jo~[w2 _ W(t)]l /2 dt) (5.1) 

and the modes are given by the condition 

JT"[W 2 - W(T)f/ 2 dt=(n- t)1r, o n 

where WiT) is given by (3.11). This asymptotically 
yields 

(5.2) 

(5.3) 

Inserting (5.3) and transforming the sum into an 
integral, enables one to check, for instance, the lead­
ing terms in (3.25). 

In the singular case, the argument of the periodic 
function in the approximate value of X is an integral 
whose lower bound is the turning point instead of O. 
For large w, this turning point is completely deter­
mined by the centrifugal singularity (3.38). Thus the 
asymptotic behavior of wn should give information on 
s-and this is readily checked in (3.40). 

Similar remarks can be made for all sequences of 
modes. Apart from these pedagogical remarks, is it 
possible to use this approximation as a practical 
inversion method? 

One certainly thinks of the Rydberg-Klein-Rees 
method of analyzing data on atom-atom interactions. 5 

This method works beautifully in chemical physics 
when many (vibration-rotation) modes are available. 
In the earth problem, there are also many available 
modes, but the smooth differentiable functions which 
usually justify this approximation are lacking in the 
crust. Nevertheless, let us look at what it would be for 
the example of toroidal modes (the others would be 
similar). 

At least for the first modes, which are the best known, 
turning points appear. The simplest case is the one in 
which WIT) is monotone decreaSing, and there is only 
one turning point. Hardly more complicated is the case 
in which WiT) has a minimum, with two monotone 
branches. In both cases, the condition (5.2) becomes 

jT~~2 [w~ - W(T)]l /2 dt = (n _ €n) 1T, (504) 

where TP1 is the first turning point (always present in 
the singular case) and TP2 is either the second turning 
point [if WIT) has a minimum, and w~ < W(T.)], or T .' 
€n is equal to t if there is zero or two turning points, 
t if there is one only, n is the ordinal number of the 
mode (numbered in our paper from 1). A very important 
additional assumption of the method is that "'n is so 
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smooth that it justifies interpolation towards n =€., 

which yields the minimum of W('r) [or W(T.) in the 
monotone decreasing case]. It is equivalent to say that 
we can fit the curve n(",) from n =€n' 

Apply now to both sides of (5.4) the semi-integration 
operator between W mID and w 2

, IT1 /2, defined by 

[D~1/2f] =1T~1/2 r W
2 (w2 _w,2)"1/2f(w,2)d(",,2). (5.5) 

w2 JWml n 

We obtain 

I(w2) = J' T P2(w
2
) [",2 _ W(T)] dt = 21T-1 /2 D-1 /2([n(w2) - E ]JT), 

TP1(w2) n 

(5.6) 

where TP1 (w
2

) stands either for the first turning point 
when it is positive or for 0, TPz(w Z

) stands either for 
the second turning point when it is smaller than T "'" or 
for Too when it is noL From (5,6), one readily gets the 
difference X=[TP2 (w Z

)- TP1 (W 2 )] 

X (w 2
) = ~ {21T-1 /2 D- 1 /2([n(w 2

) - t] 1T)}. a", (5.7) 

Hence we see again in this approximate model that the 
modes do not determine WIT) but rather the separation 
between its two branches (in this relatively simple 
case). It is only when WiT) is monotone that it is com­
pletely determined, since TP2 is Too (another well-posed 
case would occur if the two branches were symmetric). 
It is also interesting to notice that when w2 is larger than 
than any WIT) (in the regular case), the left-hand side of 
formula (5.6) should simply reduce to [W2T2 - f;OOW(T)dt]. 
This yields a simple way to check the relevancy of the 
JWKB method in the range of values of n which are 
accessible. But a negative result does not prove anything 
since one then cannot know whether these large values 
of w have been reached or not. 

Information contained in the amplitudes at Too: This 
information can be analyzed in the JWKB approxima­
tion, From well-known connection formulas,15 it is not 
difficult to see that the amplitude at T "" of modes which 
are standardized at T = 0, yields the ratio 

(-1)" III(O)/I(T ) 11/2 exp[j TP
1u dl- r~ 1l dt], (5.8) 

I 00 • 0 TP2 

where 

(5.9) 

and we assumed that there are two turning points for '" 
= wn ' We saw above that the parts of WiT) where there is 
only one turning point are determined by (5,7). Thus, 
if we are, for instance, in the case of Fig. 2, WIT) is 
known from T =0 to To= TP1(W(T..,», WiT oO) is known, 
and so are u(O) and U(T J. Thus, from (5,8), we know 
by interpolation between the modes [since we know 
w(n)], the value of 

~(W2) = JTP1 
[W(T) _ w2 f /2dt _ toO [WiT»~ _ W2]1 /2dL 

TO TP2 

(5,10) 

In other cases, we know W( T) near W( T~) and replace 
T .. by another point T1 • In the singular case, u(O) is in­
finite and (5.8) has to be modified to take into account 
a convenient standardization at T=O, but again we ob­
tain (5. 10). Now let us apply to both sides of (5. 10) the 
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semi-integration operator between w 2 and (in the case of 
Fig. 2) W( T J, in any case, the value of w2 which cor­
responds to the new end points. We obtain 

(5,11) 

and obviously 

Hence, these amplitudes (which are equivalent to the 
normalization factors, etc" see previous sections) give 
information that are complementary of those given by 
{w n}, Comparing (5.12) and (5,7) readily yields TP1 

and TP2, and hence WeT). Again the result suggested 
by this approximation method confirms the one obtained 
in Sec, IV. 

Information contained in different values of l: The 
function I(w2 ) which is obtained in (5.6) actually depends 
on l since W is a function of land T [see (3,11)], If we 
know two sequences with the sequences of amplitudes, 
this can of course be used as in the exact solution of 
Sec, 4, But in the RKR method, one can derive TP1 and 
TP2 from (5.6) if one knows its value for different values 
of l. This is easy to understand: The potential W(l, T) 
which appears in chemical physics contains l in one 
term, which is exactly known, and which is (l + ~)2 / r 
(with the present notation). Hence 

(5.13) 

and this result obviously can be combined with (5.6) to 
give TP1 and TP2 , But if we come back to our method, 
the corresponding ansatz will give 

(5,14) 
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which gives c(t)R-1(-ry if we know both TP1 and TP2, but 
not if we know their difference, 

It is interesting to notice that when l vary, the various 
values of X(w 2

) and T(w 2
) which are obtained depend on 

l only through the turning points, which should be zero 
for w2 - W(l, T), but not formally, ThiS, however, does 
not mean that all l values give the same information, 
Actually, for large 1, the term containing l becomes so 
large that W(l, T) is dominated by this term. If it is mo­
notone, between 0 and T~, then everything can be deter­
mined, even if, for small 1, V(T) introduces turning 
points. 

Simi~ar results hold for other mode problems, 

Combined information: Suppose we have information 
which comes altogether from scattered waveslO (seismic 
waves in the earth problem) and by modes. The most 
commonly available modes are the lower ones, whereas 
the scattering involve much larger values of w, The 
JWKB phase shifts involve essentially the 
same function, [w 2 _ W(T)J/2, and its integral, which 
appear in the JWKB analysis of modes. Hence it is very 
easy to combine information on the modes and on scat­
tering data in this approximation, This is not so obvious 
in the exact case, in which determining a function from 
its first zeros and its asymptotic behavior is not so 
easy (nevertheless it can be done, e. g" by using con­
tinued fractions or Pad~ analysis). Here we shall not go 
deeper in this problem. 
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APPENDIX A: REGULAR SOLUTION OF (1.10) 

rj!,(W, T), which is normalized as in (1.12), is given 
by Volterra's integral equation, 

rj!,(W, T) = W~HU/(WT) 

+ jTG,(w,T,T')W,(T')rj!,(w,T')dT', 
o 

(A1) 

where u, is the free wavefunction (~7TWT)1/2J'+1/2(WT) 
and G, is the Green's function, which can be written in 
terms of the free Jost functions or wavefunctions 

(A2a) 

(A2b) 

(A3) 
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where A=l+oL U,.1!2=U1• Using the bounds16 (valid for 
any Z, any w, T, T' real, and T ~ T' ~ 0): 

(A4) 

Xexp[llm w I (T _ T')], (A5) 

we easily show that the series of successive approxima­
tions which solves (Al) is absolutely and uniformly con­
vergent. Hence (since G, and w-1-1u, are entire functions), 
I/l(w, T) is an entire function of w. 

Besides 

I 'P1(w, T) - W-1-1 u1(WT) I-t;; C(1 + I wi") 1+1 exp( I 1m wiT) 

><10' 1+ I~IT' IW1(T')ldT'. (A6) 

From (AI), we obtain a formula for the derivative of 

'PI' 

(A7) 

Using the recurrence formula for Bessel functions, 
formula (A4), and the symmetry of the Green's function, 
we obtain for T ~ T' ~ ° the bound 

\ aaT G,(w, T, T') I 

c ( Iw IT ) 
< l+lwlT 

I ( Iw IT' \ -I 
l+lwlT"') exp[IImwl(T-T')]. 

Inserting it in (A 7), we get 

laOT'P,(W,T)- :T Wol-lUI(W T)! 

< C(T- l + Iw I) (1 + ~WTT) 1+1 exp(IImw IT) 

(AB) 

(A9) 

For large I wi, in nonreal directions, I u, (wT) I is 
asymptotic to Isin(WT-l1T/2)1, and IU;(WT)I to 
Icos(wT -l1T/2) I. Iterating Eq. (AI) once, and using 
(A6) and (A9), we easily prove that for large I wi, in 
nonreal directions, we can write for a regular poten­
tial WI' (T): 

W'+Irpl(W, T) =u,(wT) + faT G,(w, T, T') W,(T')U1(WT') dT' 

+ O( Iw j-2 exp(jlmw IT», (AIO) 

a IT a 
w' aT 'P,(W,T)=U;(WT)+w-1 aT G1(W,T,T') 

2423 

a 

x W1(T')u,(WT') dT' + O(jw 1-2 exp( IImw I», 

(All) 
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-1 a ( ) / ( ) u;(wT ) 
w aT'P1 w,T rp, w,T - u,(wT ) 

= O( Iw I-IIImw 1-1) + o( Iw 1-2
). 

Jostfunction: F(w) (for 1=0), is given by the 
formula 

F(w) = 1 + fa~ exp(iwT') W(T') 'P(w, T')dT', 

(A12) 

(A13) 

which is easily obtained from (Al) (for 1 = 0), the 
definition of F(w), and by letting T -00. Inserting (A6) 
and (A9) into (Al3), we obtain the asymptotic behavior 
of F(w), 

F(w) = 1 + w-1 fa ~ exp(iWT') W(T') sin(wT') dT' + o( I w 1-2
), 

(A14) 
where we used the integrability of Won R. 

Generation: Let us introduce the continuous variable 
A = 1 + t, and J.1. =ReA. For noninteger A and J.1. ~ 0, the 
bounds (A4) and (A5) are readily extended provided 
(Z + l) is replaced by J.1. + t, - 1 by - J.1. + t. The bounds 
(A6)-(Al4) are thus readily extended with obvious 
modifications. For integer A~ 0, our method does not 
apply. From (A3), one can obtain a limit form for G)., 
in which logw appears. It is nevertheless possible to 
prove that rp,(w, T) is entire and that the bounds we ob­
tained can be generalized with some modifications in 
the remainders, but we shall not do iL For ReA < 0, 
the parity of G). enables one to get bounds. In particu­
lar, if - t < ReA < t, with Ai 0, it is easy to see that 
IGAI is smaller than Clwl-1 exp[IImwl(T-T')I, where­
as I uA (z) I is smaller than C exp[ I Imz I]. Inserting 
these bounds, we easily prove from (Al) that 'P ,(w, T) 
is an entire function of wand (- 1 < I < 0, Ii - t) 
I rp,(w, T) - wo l - I l{,(wT) I 

< clw 1-1 exp( Ilmw IT) r I WItT') IdT', 
o 

(A15) 

Bounds for (a/aT) G, can be obtained from (AB) by 
notiCing the parity of G, as a function of Ao Inserting 
them in (A7), weobtainfor-1<1<0, Ii-t, 

I a~ rp,(w, T) - w-1U;(WT) I 
<C(l~~~~T) "'exp(IImwIT) fT IWz(T')ldT'. 

a 

(A16) 

APPENDIX B 

We give some properties of the zeros of the solutions 
of (2.1), or (2.10), for !-to. The regular solution rp is 
normalized as in (2.13), and we also consider an 
"irregular solution" ~ such that 

1/J'P' - rJf 'P = 1. (Bl) 

(1) n,(w,a, R) has no zero for RE )O,R",,(. 

Proof: n , is the function for which the minimum of 
the functional F(O) on C1 (0, R~) is achieved, where 

F(O) = j R oe rR2p-I O'2 _ l(l + 1) p-I n2 _ w2R2>.. -102 ] dR 
a 

(B2) 
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and 

In fact, w lO is fixed by this condition17 and the additional 
constraint foR", R2X -102 dR == 10 If the re was a ze ro Ro in 
]0, R",[, we could replace 0' by 0 in a small interval, of 
width 6., containing R o' in such a way that 0 remains 
continuous. Now Inf ln'l in this interval is not zero 
(remember that 0 and 0' cannot vanish simultaneously) 
and sup In' I is not infinite, It is easy to see that the 
first term in the right-hand side of (B2) is reduced by 
a term which is at least O(A Inf In' I), whereas the other 
ones are reduced by a term which is at most 
0(6.3 Inf In' I L Thus for the new function 0, F(n) is 
smaller, which contradicts the fact that is should be 
minimum Q,E.D, 

(2) For W..,; WIO' each zero has a continuous trajectory. 

Pyoof: The zeros are solutions of 

(B4) 

Because the differential equation (21) is a linear 
second order equation, 0 and (a/aR) 0 cannot simultane­
ously vanish, Hence the impliCit function theorem says 
that for a couple Wo> Ra, and an open neighborhood of 
w o, Uo, there exists for all connected open neighborhoods 
U of Wo contained in Uo' a unique continuous mapping 
R(w) such that R(wo)==Ro and (B3) holds, This can be 
continued in the domain in which we work. Q, E,D, 

(3) For W small enough, there cannot be any zero 
between 0 and R"" 

Proof: For any w such that 

(B5) 

such a zero R', when inserted in (2.20), would yield 
a contradiction, 

(4) For w < w 10' there is no zero between 0 and R.,. 

Proof: One can prove very simply that there is a 
ball free of zeros around R == 0 (proof left to the reader), 
Now suppose that there is a zero for w < w 10' and let 
us make w decrease. The zero can only go beyond Roc 
since there is no zero for w small enough. Thus it 
should reach the value Roo for a certain w smaller than 
w 10' which is a contradiction, 

(5) All these properties are readily extended to 
q;>/(W,'T) by using the definition of q;>1 from 0 1 and that 
of T from R. 

(6) Consider now an irregular solution of (10 10), say 
1/11 (T). Giving the Wronskian of 1/1 with q;>, as in (B1), 
is not sufficient to define 1/1, since one can add to <jJ the 
product of q;> by an arbitrary constant A (we use in the 
following the notation 1/1,). From the analysis given 
above, we know that the regular solution for W==WIO is 
positive for T < T ., and zero at T == Too, and for 
w == Wo EO: ]0, w 10[' is positive for T < To, zero at 'T == To, 
for a certain value To larger than T ",' On the other 
hand, any solution 1fJ>. satisfying (BO is asymptotic to 
T- 1/(2l-1)1! aST-O, and is therefore positive. From 
(BO, it is readily seen that any solution I/I>.(wo, T) is 
negative at T =T 0' and any solution l/I>.(w/o,'T) is negative 
at T==T..,. 
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Now, since q;> is positive between 0 and T "" there is 
a value of X above which 1fJ1. (w o, T) is positive for 
0..,; T ~ T .. , Fix this value of X and consider I/I}, (w, T) 

for wo~ w ~ wID' This function of w has its first zero 
in T smaller than T", for w == wlO , and larger than 'T '" 

for w == WOo Thanks to the continuity of the zero, there 
is a value of w for which 1/1>. (w, T) is positive for T < T." 
and zero for T == Too. This result is used in (2,28)' 

APPENDIX C 

Let To be a number in [Tc' T .. ]. Let T be the operator 
which maps any real function Z (T), defined in [To, T.,], 
into a function T(Z), whose value at T is 

[T(Z)]T=ZO(T) + r(t-T)[F(j,1 Z2(x)d.y-W(t)]Z(t)dt. 
1'<7:) ioo 

(Cl) 

Any solution of (4,29) is a fixed point of T(Z) in a con­
veniently chosen seC Now, in addition to the function 
D(B) which is defined in (4,26), let us define, for any 
number 0..,; € ..,; R., - Re , the function D., 

{

D(B) for B(Re+E)"'; B..,; B(R .. ) =0, 
D.(B) = 

Rc +€ for B..,; B(Re +E), 
(C2) 

In particular, using Do(B) in (4,28) instead of D(B) 
enables us to continue F for any real negative argu­
ment, F is thus a continuous function, which is equal 
to zero for f/ Z2(X) dx < B(Rc), In the following, we 
use this definition of F in (Cl). Since W(t) is integra­
ble, and Zo is continuous, it follows that T is a mapping 
of C(T 0' T .,) into C(T 0' r .. ). In the following, we look for 
the solution of (Cl) as a fixed point of T in c(r 0' r "'), 
where 70 can be any number in [T c' T .,]. 

With our definition, F is uniformly bounded for any 
Z. Let F be an upper bound for I (t - T)F I, tV be an up­
per bound for I (t - 7)WI, Co their sum, and, for any • 
other function, e. gc, Z, let us define the number Z, 

z= sup lexp(-p(T.,-7»Z(r)l, (C3) 
1'O=$T~'T-o 

where p is a positive parameter. One readily shows the 
inequality 

(C4) 

Hence, if we choose p larger than cOlT maps the 
set B = {jl j < Z 0(1 - p-1cotl} into itself. It follows that 
any continuous solution Z of (Cl) must satisfy the 
inequality 

IZ(T)I <p(p - cot! exp{p(7., - 7» IZo(r) 1 (C5) 

for any p larger than Co' We shall set in the following 
p=(Co+l). Let us now introduce the function F.(B) by 
substituting D. for Din (4,28), and the operator T, 
by substituting F. in (CIL All the results which have 
been obtained above remain valid. 

Now, consider the algorithm 

Z n+l (T) = Zo(T) + { (t - r)[F.U; Z~(x)dx) - W(t) ]Zn(t) dt 
T., ., 

(C6) 

which begins at Zo(7), Since Zo belongs to /3, so does 
each Zj, and they satisfy inequality (C5). Let us intro­
duce in e(r 0' 7~) the norm 
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IIZI!.= sup {exp(-q(r .. -T))!Z(T)!}, (C7) 
OIET=l!iGiO 

where q is a positive number 0 C(T 0' T .. ) is complete 
for this norm o From (4.28), (4.25), (4.26) and (C2), 
it follows that there exists a constant j such that 

! FeU: .. Z~(x)dx) - F.U:.., Z~(x)dx) !"jea-z!,TOO!ZHx) 

- Z~(x) !dx. (C8) 

From (C6), (C7), and (C8), we obtain 

II Z.+l - Z.II .; LII Z. - Z._lll, (C9) 

where 

2p2f(T - T ) F + tv 
L.; (2p + q)(P + 0q) exp(2p(T", - r 0» + -q- 0 

(C10) 

It is always possible to define q so large that L < 1, 
and the algorithm converges for the corresponding 
norms. Its limit is a continuous function Z.(r). Since 
the mapping T, is contracting in C(ro, r .. ) for the 
norm (C7), Z.(r) is the unique fixed point of Te. Now, 
two functions F' l and Fe2 are obviously identical for 
any Z such that 

DU~~ Z2(X} dx J> Rc + sup (ell e2} (Cll) 

and hence Z'l(r) and Z.2(r) are identical in this range. 
It follows that Ze(r) converges inB. Its limit is con­
tinuous for any r > r c' bounded for r:::: r c' and since 
(4 0 29) maps bounded functions into continuous functions, 
it is continuous for any r ~ r c' That R(r c) must be equal 
to Rc is a conSistency condition, since Rc is known from 
the toroidal modes, whereas reappears as a singularity 
of W(r). 
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Renormalized plane wave-projected and Coulomb-projected T­
matrices 
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The plane wave-projected formulation of the half-shell T -matrix for ionization and the Coulomb-projected 
formulation of the half-shell T -matrices for excitation and ionization are shown to converge to zero in the 
energy-shell limit. "Renormalized" plane wave-projected and Coulomb-projected half-shell T -matrices are 
defined and are shown to have physical energy-shell limits. 

I. INTRODUCTION 

The plane-wave-projected (PP) and Coulomb-projected 
(CP) formulations of the scattering amplitude have been 
used as a basis for the computation of the excitation and 
ionization cross sections. 1 In particular the PP formula­
tion of the scattering amplitude has been used to justify 
the Born approximation for ionization and the CP formu­
lation of the scattering amplitudes leads to the Coulomb­
prOjected Born approximation for excitation and 
ionization. 1 

In Sec. III of this paper we define PP and CP half-shell 
T matrices which formally reduce to the integral ex­
pressions for the PP and CP excitation and ionization 
scattering amplitudes on the energy shell. The time­
dependent theory of Coulomb scattering is used to show 
that the PP half-shell T matrix for ionization and the 
CP half-shell T matrices for excitation and ionization 
converge to zero in the energy-shell limit. 

In Sec. IV of this paper we apply the techniques 
developed in Ref. 2 to define "renormalized" plane­
wave-projected (RPP) and Coulomb-projected (RCP) 
half-shell T matrices. The convergence of the RPP and 
RCP half-shell T matrices for ionization and the RCP 
half-shell T matrix for excitation to the corresponding 
physical S matrices for ionization and excitation is 
shown. 

A short discussion of the Born approximation and the 
Coulomb-projected Born approximation is given in Sec. 
V. 
II. PRELIMINARIES 

In this paper we consider three spinless particles, 
assumed to be distinguishable, with a Hamiltonian H 

given by 
H =Ho + V 1(X 1) + V 2 (X2 ) + VIZ(X I - x2), 

1 2 1 2 
Ho= ---V'1 ---V'z, 

2ml 2m2 

VIZ(XI -X2)= I e l e2 I' Vi(Xi)=elieNI' i=1,2, 
Xl - X2 Xi 

where m i' e i' and xi' i = 1, 2, represent respectively 
the mass, charge, and position coordinate of particle i 
and eN denotes the charge of the "nucleus" which is 
assumed to be infinitely heavy 0 

We assume that the initial channel Ci is made up of an 
uncharged fragment, consisting of particle 2 bound to 

the nucleus (eN + e2 = 0) and a particle 1 which is free. 
The bound state wavefunction of the particle two-nucleus 
system is denoted by ¢a(lS) and satisfies 

H2 ¢a(JS) =Ea¢ a (X2) , 

where 

H i =-2!.V';+Vi (X), i=I,2. 
• 

In the case of excitation the bound state wavefunction 
¢~(X2) corresponding to the final channel (3 satisfies 

H2CP~(lS) = E~cp~(x2)' 

where Ell *" Ea' For ionization the final channel 
corresponds to the free channel, 13= 0, which is made 
up of three free particles. 

Since there is only one charged fragment in the initial 
channel Ci the usual wave operators exist and are given 
by 3 

w~a) = s-lim exp(iHt) exp(- iHat)p(a) 
t .. ~-

where Ha = Ho + V2 and p(a) is the projector onto the 01-

channel subspace H(a). The "modified" or 
"renormalized" wave operators which are required in 
this paper are defined as follows' 

n!O) = s-lim exp(iHt) exp[ - iHo - iG(O)(tl], 
t .. * .. 

n!}l = s-lim exp(iH t) exp C i - _1_ V'2 1- iG(J}u0 , t-.- j L 2mj j J 
j= 1,2, 

where 

C(O)(L) = G(I)(t) + C(2)(t) 

+E(t) m 1mgc1e Z 109[2Itllm2Pl-rnlP212], 
im2P1 - »lIP21 111 1m 2 (m i + m 2 ) 

(ji)(t) =E(t) mieieN 109[2 It I Ipj 1

2J ' 
IPi l l11i 

{ 

1, t> 0, 
i=1,2,E(t)= 

-1, t<O, 

with Pi the momentum coordinates of particle, i, 
i=1,2. 

We will asume the usual relation between the wave 
operator w:a ) and the three-particle Coulomb wave-
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function 1jJIQ< )(xH X2 ; PI)' that is, 

(W _ lad<p )(~, x2) == 1. i. m.j dPI1jJ(Q< )(xH ~;PI)$(PI)' (2,1) 

where <P(xu ~>==1jJ(XI)<PQ«~)' 1jJE[2(R3) and ~ denotes 
the Fourier transform of </J. Furthermore, we will 
require that there exists a constant C for each 
$E C;(R3\{O}) such that 

jdPII </I1Q<)(XI,X2; PI)$(PI) 1< C (2.2) 

for almost all Xl' X2 E R 3
, The asumptions (2.1) and (2.2) 

are sufficient to derive the relationship between the 
various Riemann-Stieltjes integral expressions of Sec. 
III and IV and the corresponding half-shell T matrices. 

The renormalized wave operators n~j) can be expanded 
in terms of the two-particle Coulomb wavefunctions 
</I.(xPPj), i== 1,2 as follows 3

: 

(n;i)<p)(x i ) =l.i.m.j dPi </IT(xpPi)<P(Pi)' i= 1,2 (2.3) 

for each <pEL 2(R3). Using the explicit form of the two­
particle wavefunction, one can show that there exists a 
constant C for each <p E C;';(R 3 

\ {O}) such that 

j dPi I <p.(xp Pj)¢(Pi) 1< C (2.4) 

for all Xi E R 3
, i = 1,2. 

III. THE PLANE WAVE AND COULOMB-PROJECTED 
TMATRICES 

In this section we define PP and CP forms of the half­
shell T matrix and apply the time-dependent theory of 
Coulomb scattering to examine their behavior near the 
energy shell. The PP formulation of the half-shell T 
matrix for ionization and the CP formulation of the half­
shell T matrices for excitation and ionization are shown 
to converge to zero [in the sense of distributions, see 
Eqs. (3.4), (3.5), and (3.6)] in the energy-shell limit. 
We conclude from this result that the PP and CP half­
shell T matrices are not continuous on the energy shell. 
Thus the usual integral expressions! for the PP scatter­
ing amplitude for ionization and the CP scattering 
amplitudes for excitation and ionization are not math­
ematically well defined. 

The plane wave-projected half-shell T matrix for 
ionization < PH P21 T~p Ip~) and the Coulomb-projected 
half-shell T matrices for excitation and ionization, 
denoted respectively by (pIIT~p Ip;) and (pl>P2lThp IpD, 
are defined as follows: 

< PI> P2 'T~p(R) IpO = j dx 1dx2 (21T )"3/2 exp( - iPIXI)</IJX2,P2) 

Xexp[- (1/R)( IXII+ I~ I)][vl(xl ) + VI2(XI -x2)] (3.1) 

X IjJI£> l(X
I

, x
2
;p{), 

== lim (PI> I T~p (R) I pD, 
R~oo 

(PI I ~p(R) Ip:) = j dXld~ </J.(X1,PI)<PJl {X2) (3.2) 

and 

(pu P2I TbplpD=lim (pJ)P2I Tbp(R) lpn, 
R~~ (3.3) 
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xexp[ - (1/ R)( IXI I + Ix21)] VI2 (X I - x2) </I(cd(X I, x2 ; p;), 

where the limit R - 00 is to be taken in the sense of dis­
tributions. If we formally set the initial energy equal to 
the final energy in (3. 1), (3.2), and (3. 3), we obtain the 
PP and CP formulations of the scattering amplitudes. I 

In the following we show that the PP and CP formula­
tions of the half-shell T matrices given by (3.1), (3.2), 
and (3.3) converge to zero in the energy-shell limit, 
that is, 

(3.4) 

(3.5) 

and 

(3.6) 

for each j E C;(R 6
), j(pu P2) == 0 in a neighborhood of 

Pi = ° for each i, i= 1,2, g, h Ec C;(R 3 \{O}) with 
E" == Ipf 12/2ml +E", EJl= Ip l 12/2ml +EJl, and 
EO= /P1 12/2m l + Ip2/ 2 /2m 2 , 

By a lengthy but straightforward argument (see the 
proof of Theorem 7.2, Ref. 2) one can show, using 
(2.0, (2.2), (2.3), and (2.4), that (3.4), (3.5), and 
(3.6) are consequences of the following respective 
results: 

1· f+~d EHOn(Zl*[V V ]W("l E w- 1m ~ ~ '"+ 1+ 12 - ( H)2 2 
E .. +0 _ A - ex +E 

0, 

(3.7) 

(3.8) 

and 

H H 
where E~ 0 and E~ Jl denote the spectral functions cor-
responding to H 0 and H ~ respectively. 4,5 Thus, in order 
to show the convergence of the PP and CP formulations 
of the half-shell T matrices to zero, we must verify 
(3.7), (3.8) and (3.9). Only the proof of (3.9) is given 
in the following since (3.7) and (3.8) can be verified 
in a similar fashion. 

The intertwining properties4 together with the follow­
ing equalities5 : 
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and 

f +OO d EH 1+H
2 

± iE 
_e ). A H-X±ie 

f~~ [ '(H +H )tJ ("Ht) = (:f) 0 dtexPL±t+t IE 2 exp-~ 

yield 

= (2itl(Q~l)Q~2»* f~'" dAE~1+H2 

xl. iE iE. )w(a) 
\..H-X+iE+H-X-iE -

=11(E) +12(E), 

where 

I (E)= (- 2i)-'(Q(l)Q(2)* r-oo dt 
1 + + Jo 

x exp[t + i(Hl + H 2)t/E1 exp(- iHt/dw~a) 

and 

I (E) = (- 2i}-1(Q(l)Q(2)* r +", dt 
2 + + Jo 

x exp[ - t + i(H l + H2 )t/1"1 exp(- iHt!£)W~OI.). 

II (E) converges strongly to zero since 

1· { [i(H l + Hz)t] (- iHt) w(a) s- 1m exp exp -- _ 
6-+0 E E 

- exp~~lt) exp ~C!,v~)E p(a)}=o 

for t < 0 and Q~2)* p("') = O. 

The following result for I > 0, 

s-lim{exp(iHt/ E) exp[ - i(Hl + H2)t/dQ~l)Q~2) 
e "+0 

(3.10) 

- exp(iHt/d exp[ - iHat/ E - iG(1 )(t/ E) - iG(Z)(t/ E)]} = 0, 

together with Corollary A.2 yields 

w_lim(Q~')Q~Z»* exp[i(H, + H2)t/E1 exp(- iHt/E) = 0 
E .. +0 

for t> O. Thus 12(E) converges weakly to zero, which 
verifies (3.9)0 

IV. RENORMALIZED PLANE WAVE AND COULOMB­
PROJECTED T MATRICES 

An inadequate formulation of the asymptotic condition 
for Coulomb scattering is responsible for the breakdown 
of the PP and CP forms of the half-shell T matrix in the 
energy-shell limit. In this section we define 
"renormalized" versions of the PP and CP half-shell 
T matrices which correctly take into account the 
asymptotic condition for Coulomb scattering. 
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The "renormalized" plane wave-projected (RPP) 
half-shell T matrix for ionization and the 
"renormalized" Coulomb-projected (RCP) half-shell 
T matrices for excitation and ionization are defined 
respectively as follows: 

(p" Pzl Tkpp Ipo = limApp(E)(p" Pzl T~p(R) IpD, (4.1) 
R-'" 

(pll1\c pip;) = limAh(E)( PI I 1'f;p(R) IpD, (4.2) 
R-OO 

Ah(E)=r (1 + imll;ll~N) -I exp[i ml~ll~N 109(2E
I;:I Z)] , 

(4.5) 

In the following we show the convergence of the renor­
malized half-shell T matrices (4.1), (4.2), and (4.3) 
to the corresponding physical S matrices for excitation 
and ionization. 

The S operators for excitation and ionization are 
defined respectively by Saa = - (1/21Ti)W~a)*w~a) and 
SOlO = - (1/21Ti)Q~O)* W~Ol) 0 The physicalS matrices for 
excitation and ionization, denoted respectively by 
(PI Ise IpDEa=EOl and (p"PzISI IpDEo"EOl, exist as distri­
butions6 and satisfy 

(hi IS a~l) = f ~ Ol dpldp~ h(Pl) g(p~)( PI IS"I pDEa =E'" 
E =E 

(4.7) 

and 

UISOl.g,) = JEO=EOl dpldp2dp~j(p"Pz)g(PO<P"P2ISi Ipf)EO:E" 

(4.8) 

for eachfES(R6) and hl=ht/>a, gl=gt/>"" h,g'=.S(R
3

). 

Let Xa (y) be a COO function which satisfies 

Let 

D = {t/>(x"x2 ) \ <f;(p"P2) 

= Xc( Ipl\ )Xc( \Pz\ )Xc( ImzPl - m 1P2 \ )~(PI ,P2) 

for some 15 > 0 where ~ E C~(R6)}. D is dense in L 2(R6). 
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The renormalized half-shell T matrices and physical 
S-matrices are related as follows: 

r dp1dp,dp; j(Pl> P2) g(pf} (Pi> P21 Si I pD EO=E'" 
jEO=E" 

and 

= lim lim J;;P1dP2dp; ](PUP2)g(PO 
e ... +oR .. oOjU 

xApp(€) (PI> P21 T~p(R) IpD (EO _ ;"')2 +E2 

= lim limfpldP2dP; j(PUP2) g(Pf) 
e ... +0 R .. oc: 

£a=E" dPldpf h(Pl) g(pn(pIIS'lp;)~=E" 

= lim lim t:tp1dP2 Ii(Pl) g(pf) 
e"+OR .. «>jG 

XJl.h(E)(PII T~p(R) Ipf) (ES _;"')2 +e2 ' 

where IreD and g, ,; EC C~(R'\{O}). 

(4.9) 

(4.10) 

Using (2.1)-(204) together with (4.7) and (4.8), one 
can show that (4.9) and (4.10) are consequences of the 
following Riemann-Stieltjes integral representations 
of the 5 operators: 

UllS "'~I) = !i?,; (App(E»*/11 (IT-11:®d~E:O n~2)* 

X[VI + VI2]w~a) (A _H:)2 +E2g9' (4.11) 

U21 S a~l) = tim (Ab p(e»*/21 (7T-I)f:®d~E~O (n:lln~2»* 

(4.12) 

and 

(hlISa~gl) = lim I(Ah(E»*hll (7T-l)f'~ dxE:S n~l)* 6 .. +0\ _DC 

V W (a) E ,\ (4 13) 
x 12 - (A-H

a
)2+ f 2gj' • 

where gIECH(a) and I! ECH, 12 e.H, h1ECH(S) are such that 
(Jl.pp(E»*fl ECH, (Abp(E»*f2ECH and (Ah(E»*hl ECH(S) for 
each E> O. Only the proof of (4.12) is given in the follow­
ing since (4.11) and (4.13) are verified by an analogous 
argument. 

USing (3.10) yields 

x (A -H:F + .. 2 !f~ (4.14) 

= IT-l((Ab p(E »* f2 ~l (e )gl) + IT-l((A~ P(E)*f2 ~2(Elgl ) 

for gl ECH(a) andf2 ECI( such that (Abp(€»*/2ECH, €> O. 

The term involving I}(tl in (4.14) converges to zero as 
€ - + 0 since II (El converges strongly to zero. The term 
involving I 2 (e) can be written as follows 
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1T-l«A~p(d)*f21 12(dgl ) = (- 21TO-l J;" dtexp(- t) 

x < exp(iHt/e) exp[ - i(Hl + H2)t/E] 

x n~l )n~2)(J\.bp(E»*f21 W~'" )gl)' (4.15) 

In order to complete the proof of (4.12), we must show 
tint (4.15) converges to U2IS"'~I>' 

By a similar argument as used to verify Theorem A.1 
we have 

... +0 

xexp[ _iGI2 (t/E)] - n~O)}=o 

for each t> O. Thus for each fixed t> 0 

s-lim exp(iHt/e) exp[ - i(H l + H2)t/E]n~1)n!2)(A~p(E»* 12 

6 .. +0 

x exp[ - iG I2 (t/€)] exp[iGI2(t)](Ab P)*/2 

= n~O) exp[iGI2 (t)] (A~ p)* 12' 

where (1I.~p(d)*/2ECH and 

V. CONCLUDING REMARKS 

(4.16) 

The usual Born approximation for ionization and the 
Coulomb-projected Born approximations for excitation 
and ionization have been derived from the PP and CP 
formulations of the scattering amplitudes by replacing 
the three-particle wavefunction Iji("')(xu x,;p;), appearing 
in these expressions, by (21Tt3/2exp(ipf·XI)¢a(X2).1 
This derivation is not adequate since the PP and CP 
formulations of the scattering amplitudes are not defined. 

Presumably these approximations can be justified by 
defining formal "renormalized" series expansions for the 
RPP and RCP half-shell T matrices in analogy with the 
two-particle case. 7 For example, a renormalized series 
expansion for the RCP half-shell T matrix for ionization 
can be defined by expanding (4.3) via the Lippmann­
Schwinger equations for <p(Ot )(xu x2; PI)' multiplying 
the result by the series expansion of A~ p(t) and collect­
ing all terms which are multiplied by the same powers 
of the expansion parameters e le2 and e1eN, The term 
multiplied by e1e2 is given by 

lim e1e2 j dxldx, ljijx1,PI)ljijX" P2) exp[ - (l/R)( IXII + Ix21)] 
R .. +oo 

(5.1) 

Using the techniques of this paper one can show that 
(5.1) has a well-defined energy shell limit which is given 
by the usual Coulomb-projected Born approximation for 
ionization. 1 The terms from the expans ion of A~p (€) 
which are divergent in the limit E - + 0 appear in the 
renormalized series expansion for (4.3) in the coeffi­
cients of (e 1e2 )', l> 1, and thus do not effect the validity 
of the Coulomb-prOjected Born approximation. Thus if 
one is willing to accept the validity of a renormalized 
series expansion for (4.3) then the Coulomb-projected 
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Born approximation can be justified via the RCP 
expressions for the half-shell T matrix. 

The approach adopted in this paper is also applicable 
to the problem of multiple ionization, One can define 
RPP and RCP half-shell T matrices for multiple 
ionization and show the convergence of these expressions 
to the physical S matrix. 

APPENDIX 

We assume that H=Ho + V, where Ho is the usual N­
particle kinetic energy operator and V consists of a sum 
of two-body Coulomb-like potentials, L e., V = Li<J Vij , 
V ij = Vij + V~J' V~j = V~j + VL, Vi j EL 2(R3), V~j E U(R

3
), 

2 < P < 3. The results of this appendix are also valid for 
the scattering situation considered in this paper where 
one particle is assumed to be infinitely heavy. 

The renormalized wave operators n~~) for N-particle 
Coulomb scattering are defined by 

n~~) = s-lim exp(iHt) exp[ - iH~t - iG~~)(t)]PW), 
t- SOC 

(At) 

where G( 8)(t) consists of a sum of terms connecting the 
various charged fragments making up the channel p.3 
Let Gi~)(t) consist of a fixed numi:'er of these terms and 
set G~M(t) = G(~)(t) - Gf~)(t). Let the bound state wave­
function corresponding to the lth fragment, 1"" l "" n~, 
where ria is the number of complex fragments making up 
the channel (3, be denoted by nl(x l ) where XI denotes 
collectively the internal coordinates associated with the 
lth fragment. 

We have the following technical result (see Ref. 8 
for the case of two-particle scattering involving a 
general class of long-range potentials): 

Theorem A. 1: Assume that for l = 1, ... ,n~ 

JdxI Inz (x I ) 121 XI 1 ~ < cO 

for some B> 0 and each XI making up XI; then 

s-lim {exp(iHt) exp[ - iH~t - iG~~)(t)]p(ll) 
t ... :z oo 

(A2) 

Outline of proof: We have for a dense set of Ij! EH(~) 
(t> 0) 

II {exp(iHt) exp[ - iH~t - iG~tl)(t)]p(~) - n~)exp[iGill)(t)]}1j!11 

f·~ III. dG(Il)(u)) 
"" t dUlfM du exp[-iHfft-iG(~)(u) 

+ iGi~)(t)]Ij!II, 
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where V(~)=H -H/l' It is straightforward to generalize 
Dollard's estimates3 to show that the above integral 
converges to zero as t - + cO. 

The following result is an immediate consequence of 
Theorem AI. 

Corollary A. 2: Suppose the hypothesis of Theorem A. 1 
is satisfied and assume that 

w-lim exp[iGfll)(t)] = 0; (A3) 
t-ooo 

then 

w-lim exp(iHt) exp[ - iH~t - iG~~)(t)] p(ll) = o. (A4) 
t-ooo 

In Ref. 2 the convergence of the N -particle off -shell 
wavefunctions for Coulomb scattering to zero in the limit 
to physical energies was shown to be a consequence of 
the following result: 

w-lim W~)=O, 
6 .. +0 

wr:) = (±)(OO dtexp(~t+iHt/E)exp(-iH~t/E)P(Il). (A5) 

The proof of (A5) given in Ref. 2 required the asymptotic 
completeness of H. Corollary A.2 allows us to drop the 
asymptotic completeness of H assumption. Setting 
GfM(t) = G(8)(t) in Corollary A.2 yields 

w-lim exp(iHt) exp(- iH~t)p(~) = O. 
t .. ::t:: oo 

Thus (A5) is valid under the hypothesis of Corollary A.2 
together with the assumptions stated in the first para­
graph concerning H. 
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An illustration of the Lie group framework for soliton 
equations: Generalizations of the Lund-Regge model 

James Corones 
Department of Mathematics and Ames Laboratory-USDOE. Iowa State University. Ames. Iowa 50011 
(Received 5 April 1978) 

The Lie group framework for soliton equations is illustrated. It is shown that the original Lund-Regge 
model is one of an infinite family of similar relativistically invariant models that possess associated 
eigenvalue problems and isospectral flows. The models are explicitly found and their associated structures 
displayed. The group theoretic significance of the soliton equations and associated structures are given in 
accordance with the general theory. 

1. INTRODUCTION 
In this paper it is shown that a relativistically in­

variant set of field equations studied by Lund and Regge 1 

and Lund2 and shown by them to possess an associated 
eigenvalue problem and isospectral flow is one example 
of an infinite family of similar models. This family of 
models is defined and the associated eigenvalue problem 
and isospectral flows are explicitly computed. The cal­
culations in this paper are all carried out from the point 
of view of a recently developed Lie group framework of 
soliton equations3

•
4 and are illustrations both of the 

logic of this approach to soliton equations and the com­
putational procedure that yields soliton equations in the 
Form (2.2) below with C~p * O. 

Equation (2.2) is the necessary and sufficient con­
dition for the local existence of parameters (coordi­
nates) that themselves depend, for a Lie group G 
(specified by the structure constants C~p), on two 
space-time points. It was pOinted out in Refs 3 and 
4 that (2.2) is formally equivalent to defining a 
Yang-Mills field with zero field strength. Thus sol­
iton equations can be thought of as defining vector 
potentials, denoted below by~, that describe part of 
the Yang-Mills vacuum. A particular soliton equation 
does not describe the entire vacuum of the gauge 
field associated with G since for a particular soliton 
equation the it are of particular form. In a loose sense 
the soliton equation fixes the gauge. It is not clear 
whether this last statement can be made preciseo 

The interpretation of (2.2) as defining a Yang-Mills 
field with zero field strength is slightly labored since 
when the Yang-Mills field vanishes the field equations 
vanish without a trace, so to speak, since they reduce 
to 0 = 0 and leave no artifact in the formalism. However 
the identification has a certain heuristic value and is 
quite natural from the point of view of Yang's integral 
formulation of gauge fields. 14 

Once the bilocal parameters of G are defined, group 
actions are considered. In accordance with the general 
theory4 the linear group action is the eigenvalue 
problem and isospectral flow associated with the 
soliton equation. Some nonlinear group actions are also 
considered. 

The Lie group framework for soliton equations offers 
a clear and unambiguous Lie group theoretic interpre­
tation of the inverse scattering equations and has a 
unique generalization when the number of space-time 
dimesions is greater than two. If the framework is 

accepted in two dimensions as an appropriate des­
cription of soliton equations and associated structures, 
then it follows that in more than two dimensions it 
should be possible to write soliton equations in the form 
(2.2)3,4 and that the higher dimensional generalization 
of the inverse scattering equations continue to be the 
linear group action, i. e" of the form (4.3) below. 

The Lie group framework provides a group theoretic 
interpretation of "pseudopotentials" that is incompatible 
with the understanding of these objects as defining 
generalizations of conservation laws. It will be recalled 
that "pseudopotentials" were introduced in Ref. 5 as 
generalizations of the potentials of classical conserva­
tion laws, hence the name. The most recent exposition 
of this point of view can be found in the papers by 
Estabrook, Hermann, and Wahlquist in Ref. 6 and 
Hermann in Ref. 7. As a generalization of conservation 
laws, when three dimensions are present the "prolonga­
tion structure" should be defined by 2-forms, in four 
dimensions by 3-forms and so on. The reason for this 
is that the vanishing of an exterior derivative of an 
(N - I)-form in n-dimensional space-time is, in 
coordinates, a vanishing of the N-divergence of an n­
vector, i. e., a conservation law. Indeed MorrisS 
adapted, with some success, the differential-form pro­
longation ideas to nonlinear wave equations in more 
variables by doing precisely this (see Hermann's intro­
duction to Ref. 7). The present author also investigated 
"pseudopotentials" from this point of view. 9,10 

In the Lie group approach the "pseudopotentials" in 
N = 2 are elements of a representation space on which G 
acts. They retain this interpretation in all dimensions. 
In essence the difference in how these objects are under­
stood comes down to the observation that it is possible 
in two dimensions to interpret the exterior derivative of 
a I-form as whether the specialization of the exterior 
derivative of an (N - I)-form in N-dimensional space­
time or as the specialization of the exterior derivative 
of a I-form in N-dimensional space-time. The 
Wahlquist-Estabrook approach takes the first inter­
pretation. If soliton equations and the associated 
inverse scattering equations are to be given a Lie group 
theoretic interpretation the second interpretation is the 
only possible choice. 

The above remarks were included in the spirit of 
"truth in advertising," that is, the reader should be 
clearly aware of the forseeable implications of adopt-
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ing one or another approach. Precisely because on one 
hand the characteristics of solitons in higher dimensions 
are obscure and on the other two dimensions has so 
many special characterisitics, it is extremely impor­
tant to draw careful distinctions between interpretations 
of two-dimensional soliton equations and associated 
structures, if the eventual object of the investigation 
is to produce a fomulation that generalizes in a useful 
way, with respect to solitons, to higher dimensions. 
There is, of course, no question of the logical con­
sistency, in two dimensions, of the Wahlquist-Esta­
brook approach, the Lie group approach, or most of 
the other two-dimensional interpretations given in 
the literature, some of which are mentioned in the 
concluding section of this paper. 

2. FIELD EQUATIONS AS INTEGRABILITY 
CONDITIONS 

Attention will be focused on pairs of real field equa-
tions of the form 

e"e-g(e) +h(e)A,,-\J =0, 

X",e=p(e)(A,,8e + Ald"L 

(2.1a) 

(2. 1b) 

Subscripts denote differentiation with respect to the 
indicated variable and g(e), h(e), and p(e) are, for the 
moment, arbitrary functions of e. Clearly with ap­
propriate choices of g(e), h(e), and p(e), (2.1) be­
come the systems discussed in Refs. 1 and 2. It will 
be shown that these are but two of an infinite number 
of equations of the form (2. 1) that have soliton pro­
perties. 

When can the system (2. 1) be written as the integra­
bility conditions for a bilocal Lie group?4 That is, for 
which g, 17, and p is this possible? More exactly, 
when can (2. 1) be written in the form 

af~ _ af! = c I "'JP 
()x~ ax" n/>! A ", 

(2.2) 

where l, n, p = 1, "', f, C~p are the structure constants 
for anf-papameter Lie group G, X == 0, 1, "', N - 1, 
and N == dimension of the underlying space- time. 

In this work attention will be restricted to the above 
question with the stipulation that f = 3 so that l, /l,P 
= 1,2,3, and C:". = E1n" where E1np is the completely 
antisymmetric tensor with £'23 = 1. Further N == 2 and 
the space -time coordinates (which should be thought 
of as light-cone coordinates) are denoted by 01 and p. 

It is convenient to note the components off~, J.!.=OI, (3 

by 

f~ '" - AI, f~ '" - JjI , 

and to introduce the vectors 

A=(A',A2,A3), B=(B\B2 ,B3
). 

With this notation (2. 2) becomes 

A~ -B",=AXB. 

(2.3) 

(2.5) 

It is now required that (2.5) becomes are-expression 
of (2. 1) with a suitable identification of A and B as 
functions of the field variables and their independent 
derivatives, these being e, 8"" 8 8, -\., and i\e. It will 
become clear in this example, and it is true in general, 
that the identification of the f~ so that the original field 
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equations are expressed in the form (2.2) is a computa­
tional problem with a well-defined line of attack. This 
point was not stressed in Ref. 4; see, however, Refs. 
9-120 

It is thus required that 

A= A(e, 8 a , Aa), 

B=B(8, 8/1, A/I), 

(2.6a) 

(2.6b) 

where no 8 8 or -\J dependence is assumed in A since 
this can quickly be seen to be impossible by arguments 
similar to those used below, likewise with 8 a and Aa 
in B. 

Using (2.6), (2.5) becomes 

Ae8 8 + Ae 8 ,+ Al. A,,8 - Be8 a - Be 8 oill - Bl. Aa8= AXB. 
a a 8 8 (2.7) 

Using (2.1) this becomes 

Ae8 8 - Be8 a + [g(8) - h(8)Aa A8 ](Aea -Bes) 

(2.8) 

Following the computation method discussed in detail 
in Refs. 9 and 11, it can be shown that A and B must be 
of the form 

A=8"C 1 + A",N(e) + F(8), 

B=E1~C2 + AsB2(8) +G(8), 

(2. ga) 

(2.9b) 

where C' and C2 are constant vectors. When this result 
is used in (2.8) and the independence of 8", 8 8, Aa , 

and A~ is used to balance the coefficients of monomials 
in these quantities it follows that 

C1X C2 =0, 

Gj=Gx C 1 

Fe=FxC2, 

F xG=g(e)(C 1 _c2), 

A"XG=O, 

B2XF =0 

NXB2 = _h(8)(C 1 _C 2 ), 

p(e )(A2 _ B2) _ B~ == C 1 X B2, 

p(e)(A! - B2)+ N:=:: A2XC1
• 

(2.10a) 

(2.10b) 

(2.10c) 

(2.10d) 

(2'.l1a) 

(2.11b) 

(2.11c) 

(2.12a) 

(2.12b) 

It should be noted that when Aa = A8 = 0, (2 0 10) be­
comes the full set of equations to be made equivalent to 
(2. 1), which itself reduces to 

8",II=g(8), (2.13) 

a case of independent interest. 

It is easy to see from (2' lOa) and (2· 10c) that 

GoG=ki, F"F=k;, (2.14) 
where kl and k2 are constants o Using (2' lOb) and 
(2.10c) and (2.10d) it follows that 

(F'G)8=y2g(8)~ (2.15) 

where y2:=:: (Cl _ C2 ). (C1 - C2). It is then not difficult to 
show, using several vector identities and (2' lOa) that 

g"+y2g =0, (2.16) 
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where g' =dg(e)/d8. The only forms of g(e) that are 
possible are given by (2' 16). 

The system (2'10) can now easily be solved since the 
general form of the solutions of (2, lOb) and (2' 10c) are 
immediate. Explicit solutions will be displayed in the 
next sectiono For the moment it will simply be assumed 
that (2· 10) are solved and that F and G are known. The 
problem now is to find what, if any restrictions there 
are on hand p. 

To find these restrictions note that it follows from 
(2'l1a) and (2.11b) that 

A2(e)=l(e)G, 

B 2 (e) =r(8)F, 

while (2, llc) implies 

trg=h, 

Now (2 0 12a) can be written 

pUG -rF) - reF - rF xC2 = rC 1xF. 

Taking the dot product with F yields 

p(t FoG-r k~) -Yek~=O, 

hence 

or 

p 
re+pr="2 F·G t, 

k2 

( 2) 2 2p h r e + 2pr = 12 F· G -. 
1?2 g 

Likewise 

(t2)e+2Pt2=!f F·G~. 
1 g 

Thus 

k~ y
2 =1?i t2 +C exp (-2JB P de'). 

(2.17a) 

(2.17b) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2; 23) 

(2.24) 

It suffices to take the constant C equal to zero so that 

(
k2 )1/2 

l= 7l- r, 
1 

hence 

(
k2 )1/2 h r= ~ -. 
k2 g 

Using this result in (2' 22) it follows that 

G)e =-2P(I- (k~~')S2 )1· 

(2.25) 

(2.26) 

(2.27) 

Clearly either h or p can be taken independently, the 
remaining function can be computed by (2.27). Here 
P will be treated as independent; thus 

~=C exp [-2JB P(l- (k~k~)F 'G) de} (2.28) 

Notice that the constant C can be absorbed in a 
simple equal, change of scale of A", and A~ and is not 
essential. 

It has been shown that (2. 1) can be written in the form 
(2.2) with crp=EnIP ' provided (2,16) is satisfied and 
hand P are related by (2.27). In the next section 
various examples are discussed: A and Bare 
explicitly computed so that subsequently associated 
eigenvalue problems and isospectral flows for (2.1) can 
be written down. These associated structures are, as 
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follows from the general theory, 4 the differential 
form of the linear group action given by the bilocally 
parameterized Lie group defined (locally) by (2.2). 

3. EXAMPLES 

In this section various examples of the general so­
lution to the problem of writing (2, 1) in the form (2.2) 
will be presented. In particular the vectors A and 
B will be explicitly computed for several representative 
cases. These will be used in the next section to obtain 
the associated eigenvalue problem and isospectral 
flow for (2. I) as a direct application of the general 
theory presented in Ref. 4. 

Due to (2. lOa) it is possible to introduce a constant 
vector C such that C1 = aC and C2 = bC. With this 
notation the general solution to (2.10b) and (2.10c) is 
given by 

F=F1(e)+c1c, 

G=G1(8}+c2C, 

where Fl and G1 are orthogonal to C. It is convenient 
to introduce a coordinate system at this point and 
sufficient to let c1 = c2 = O. 

Let 

C= (0,1,0), 

and write g(e) in the form 

g(e} =g1 exp(i1'e} + g2 exp(- iye). 

The appropriate solution of (2.10b) and (2.10c) is 

F = (b1 exp(ibe) + b2 exp( - ibe), 0, - ib1 exp(ibe) 

+ ib 2 exp( - ibe }), 

G = (a1 exp(iae) + a2 exp( - ia8), 0, - ia1 exp(iae} 

+ ia2 exp( - ia8 ». 
Due to (2, IOc) 

Where, now, y=a-b. Clearly 

F 'F=k;=4b1b2 , 

G'G=ki=4a1a2, 

kik; = 4y2g1g2' 

k2 4b2b2 
J.-~. 
k~ - y2g1g2 

Further, 

F ·G=-g'(e}. 

(3.2) 

(3.3) 

(3.4b) 

(3,5a) 

(3.6a) 

(3.6b) 

(3.7) 

(3.8) 

Notice that kik~ is independent of the integration 
constants alJ 02' bl> b2 due to the constraint (2, 10d). 
Equation (2. 28) now becomes 

h 1e 
I -=cexp -2 p(e'} 1+ .;;::;;:.g'(e') de' 0 

g 21' g!lJ2 

It is now possible to write A and B explicitly, using 
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(2.9), (2.16), (2 017), (2025), (2.26), (303)-(3.5), and 
(3.8). In particular the components of A and Bare: 

N = iiI exp(ili8) + li2 exp(- i/Je) - D,,,(Yli~:2h y/2 (g~2tl/4 
X (~: exp(ia8) - !: exp( - iae)) , (3. lla) 

A 2 =a8", (3.11b) 

A 3 = - i(l)l exp(ibe) - b2 exp(- ib8) - A !.....L..L (
lib h) 1/2 

'" 2g 

(3.11c) 

(3. 12a) 

(30 12b) 

y(g g ( h )1/2 B3 = - 2" ~ exp(iae) + li 2 exp(- iae) - iAB -y-
2 1 2gb 1b2 

X (g~Z)I/4(bl exp(ibe) - b2 exp( - ili8 ). (3. 12c) 

Notice that up to this point all expressions derived 
were symmetric in the a's and b's reflecting the sym­
metry of (2.1) in Ct and 13. In (3.11) and (3.12) an asym­
metry is introduced by solving (3.5) for a l aZ in terms of 
b!> li 2 • The reverse could obviously be done. Further, 
notice that (3.11) and (3.12) depend on two free para­
meters b, and li2 which arose as integration constants of 
(2.10b) and (2.lOc). 

Several specializations of (3.11) and (3.12) are of 
interest. By far the most important, given the current 
status of inverse scattering-solition theory, is the 
case when b=O, a=y, and b,=-b2 =7). In this case: 

N = _ ;>.."'(;:) '/2 (g,g2t1/4g(8) , 

A
2
=ye" 

A'=-2i7)+;>" (~)'/2(gg tl/4(J"1(8) 
'" 2yg 1 Z b , 

, iy 1 ( ) B =- -g8 2 7) , 

BZ=O, 

(3.13a) 

(3.13b) 

(3.13c) 

(3.14b) 

It will be shown in the next section that the linear 
group action of G defined through A and B given above 
are the eigenvalue problem and isospectral flow as­
sociated with (2.1) subject to (2.16) and (2.27). It is 
interesting to observe that even when the full two-para­
meter freedom in (3.11) and (3.12) is not used, i. e., 
the restriction b, = - bz is employed, a tremendous 
amount of information about (2.1) can be gained from the 
linear group action through the inverse scattering 
method. What, if any, additional information about (2 01) 
might be gained by not relating bl and liz is an open 
question 0 
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It should be observed that solving for b, and b2 in 
(3.5) using the result in (3.11) and (3.12) and specializ­
ing to a = 0, b = - y, together with a1 = - a2 would 
yield a representation which is "isospectral" in the a 
direction. 

The nonlinear group action associated with a 
symmetric specialization of (3.11) and (3.12) yields an 
interesting observation about the Backlund transforma­
tion for the sine-Gordon equation. Suppose in (3.11) 
and (3.12) that g(e) = i sin 2 8 and a = 1, b = - 1, 
b, = li2 = i7), and A" =).B = 0, then: 

Al =2i7) cos e, (3.15a) 

A2=8"" (3015b) 

A 3 =_2 i7) sin e, (3015c) 

i 
B 1 =- cos 8 (3.16a) 87) , 

B Z = -8a, (3.16b) 

B'=..L sin 8 
87) (3.16c) 

The relationship between this representation of the 
sine-Gordon equation, the nonlinear group action of 
G and the Backlund transformation for sine-Gordon 
will be discussed in the next section. 

4. GROUP ACTIONS 

In the previous sections it has been shown which 
equations of thetype (2.1) can be written in the form 
(2.2). In group theoretic terms (2.2) is the necessary 
and sufficient condition for the (local) existence of a 
bilocal parameterization of a Lie group. The next step 
is to consider linear and nonlinear group actions of the 
group. This is now done. 

In the general theory the infinitesimal form of the 
group action is given by 

(see Ref. 4 for a detailed derivation), where the qa are 
elements of the d-dimensional representation space 
Q, a= 1, "', d. The X:(q) satisfy 

lx x)a=~Xb_Xb~=cmxc (4.2) 
k' I ilqb I k oqb kl m' 

In the case of a linear group action 

(4.3) 

where the matrices 1", with matrix element I~b' form a 
d-dimension matrix representation of the Lie algebra 
of G so that 

(4.4) 

Consider the case when C;l =E"*l' i= 3. Futhermore 
let d=2. Clearly the matrices 

Il=~[~ ~J, Iz=~[~ -~J/3=~[~ -~l (4.5) 

satisfy 
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(4.6) when (2.5) is satisfied. [Recall the sign convention of 
(2.3). ] 

When (3.11) and (3.12) are specialized to (3.13) and 

__ IJ_=_-_A_'I_IJ_, -:lk_==_-_B_._IIJ_, _________ (4_._7--') I (3.14), (4.7) becomes 

The free parameter 11 plays the role of the eigenvalue in 
(4.8a). When Ao: = \8 = 0 the eigenvalue problem and 
isospectral flow for (2.13) and (2.16) is recovered; 
when gee l= t sin 2e and p(e) = (sin e cos e)"r, (2.1) 
becomes the Lund-Regge equations with h given by 
(3.10), and (4.8) are the eigenvalue problem and iso­
spectral flow derived by them. The eigenvalue problem 
and isospectral flow for (2.1), subject to (2. 16) and 
(3.10) for gee), h(8), and pee), follows by direct 
substitution. The two "singular" cases y=O or glg2=0 
can easily be treated in exactly the same fashion start­
ing with (2.10)-(2.12). 

~he nonlinear action of G is closely connected with 
the conservation laws for the system (2.1). To see this 
consider a nonlinear action of G on a one complex 
dimensional representation space «, and let the genera­
tor functions be given by, say, 

X,(q)=iq, X 2(q)=Ml+{/), X3(ql=~(I-q2). (4.9) 

Since d = 1 the upper index on the X~ is suppressed. 
Notice that when d=1 and C;k=EiJk' (4.2) becomes 

OXi ~_ ( ) 
aqXJ-Xj aq -EiJ~X~, 4.10 

and that the Xi specified by (4.9) satisfy (4.10). In 
accordance with (4.0 the infinitesimal nonlinear 
group action is given by 

(4.11) 

where X== (X" X 3 , X 3 ) and A, B are given by, say 
(3.13) and (3.14). An asymptotic expansion of (4.11) 
in powers of 11, following ReL 13, gives (in the by now 
usual way) conservation laws associated with (2.1). It 
would be of interest to use the full two-parameter 
freedom in (3.11) and (3.12) together with the generator 
functions (4.9) to explore the conservation of (2.1) or 
even its reduction the sine-Gordon equation. 

Another nonlinear action of G that is of interest is that 
associated with the generator functions, 

(4.12) 

These again satisfy (4.10). If Ao: = A8 == 0 and the repre­
sentation (3.15) and (3.16) is used, (4.11) gives 
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q" = -e" - 211 sin(8 -q), 

q8=e8 + 8~ sinCe +q}. 

(4.8a) 

(4.8b) 

(4.12a) 

(4.12b) 

This is the Backlund transformation for the sine-Gordon 
equation. At this time it is not clear how to generalize 
this construction for (2.1) when A", ~ f. O. It appears 
that in the general case the surface given by the 
(naturally coordinatized) nonlinear group action is not 
again a solution of the integrability conditions for the 
existence of the bilocal group parameters, i. e. , the 
soliton equation, as in the case for the sine-Gordon 
equation. 

It might be remarked parenthetically that from the Lie 
group point of view Backlund transformations are gauge 
transformations. Why? First recall that (2.2) can be 
thought of as F~v = 0, where F~v is the Yang-Mills field 
strength. 14 Take one solution of (2.1). This defines a 
vacuum configuration of the gauge field associated with 
C}k = EiJk via the ~ defined by (2.3) and, say, (3.11) 
and (3.12). A second solution of (2.1) defines another 
configuration in the same way. Now all vacuum states 
are pure gauge terms and hence (to within possible 
problems of singularities) can be reached, one from 
another, by a gauge transformation. Indeed, in 
principal, solutions of two different equations with the 
same gauge group, i. e., (20 1) with h" = Aa = 0 and with 
A", Aa * 0, can be connected by a gauge transformation. 
This point of view thus provides at least a theoretical 
unity for all equations with a given gauge group, i. e. , 
all equations integrable by the generalized Zakharov­
Shabat (AKNS) eigenvalue problem and isospectral flow 
since these have the same gauge group. 10 Whether this 
point of view has any computational impact remains to 
be seen. 

5. DISCUSSION AND CONCLUSION 

It has been shown that (2.1) subject to (2.16) and 
(3.10) has an associated eigenvalue problem and iso­
spectral flow. The calculations illustrate a recently 
proposed Lie group framework for soliton equations. 3,4 

In particular they illustrate the computational method 
used to "inject" a given partial differential equation into 
the group theoretic framework. However, it must be 
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pointed out that the computations were simplified by 
assuming a given set of structure constants in Eq. (2.2), 
i. e., C~p = ~In~' In general part of the computation 
involves finding these structure constants, a nontrivial 
task. This problem will be addressed in a subsequent 
paper. 15 Further it should be pointed out that only 
non- Abelian groups are of interest, i, e., C~~ '* 0. 12 

The Lie group framework for soliton equations 
illustrated in this paper was formulated after a detailed 
study of pseudopotentials and prologation structures. 9-12 

It was shown in the Introduction how the Lie and 
pseudopotenUal ideas diverge. Various other geometric, 
as opposed to group theoretic, approaches have recently 
been compared to the Wahlquist-Estabrook approach. 16 

The relationship between these and the Lie approach 
will be discussed elsewhere. 
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Time-reversal noninvariance of the quantum-mechanical 
kinetic equation of Kadanoff and Bayma) 

Ziatiborka A. Nikolic8
) 

Sektion Physik der Universitiit Miinchen, Miinchen, Federal Republic of Germany 
(Received 3 October 1977) 

Applying anticausal Green's function technique, it has been shown that the origin of time-reversal 
noninvariance of the quantum-mechanical kinetic equation of KadanofT and Baym lies in the selection of 
the boundary condition that the system be in thermodynamical equilibrium at time t = - 00. 

1. INTRODUCTION 

Kadanoff and Baym1 have developed the Green's func­
tion approach to derive the quantum-mechanical kinetic 
equation which, successfully describes the irreversible 
phenomena in nonequilibrium quantum systems. But the 
weak point of the Kadanoff and Baym method is that they 
tacitly pass over the question of the origin of time-re­
versal noninvariance of the resulting kinetic equation. 
However, having the view that this equation is derived 
starting from the equation of motion for the one-parti­
cle causal Green's function (GF) which is invariant un­
der time-reversal operation, this question arises by 
itself. 

In order to provide an answer to this question we have 
considered a time-reversed situation described by anti­
causal Green's functions which represent time-reversed 
solutions of the corresponding equations of motion for 
the causal GF. 

In order to derive the close equation of motion for the 
real-time one-particle causal GF from the close equa­
tion of motion for the complex-time one-particle causal 
GF Kadanoff and Baym have used the method of analyti­
cal continuation, assuming that the system was in 
thermodynamical equilibrium in the remote past, and 
that it was taken from it by switching in the external 
field at time t = - 00. 

To investigate whether this assumption violates time­
reversal invariance of the initial equation, we have 
derived, from the equation of motion for the imagi­
nary-time one-particle anticausal GF, by the method 
of analytical continuation, the closed equation of motion 
for the real-time one-particle anticausal GF. We had 
to use the boundary condition that the system lies in 
thermodynamical equilibrium in the far future, i. e. , 
at time t= + 00. 

We have shown that this equation cannot be derived 
from the equation of motion for the real-time one-parti­
cle causal GF upon Wigner time reversal, which proves 
that the latter is time-reversal noninvariant. 

To prove the boundary condition, that the system lies 
in thermodynamical equilibrium at time t = - 00, pre­
determines the irreversible motion of the system 
towards equilibrium in the future, we have shown that 
the substitution of this boundary condition by the "anti-

a)This work is a part of the author's Thesis, University 
Munchen (1976). 

b) Present address: Pedagogical-Technical Faculty, 
Zrenjanin, Yugoslavia. 

causal" boundary condition, i. e., the condition that the 
system is in equilibrium at time t = + 00, yields the 
"quantum-kinetic equation" with the erroneous sign of 
the collisions term. 

2. DEFINITION, DOMAIN OF ANALYCITY, 
AND EQUATION OF MOTION FOR THE 
THERMODYNAMICAL COMPLEX-TIME ONE­
PARTICLE ANTICAUSAL GREEN'S FUNCTION 

The thermodynamical real-time one-particle anticau­
sal GF will be defined as a thermodynamical average of 
the antitime ordered product of field operators, 

G( t t) . Tr{exp[ - /:3(H - /-L)] [i(<J!H(r, t)<J!J(ra, ta)]} 
r,raa=l Tr{exp[-!3(H-/-LN)]} , 

(2.1) 

where T is the antitime ordering operator. 

The extension of definition (2.1) to the complex-time 
domain can be derived by using the same assumptions 
used by Mills. 2 We get for Imt < Imto 

G« ) _ . Tr{exp[ - i3Ha] U (0, t)<J!(t)u (t, to)<J!t (ta)u (to, i.e)} 
t,to -1 Tr{exp[-!3Ho]u(O,ip)} 

(2.2) 

where the operator u represents the inverse of the cor­
responding time-development operators. 

The so defined anticausal GF is analytical on the 
imaginary segment [0, + ii3] and could be written in a 
shorter form, 

G(t t )_ . (i[.S<J!(t)<J!t(ta)D 
, a -1 (1'[5']) , (2.3) 

where the operator S is defined as 

5 =11(0, ipk i {exp [- i~: dt' Hint(t')]}' (2.4) 

Starting from the equations of motion for field opera­
tors in the Heisenberg representation we have derived 
the equation of motion for the one-particle anti-causal 
GF: 

=6(1'-1)'1' J dr2 v(lr1 -r2 1)G2(12-; l' 2--)lt
2

=t
1

, 

n= 1. (2.5) 
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3. DEFINITION OF THE ANTICAUSAL GF FOR A 
SYSTEM IN THE PRESENCE OF THE SCALAR 
POTENTIAL AND THE CLOSED EQUATION OF 
MOTION FOR THE IMAGINARY-TIME ONE­
PARTICLE ANTICAUSAL GF 

Let us consider a time-reversed system in the 
presence of the scalar potential U(r, t). The external 
field can be observed as a time dependent perturbation 
which starts to act on the system which is in the thermo­
dynamical equilibrium. For that case it can be shown 
that a nonequilibrium anticausal GF has a form 

G(l l"U)_·(T[SlJ!(1W(l')J> 
, , - t <f[S]> ' (3.1) 

where the operator 5 is now defined as 

5 = exp[- i ( d2n(2)U(2)} (3.2) 

In order to get rid of the two-particle anticausal GF 
in the equation of motion for such a GF we use the func­
tional derivative technique3

,4 and we get 

[i a~l + ~ - U(l~ e(1, l/;U) 

+/0 dfi'(1,1;U)G(1,l';U)=6(1/-1). (3.3) 
'B 

Equation (3.3) represents the closed equation of motion 
for the imaginary-time one-particle anticau~al GF be­
cause, in principle, anticausal self-energy ~ can be 
expressed by means of the one-particle anticausal GF in 
the approximation of any order. 

4. ANALYTIC CONTINUATION TO REAL 
TIMES AND DERIVATION OF THE CLOSED 
EQUATION OF MOTION FOR THE REAL­
TIME ONE-PARTICLE ANTICAUSAL GF 

In order to get a closed equation of motion for the 
real-time one-particle anticausal GF from (3.3), we 
will proceed in the following way: 

Let us define the anticausal GF for a system in the 
external field on a complex segment [to, to + i!3J as 

(4.1) 

where 

For the case Imto > Imtl' (4 0 1) can be written in the de­
veloped form 

G>(1 1"V'!) _ . (v(to, tl')lJ!t(t l ')V(t 1·, tl)lJ!(tl)V(tlOto2i{3». 
, , ,0 - ± I (1'(to, to + i(3) 

(4.3) 

We define the anticausal GF for real-time arguments 
for the system in an external field as 

(4.4) 

Let us assume that the observed time-reversed sys­
tem lies in thermodynamical equilibrium in the future 
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and that the external field starts acting at the moment 
to = + 00. For such a system, for the case Imtl> Imt!" 
definition (4.4) becomes 

where time-development operators v act in the negative 
sense of the real-time axis. 

The integral path represented by the segment 
[to, to+i!3J can be deformed, because the functions under 
the inegral sign satisfy the Cauchy theorem, so that 
arguments f1 and tl' lie on a negative part of the real­
time axis retaining the order they had at the original 
integral path (Fig. 1). 

If we let to - + 00 under the assumption that 
limto • ®v(to + iE, to + i!3) '" 1, and applying the group 
property of operators v, we get 

lim (;'2 (1, 1', U; to) =g~(l, l' ;U). (4.6) 
to" 00 

Thereby we have proved that the anticausal GF for 
negative real-time arguments is an analytical continua­
tion of the anticausal GF with the positive imaginary­
time arguments. For the anticausal GF defined on the 
segment [to, to + ii3J in the case when the interchanging 
term is neglected in the Hartree-Fock term of self­
energy, the equation of motion has the form 

(4.7) 

Let us now seek the limes of (4.7) for the case 
to - + 00, when the integral path in (4.7) is substituted 
by the integral path from Fig. 1. In the case I t11 ',I f1,1, 

we get by means of Eq. (4.6) the equation 

[i iJ~l + 2~~1 - U.ff(1~ g>(1, l';U) 

= ft1 dHi?(1, i; U) - L< (1, i; U)}g>(l, 1'; V) 

f
t1' 

_ ~ dE>(1, i; U)[g >(i, 1'; U) - g>(i, 1'; U) J (4.8) 

which, together with the corresponding equation for 
g< represents the close equation of motion for the 
real-time one particle anticausal GF. 

FIG. 1. 

t.= 0 
o 

Ret 
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5. PROOF THAT THE EOUATION OF MOTION FOR 
REAL-TIME ONE-PARTICLE CAUSAL GF IS TIME­
REVERSAL NONINVARIANT 

If Wigner time-reversal5 is applied to equation KB 
(3.2b) (the KB denotes that the equation is from Ref. 1), 
i. eo, if we first exchange the arguments 1 = l' and 
afterwards perform the complex conjugation of the 
equation, we get 

ri ~ + VI] G(l,l') l at1 2m 

(5.1) 

Equation (5.1) is equivalent to the Eq. (2.5), i. e., to 
the equation of motion for one-particle anticausal GF 
which is derived on the basis of the definition of this 
function. Since we have shown that this equation can be 
derived from the equation of motion for one-particle 
causal GF upon the Wigner time-reversal, it could be 
concluded that the anticausal Green' s function defined 
here represents the time-reversed solution. 

In the same way we can derive Eq. (3.3) from KB 
(S. 22) which means that Eq. KB (5.22), i. e., KB 
(S. 16a) is time-reversal invariant. 

When we exchange the arguments 1 = l' in KB (S,2Sa) 
and when we perform the complex conjugation of the 
equation we get 

~ a~l + 2~:1 - Ue!f(l»)~(l,l':U) 

= f~l dl[i>(1, 1; U) - L«l, 1; u)]~(i:, l';U) 

f
t1 ' 

- .~ L>(l, I; U)[g>(l, 1';U) -g«l, l';U)]. (5.2) 

The comparison of Eqs. (4. S) and (5.2) shows that 
they are not identical because lower bounds of the inte­
grals over time in them differ. Therefrom it follows 
that Eq. KB (S. 27a, b) is time-reversal noninvariant. 
The difference in the lower bounds of integrals stems 
from the different boundary conditions under which 
these mentioned equations were derived. From the 
foregoing it follows that the origin of time-reversal 
noninvariance lies exclusively in the boundary condition. 

6. DERIVATION OF THE QUANTUM-MECHANICAL 
"ANTICAUSAL KINETIC EQUATION" AND THE 
QUANTUM "ANTICAUSAL BOLTZMANN EQUATION" 

Since the quantum- mechanical kinetic equation KB 
(9.30), describing the irreversible motion of the system 
tending to the equilibrium in the future, could be de­
rived from Eq. KB (8. 27a, b) it could be expected that 
a similar equation could be derived from (4.8) which 
would describe the irreversible motion of a time­
reversed system towards equilibrium in the past. 

When we assume that U(r, t) varies slowly in space 
and time, ? are slowly varying functions of the co­
ordinates R = (rl + rl,)/2, T = (t1 + t1,)/2, but are sharply 
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peaked about zero values of r = r1 - r1', t = t1 - i1,. By 
means of these new coordinates we define 
g> (P., w; R, T.; U) as 

g>(P., w; R, T.; U) 

= r~ dr r~ dlexp(-iP.·r+iu.Jt) 
• _C() • - 00 

(6.1) 

which can be interpreted as the particle density with 
the pulse p= - p and by energy w in the space-time 
point, R, T. < 0 of the time reversed system. There­
from stems the definition of the corresponding distribu­
tion function 

r(p.,R, TJ= f:~ g>(P., lc1;R, TJ. (6.2) 

If the corresponding adjoint equation of motion is 
subtracted from (4.8), inserting the new coordinates, 
and by means of defining (6.1) upon a lengthy trans­
formation, we get the equation 

[ ~Ta + P.' VR -VRU.ff(R, TJ· Vp + ~T() U.H(R, TJ';-'] 
(j. III • (j. ow 

x? (P., w; R, TJ 

=?(P., w;R, TJ i5> (P., w;R, TJ 

-:g«P., w;R, TJ:E«p., w;R, TJ (6.3) 

which describes time reversal of the original process 
described by Eq. KB (9. 71. Therefore, we shall call 
it the "anticausal kinetic equation. " 

From this equation, under the same assumption 
used by Kadanoff and Baym, the "Boltzmann equation" 
can be derived relevant to the time-reversed system. 
It has the form 

where 

l' =l(p~, R, TJ, l =.f(P., R, TJ, '} =J(P,R, T.). 

Equation (6.4) differs from the quantum-mechanical 
Boltzmann equation KB (9,16) only in the sign of the 
collision term. 

7. DISCUSSION 

Kadanoff and Baym have derived the quantum­
mechanical kinetic equation using the boundary condi­
tion that the system was in thermodynamical equilibrium 
at time t = - 00. Through action of the external fields 
the system is removed from its equilibrium state and 
brought to some arbitrary state at time t. The dis­
tribution function which represents the solution of the 
quantum-mechanical Boltzmann equation is at moment 
t determined by the external field which acts on the 
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system until that moment, i. e., its satisfies the 
causality condition. 6 

In Sec. 6 we have seen that if the boundary condition 
was chosen so that the system lies in thermodynamical 
equilibrium at time t", + 00, then the "time-reversed" 
situation results, which implies the "Boltzmann equa­
tion" with negative collision term. The solution of this 
equation represents the distribution function of the time­
reversed system which at moment t depends on the ex­
ternal field acting on the system upon moment t. This 
obviously contradicts the causality condition. 

Consequently, in the Kadanoff and Baym method the 
difference between the causal and anticausal behavior 
of the system can be established only upon the selection 
of the boundary condition ar,d irreversibility appears as 
a consequence of the causality condition. 

2440 J. Math. Phys., Vol. 19, No. 12, December 1978 
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Tensor spherical harmonics on S2 and S3 as eigenvalue 
problems8

) 
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and California Institute of Technology, Pasadena, California 91125 
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Tensor spherical harmonics for the 2·sphere and 3·sphere are discussed as eigenfunction problems of the 
Laplace operators on these manifolds. The scalar, vector, and second-rank tensor harmonics are given 
explicitly in terms of known functions and their properties summarized. 

The analysis of scalar, vector, and tensor wave equa­
tions on the manifolds fJ2 and SJ is greatly facilitated by hav­
ing a set of basis functions that reflect the symmetries and are 
eigenfunctions of the Laplace operator. The use of scalar fJ2 
harmonics in multi pole expansions of electrostatic fields is 
probably the most well known example;l but cosmological 
pertubation,2 stellar pulsations,3,4 and scattering problems 

also make use of multipole expansion using the vector and 
tensor harmonics as well. In this paper the fJ2 and S3 harmon­
ics are approached as eigenfunction problems (based on an 
analogy with the discussion of fJ2 harmonics by Thorne and 
Compolattaro4 and the discussion of S3 harmonics by Lif­
shitz and Khalatnikov2

) with an emphasis on explicit solu­
tions, summarized in Tables I and II. These harmonics will 

TABLE I. S' tensor harmonics. 

r 0" = I, r 'N =sin'O 

Scalar: yUm) 

Tensor: ", ~;;) = yUm) r ab 

a)Work supported in part by the National Science Foundation Grant 
PHY76-07919. 

b)Chaim Weizmann Fellow. 

(' '1'=_1_ (' 0= -sinO 
o sinO' 'I' 

\j'yUm) = -/(1+ 1) yUm) 

\j'l/J~/m) = [1-/(1+ 1) ll/J u Urn) 

\j'¢ ~m) = [1-/(1+ 1) l¢ a Urn) 

", ~~n) rah =2yUm) 

x ~:;) yhc =t/> ~m) 

X~;,n)rab=o 
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Orthogonality relations 
d'{}=sin(} d(} d", 0<(}<1T. 0<lP<21T 

Jd'{} .1. 1m 1/1 'I",. ya"=/(/+I)I515 If' (J h II mm' 

J d'{} if> ;n¢ ;,'m yah =1(1+ 1) 15 ,,15 mm' 

Jd'{} 1) 1m 1) ,/;" yacy"d = -21515 ' 
uh cd II mm 

Jd'{} ylmy'''n yac y "" =215 ,15 ' uh <d II 111m 

All other products vanish. e,g,. J d'{} 1/1 :"y af> =0. etc, 

The completeness of these functions follows from the completeness of the scalar harmonics 

I yUm) «(}.lP ) y* Um)«(}'.lP')=15 (cos(}-cos(}')15(lP-q/) 
I.m 

TABLE II. S' tensor harmonics, 

gn =1, g",,=sin'y. g« =sin'y sin'(}, 

Scalar: y(cdm) (x.(}.",) LI ylnlm) = _ n(n + I) ylnlm) 

LlA :;,I,n) = [ 1 - n(n + 2) lA :;,Im) 

LIB :;dm) = [ I -I/(n + 2) lB :;dm) 

Llc;;,lm) = [2-I/(n+2) lc:;dm) 

B ~;(~m) =!( B ((Il + B fJ.(( ). 
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e(n/m) = y(nlm) +-'-n(n +2) y(n/m)g 
a/3 ;0.;(3 3 a/3 

E (nlm)_ 
ub -

F~~lm) =W+ I) sin/x e~=J) (cosx) '" ~:)(6,rp)+ [sin/x e~=J) (cosx) 

+ 2 (~( sin/+'x e(/= J) (COSX)-cotx~ (sin/+ 2 x C(/= I) (cosx» )] !{l(lm) (6,m ) 
[2 _/ (I + I) 1 ax' n / ax n / "h T 

Eigenvalues: 
AA all =[5-n(n +2»)Aall AD all = -n(n+2)Dall 

A A[aIlJ=[I-n(n+2)lArat3] 

AB all =[5-n(n+2)]Ball AF all =[2-n(n +2)]F"fJ 

A if [alii = [1- n(n + 2)]Brat3] AG all =[2-n(n+2)]Ga/3 

Divergence conditions: 

A a/3;yg/3y =l( 3-n(n+2»A a 

B all;yg llr = l( 3-n(n+2» B a 

Trace conditions: 

D allg a/3 = 3 y(n/m) 

be used in a separate paper to discuss perturbations in space­
times with these symmetries. 

We use the conventions of Ref. 1 for the scalar S- har­
monics and the conventions of Ref. 5 for the Gegenbauer 
polynomials. We denote three-dimensional covariant de­
rivatives by a semicolon, two-sphere covariant derivatives by 
a vertical line, represent the two-sphere metric by r ab' the 
three-sphere metric by g f.J. V ' and define the sign of the curva­
ture tensor so that the Ricci identity is given by 

V a ;{3;Y - V a ;Y;{3 = V f.J.R ~{3y. 

2443 J. Math. Phys., Vol. 19, No. 12, December 1978 

Greek indices run from 1 to 3 and denote three-sphere indi­
ces, Latin indices run from 2 to 3 and denote two-sphere 
indices. 

The manifold S' is characterized by its metric 

ds'=gf.J. v dxf.J. dxv=dx'+sin'x(dtF+ sin'()drp') , 

where the coordinates xf.J. = (x,(),rp ) have the domains 
o <X < 'TT, O<,() < 'TT, and 0 < rp < 2'TT with the usual polar sin­
gularities at 0 and 'TT. The sufaces X = const are conformal to 
S- [described as above with the coordinates xa=«(),rp)]. The 
S' harmonics are the tensorial eigenfunction solutions 
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T up ... y to the equations 

.d T ap ... y T ap ... y;J1.;V g J1.V =..1. T ap ... y (1) 

that are regular on SJ and have eigenvalues A. The S' har­
monics satisfy the obvious, similar conditions to the above. 

At this point it is convenient to restrict consideration to 
the S' harmonics and review the scalar, vector, and second 
rank tensor solutions of Ref. 4. The scalar harmonics are the 
well known y(lm) (e,rp) listed in Ref. 1 and these form a com­
plete basis for scalars on S'. The tangent space to a point on 
S' is two-dimensional, to span it we need two linearly inde­
pendent solutions to the vector form of Eq. (1). These can be 
obtained from the gradient of the scalar harmonics ( t/J ~m» 
and the dual of the gradient ( !/J ~m» (see Table I for defini­
tions) (since the space is two-dimensional taking a vector's 
dual gives another vector). That the gradient t/J a is a solution 
to the vector form ofEq. (1) follows from Ricci's identity 

y .al~c r be = ( y .~e r be) ,a + y .d R tae r be 

= [1-1 (I + l)]Y,a' 

where (for S') 

R abed = r ae r bd - r ad r be' 

That the dual vector!/Ja satisfies the same equation with the 
same eigenvalues follows from the vanishing of the covariant 
derivative of the Levi-Civita tensor. Under the improper 
transformation e' =1T- e, rp' =rp+1Twhich corresponds to a 
coordinate inversion t/Ja transform as a polar vector and <Pa 
transforms as an axial vector, hence they are called even and 
odd parity vector spherical harmonics, respectively, For sec­
ond rank tensors the space is four-dimensional and can be 
spanned by a skew tensor X ab and three symmetric tensors 
7J ab' t/J ab' and !/Jab defined in Table I. These satisfy the ten­
sor form ofEq. (1) from arguments analogous to the vector 
case. The point to be made here is that all the S' harmonics 
can be constructed from a knowledge of the scalar S' har­
monics, but this is not the case for the SJ harmonics as will be 
shown below. 

The dimensionalities of the tensor spaces over SJ com­
plicate the previous analysis as can be seen by a count of the 
number of independent solutions to Eq. (1) as a function of 
the rank of the tensor. For scalars there is one set offunctions 
y(nlm) (x,e,rp). For vectors there are three linearly indepen­
dent harmonics. In three dimensions we cannot use the trick 
of using the dual of a vector harmonic as we did on S', but we 
can use a generalization of this idea and use the curl of a 
vector to generate a linearly independent vector. In three 
dimensions there are two main types of vectors; divergence 
and curl free. The latter is exemplified by the gradient of the 
scalar harmonic 

(2) 

Two other vector harmonics A ~/m) and B ~nlm) can be found 
by imposing the divergence condition 
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(3) 

solving for Aa from 

.1A a =AA a' (4) 

and forming the third vector from B a = - (curIA )a (obvious­
ly B a is also divergenceless). The vectors A ~/m), B ~/m) , 
and e ~nlm) form an harmonic basis for the three-dimension­
al space of vectors on SJ. The second rank tensors on SJ for a 
nine-dimensional vector space so we need nine independent 
tensor harmonics to span it. Two candidates come from the 
scalar harmonics 

D (nlm) _ y(nlm) g 
ap - (y,e.op) ap (5) 

and 

e(nlm) =y(nlm) +'-n(n+2)y(nlm)g 
af3 .a.(3) af3 (6) 

[n.b. these are symmetric tensors and e ~~m) gaP =0]. Two 
more come from the divergenceless vectors 

A(nlm) -A (nlm) 
ap - a;p , 

jj(nlm) -B (nlm) 
af3 - a;p . 

(7) 

(8) 

These can be further decomposed into symmetric and anti­
symmetric tensors: 

A (nlm) =1(A(nlm) +A(nlm» 
ap 2 ap pa' 

B (nlm) = 1( jj(nlm) +jj(nlm) 
ap 2 ap pa' 

A(nlm) - IB ('11m) E Y 
lap I - 2 Y uP' 

jj(nlm) = _ 1 [1 +n(n +2) ]A (nlm) f y 
laf31 2 y af3' 

and 
G(nlm) -E /lvy(nlm) 

ap - {J ;/l' 

where E apy is completely antisymmetric, 

with 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

The antisymmetric tensors arises algebraically from the vec­
tors while the symmetric tensors come from the covariant 
derivatives of the vectors. To find two more independent 
harmonic solutions we impose tracefree and divergenceless 
conditions on a symmetric tensor Eap and solve Eq. (1) with 
these constraints. The last harmonic F a{J is then found from 
Eaf3 by taking the symmetrized curl 

(15) 

f..s.f3 = 1(£ af3 + F (Ja ), (16) 
(n.b. F [af31 =0 due to the trace and divergence conditions on 
E a(3)· 

We now proceed to verify these statements. For the SJ 
scalar harmonics we have 

csc'X {~(sin'X aY)+csce [~(sine ay) 
aX ax ae ae 

+csce-- =Ay(nlm). a'Y)} 
arp' 

The solutions that are regular at the poles are 

y<nlm)(x,e,rp) = (2
2/

+ I (n + 1 )(n -1)!(/!)')1I2 
1T(n+l+ I)! 
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X sin l X c~~l) (COSX) y(lm) «(},cp) (18) 

with eigenvalues given by 

A= -n(n+2), 1m1</<n=0,1,2, .... 

The c~~l) (x) are Gegenbauer polynomials as defined in 
Ref. 5, the y(lm) «(},cp) are the fJ2 scalar harmonics, and the 
coefficient is chosen6 to normalize the harmonics 

=D nn,D II,D mm" 

where the S' volume element is given by 

d1!1=sin'xdx sin(} d(} dcp. 

The vector C ~nlm) satisfies 

Ac(nlm) =(.1 y(nlm) + y(nlm) R {3 g"V. 
LI U ;u;{3 Ilav 

On S' the curvature tensor is given by 

R (3ll av =D~g Il" -g~g IlU 

and hence 

.1c~nlm) = [2-n(n+2) ]c~/m) 

(19) 

(20) 

(21) 

(22) 

so c~lm) satisfies Eq. (1) for a vector. It is not divergence­
less. but satisfies 

c~~~m)g a{3 = -n(n+2) y(nlm). (23) 

To solve Eq. (4) we consider the obviously divergenceless 
vector (motivated by considering an odd parity split of a 
divergenceless vector) 

A ~nlm) =(o,h (x)¢ ~m)«(},cp» (24) 

then using the properties of the S'-harmonics Eq. (4) 
becomes 

which has the regular solution 

h (nl)(x) =sinX 1+ I c~~l) (cosX), 

with eigenvalue A = [1- n(n + 2)]. 

(26) 

From Eq. (7) and Eq. (21) we note that the Laplace 
operator acting on A a{3 is given by 

.1 Aa{3 = [3-n(n+2) ]Aa{3 +2A{3a' (27) 

Therefore, the vector B a =€ a"V A IlV satisfies the S' vector 
harmonic equation 

(28) 

and obviously Bu is divergenceless. It has the components 

B~nlm) = _/(l+ 1) csc'X h (nl)(x) y(lm) «(},cp ), 

dh (nl) 
B~nlm) = ____ t/J~m)«(},cp). 

dX 
(29) 

The tensor harmonics consist of three antisymmetric 
tensors and six symmetric tensors. It is easy to verify that 
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D (nlm) and C (nlm) satisfy a{3 a{3 
.1D (nlm) = - n(n + 2) D (nlm) a{3 a{3 (30) 

and 

.1C~r)=[6-n(n+2) ]c~~m). (31) 

Using Eqs. (11), (12), and (13), the vanishing of the covar­
iant derivative of the € a{3r tensor, and Eqs. (28), (27), and 
(22), it follows 

and 

A A-(nlm) [ I (+ 2) lA-(nlm) 
LI [a{3]= -nn [a{3]' 

.1 ii~,:!;;? = [ 1-n(n + 2) lii~,:!;;? ' 

(32) 

(33) 

.1G~:/Jm) = [2-n(n+2) lG~~m). (34) 

From Eq. (27) and the analogous equation for ~(3 we find 

.1A ~~m) = [5 -n(n +2) ]A ~:~m), (35) 

.1B ~:/Jm) = [5 -n(n +2) ]B ~r). (36) 

The two remaining tensor harmonics are found by solving 
Eq. (I) for a symmetric tracefree divergenceless tensor 
E(nlm) a{3 . 

The properties oftheS'-harmonics in Table I suggest as 
a candidate the odd parity traceless tensor 

[
0 H 0')¢ ~Im) «(},cp ) ]. (E(nlm» -

a{3 - H0')¢a(lm)«(},cp) S(x)¢~;;)«(},cp) 

(37) 

The conditions E a{3;y g (3y = 0 impose the relation 

dH +2cotXH 0')+ H2 -I (I + 1)]csc'XS 0')=0 (38) 
dX 

which we will use to determine S given H. (In what follows 
we assume I> 1. The 1= I case wiI1 be treated later.) Using 
the divergence condition the E\a equation 

.1(E a'E la b 
la)~---+csc' X E lalblc r C 

aX' 

(39) 

decouples and we find 

d'H dH --+ 2cotX - + [ [2 -I (l + l)]csc'X - 2cot'x 1 H =AH. 
dx' dx 

- (40) 

The solution regular at the poles for I> I is given by 

H(nl)(X)=sinIX c~-t-)l (cosX) 

with the eigenvalue given by 

A=[2-n(n+2)]. 

(41) 

(42) 

The symmetric tensor Pa{3 defined by Eq. (16) is obvi­
ously traceless, divergenceless, and linearly independent of 
the eight previously defined tensor harmonics. It is straight-
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forward to show from Eq. (l) and Eq. (15) that Fap satisfies 
the same harmonic equation as does Eap. The properties of 
the S' harmonics are summarized in Table II. The antisym­
metric tensor Pram is identically zero. This follows from Eq. 
(15) and the divergenceless and traceless properties of E ap, 

t I' aPF[ap]=2E ;';v -2E~ ;11 =0. 

For the case in which 1= 1, Eq. (38) implies 

dH 
--+2cotXH =0 
dX 

which integrates to give H =csc2X and implies 
.dE a{:ll/= 1 =2E a{:ll/= l' But this solution is not regular at the 
poles. If we consider Eq. (39) with 1= 1, we find it is already 
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decoupled but it is not divergencefree. In fact it is propor­
tional to the A xU II = I tensor harmonic. There are no regular 
1 = 1 divergenceless tracefree harmonics. 
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In this paper, we suggest that what we shall call the conformal 2-structure may, in an appropriate 
coordinate system, serve to embody the two gravitational degrees of freedom of the Einstein (vacuum) 
field equations. The conformal 2-structure essentially gives information concerning the manner in which a 
family of 2-surfaces is embedded in a 3-surface. We show that, formally at least, this prescription works 
for the exact plane and cylindrical gravitational wave solutions, for the double-null and null-timelike 
characteristic initial value problems, and for the usual Cauchy spacelike initial value problem. We 
conclude with a preliminary consideration of a two-plus-two breakup of the field equations aimed at 
unifying these and other initial value problems; and a discussion of some aspirations and remaining 
problems of this approach. 

1. INTRODUCTION 

The gravitational field, as described by the Einstein 
field equations, embodies the possibility of gravitational 
radiation; this has been known in linearized approxima­
tion since the early days of the development of the 
theory. 1 Consideration of plane waves in this approxi­
mation showed that they involved two degrees of freedom 
per space-time point. 2 When the linearized theory is 
interpreted as the theory of a massless spin two field 
in flat space-time, this is just an exemplification of 
the general property of massless, integral spin, free 
fields of having two helicity states. 3 Of course, in the 
gravitational case we should not interpret the linearized 
theory as a Poincare-covariant theory, but rather as 
(one hopes) the first approximation to a solution of the 
full (nonlinear) field equations. Thus, it becomes 
important to know whether this property of having two 
degrees of freedom per space-time point is also char­
acteristic of the exact theory. A number of arguments 
to establish that this is indeed the case have been given, 
probably the earliest being based upon consideration of 
the spacelike hypersurface initial value or Cauchy 
problem. 4 

The question of precisely how these two degrees of 
freedom may best be expressed analytically in terms 
of the components of the metric tensor and its deriva­
tives (or such combinations of these as the Riemann 
tensor, notably) for a particular solution to the field 
equations, in a particular coordinate system, is not a 
simple one-nor indeed one with a unique answer. Any 
theory with a gauge group, such as Maxwell theory or 
general relativity, will allow a wide lattitude in the 
expression of true degrees of freedom of the field in 
terms of nongauge invariant quantities such as poten­
tials for the gauge-invariant fields. Thus, it is not a 

alOn leave from Department of Physics, Boston University, 
Boston, Mass. 02215. 

question of finding a uniquely "right" answer to the 
question: What quantities are the bearers of the gravi­
tational degrees of freedom? But rather, a question of 
seeing what particularly convenient embodiments of 
this information can be found when considering various 
problems of physical or mathematical interest in the 
study of the theory. Of course, the answer to any 
physically well-formulated problem within the theory 
must be the same, whatever method of treatment is 
employed, and therefore that answer could always be 
formulated invariantly in principle (that is in such a 
way that anyone could arrive at it by the use of any 
coordinate system-or, perhaps better said, by intrin­
sically geometrical considerations). Clearly, in prac­
tice, one may not be able (or willing) to reformulate 
the problem in such a way; and for actual computational 
purposes various coordinate chOices, explicitly or 
implicitly adapted to some fully or partially geomet­
rically determined structure, may vastly facilitate the 
treatment of particular problems. 

In this paper, we shall attempt to show that a unified 
treatment of several important problems in general 
relativity may be given by adapting a coordinate 
system, such that the gravitational degrees of freedom 
are embodied in that portion of the metric tensor which 
we term the conformal 2-structure. In the next section 
we shall explain just what we mean by "conformal 2-
structure. " We shall then review part of the motivation 
for Singling out this entity by looking at some exact 
and approximate solutions of the Einstein vacuum field 
equations. More specifically, in Sec. 3 we shall con­
sider exact plane and cylindrical gravitational waves 
and establish in each case that it is precisely the con­
formal 2-structure which, in the standard representa­
tions of these solutions, embodies the two degrees of 
freedom of the field. In the following two sections, we 
shall briefly review the double-null initial value prob­
lem, as analyzed by Sachs, 5 and the null-timelike initial 
value problem as analyzed by Bondi et at. , 6 Sachs, 1 and 
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Tamburino and Winicour. 8 In these cases as well, we 
shall see that it is the conformal 2-structure on two 
null hypersurfaces, or a null surface and timelike tube 
(or some appropriate limit of it) respectively, which 
embodies the two gravitational degrees of freedom. 
Then, in the following section we shall discuss the 
spacelike or Cauchy initial value problem, and show 
(at least formally) how the constraint equations on the 
initial spacelike hypersurface may be interpreted so 
that again the conformal 2- structure on the initial 
hyper surface and its "velocity" play the role of the 
gravitational degrees of freedom. 

However, we wish to be clear from the beginning 
about the limitations of what we are attempting in this 
paper. In general, when considering a question such as 
the solution of a boundary value problem for a system 
of partial differential equations we should require that 
the problem be well posed, mathematically speaking. 
To be more precise, such problems require a specific­
ation of data which lead to the problem having a solu­
tion (existence), no more than one solution (uniqueness), 
and dependence of the solution on the specified data 
such that small variations in the data ("small" being 
suitably defined) lead to small variations in the solution 
(stability). Now, from the physical viewpoint, problems 
that seem physically reasonable are usually mathemat­
ically well posed; conversely, a problem that is ill 
posed mathematically often has turned out to conceal 
some physically dubious feature. This rule is by no 
means infallible. (Some ill-posed problems of physical 
importance are known. 9) However, the posing of such 
problems is a signal for caution, at the very least. 

In discussing the double-null and null- timelike type 
of initial value problems, as well as our approach to 
the initial value question in the case of the Cauchy 
(spacelike) problem, we are treading on quite danger­
ous territory. Very little is known about how such 
problems may be well posed, if at all; and global prob­
lems are known to abound here. 10 Since we have nothing 
to contribute to the solution of these difficulties, we 
shall sidestep the issue and adopt the following point of 
view, provisionally at least. Instead of claiming to 
construct solutions on the basis of the initial data for 
these prOblems, we imagine that we are given a 
solution to the field equations, and ask what data we 
need to give on our initial hypersurfaces to character­
ize it uniquely. Thus, we bypass the existence and 
stability questions, and merely consider the uniqueness 
of the problem. Of course, if in addition the solution 
we are considering is analytic, then the solution could 
actually be constructed from our initial data. But in 
any case, we claim no more than to analyze given 
solutions (given in the imagination at any rate) in terms 
of data characterizing them uniquely. 

In the penultimate section, we shall consider a for­
mulation which may eventually lead to a unified treat­
ment of all the various initial value problems. In the 
concluding section we shall mention some of the still 
unresolved problems connected with this approach. 
Finally, an Appendix is included which recalls how, 
in a somewhat analogous manner, the various problems 
can be formulated in the case of the one-dimensional 
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t------------
(iJ Spacelike hypersurface 

(ii) Timelike hypersurface 

-, 

(iii) Null hyperspace 

FIG. 1. Hypersurface foliated into topological 2-spheres. 

wave equation. We shall throughout restrict our atten­
tion to the Einstein vacuum field equations, and all our 
considerations will be purely local in character. 

2. CONFORMAL 2-STRUCTURE 

We attempt to make preCise in this section the mean­
ing to be attached to the term "conformal 2-structure." 
<We owe this term to B. Carter, whose suggestion we 
gratefully acknowledge. ) If we consider an arbitrary 
Riemannian 2-geometry, it is a classic theorem that it 
is conformally flat. 11 In this sense, there is no con­
formal 2-geometry; or rather only the trivial flat one. 
However, consider a family of 2-geometries gAB (XC, p), 
given as a function of some preferred parameter p 
(where from now on Greek indices run from 0 to 3, 
lower case Latin from 1 to 3, and upper case Latin 
from 2 to 3). Obviously, we may now extract a con­
formal factor X-1(X

C,p) from gAB so that the determi­
nant of the remaining conformal metric, gAB == XgAB , is 
parameter independent, i. e. , 

I.~AB I =f(xC
). 

This property is clearly invariant under all parameter­
independent coordinate and conformal transformations. 
Then, the two remaining independent components of 
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gAB, as functions of the two coordinates and of the 
preferred parameter p, contain the information which 
we refer to as the conformal 2-structure. [If we were 
to attempt to transform away this information, by a 
parameter-dependent family of coordinate and conformal 
transformations, on each 2-surface p = canst of the 
three-dimensional (xA,p)-space, we would need two 
functions of the original coordinates and of the param­
eter to make each metric locally flat, and these func­
tions would be equivalent to the original two functions 
in their information content. J 

Note that, since (lgAB I,p)/(I,~AB I) =gABgAB,P for any 
metric, our condition that IgAB I, P = 0, is equivalent 
to the condition that the trace of gAB,P vanish. This 
condition is invariant under the remaining conformal 
freedom. Namely, if <;; AB =K2gAB , K2 must be indepen­
dent of p to preserve the condition that the determinant 
-. =AB= -AB-of gAB be llldependent of p, so g g AB,P =g gAB,P' 

Thus, it is really the conformal structure which is 
important. Indeed, gacgAB,P is invariant under any such 
allowed conformal transformations. 

Now we shall translate these results into more 
geometrical language. Consider a three-dimensional 
manifold, which is fibered by the trajectories of a 
vector field V" (a = 1,2,3,), and foliated by a family of 
2-surfaces generated from any member of the family 
by dragging it with the vector field (alternatively, of 
course, one could start with the foliation and set up a 
correspondence between points on each 2-surface to 
generate the vector field). If P is the preferred para­
meter of the vector field, starting from some value on 
the initial 2-surface, then it can be used together with 
two coordinates x A chosen on the initial 2-surface of 
the family and dragged with the vector field, to set up 
a preferred coordinate system for the 3-space. In this 
coordinate system each 2-surface in the family will be 
labeled by a value of p, and the vector field will take the 
form 5; (a =A, pl. Any member of the family of 2-
surfaces is then a rigged hyper surface in the 3-mani­
fold, with va as the rigging field. If we introduce a 
family of 2-metrics gab on these rigged hypersurfaces 
(gab va = 0), this not only induces an intrinsic Riemannian 
geometry on each 2-surface, but enables us to define 
an extrinsic curvature for each 2-surface as embedded 
in the 3-manifold, namely - t LygAB =hab , where Lvii! 
stands for the Lie derivative of the geometric object <T> 

with respect to the vector field 11. In the adapted co­
ordinates (xA,p), gab will only have components gAB and 
hab only components hAB =- 3gAB,P' Thus the family of 
2-geometries gAB (XC,p) enables us to compute hAB 
and hence also gives information concerning the manner 
in which this family of 2-surfaces is embedded in (XC,p) 
3-space. (We are grateful to R. Penrose for a discus­
sion on this point. ) 

We emphasize again that this construction is quite 
independent of whether the 3-manifold is endowed with 
any other structure, and depends only on the inner 
metric of the 2-surfaces and their rigging. Of course, 
if the 3-manifold itself has a Riemannian metric, and 
gAB is the induced metric on a 2-surface rigged with a 
unit normal vector, hAB is the usual second fundamental 
form of the 2-surface. 

2449 J. Math. Phys., Vol. 19, No. 12, December 1978 

Now we can take the 2-surface metric gAB, compute 
its inverse metric J!'B, and project this back into the 
3-manifold using the projection operator Bg = 5~ - V·W,b' 
where w(x") is the scalar field which reduces in adapted 
coordinates to W = p. (It follows that this projection gOb 

obeys gu>w b = O. ) We now look for a conformal factor 
;\(x.) such that g.b = ;\gab obeys the equation Ii =gabli.b = O. 
This always exists, since it merely requires that L v In ;\ 
=h =g"bhab • Thus, the conformal 2-structure can be 
invariantly characterized by the condition that the trace 
of the extrinsic curvature vanishes. This condition is 
clearly invariant under the remaining conformal free­
dom, which allows us to introduce any conformal factor 
K2 such that LyK = O. Thus, the conformal 2-structure 
essentially gives information about the traceless ex­
trinsic curvature of the family of 2-surfaces, which we 
shall call the conformal extrinsic curvature. 

It is easy to generalize these ideas12 to a family of 
2-surfaces in a 4-manifold generated from an initial 
2-surface by dragging with two commuting vector fields. 
The 2-surfaces will then form two families of 3-sur­
faces; and each 2-surface will have two extrinsic 
curvatures: one with respect to each 3-surface in which 
it is embedded. If one wants to consider the evolution 
of the gravitational field from the initial data this is the 
sort of construction that is needed. But in this paper we 
confine ourselves (except for the next section) to a dis­
cussion of the initial value question only, so our 
treatment here is sufficient. 

3. EXACT SOLUTIONS, PLANE AND CYLINDRICAL 

Bondi, Pi rani , and Robinson13 have discussed plane 
gravitational waves, defining them as nonflat solutions 
to the gravitational field equations possessing at least 
as much symmetry as electromagnetic plane waves 
(actually, an additional symmetry will always exist). 
Locally, it is always possible to put such solutions 
into the form 

(3. 1) 

where 

_ (COSh 2(3 + sinh 2f3 cos 28 - sinh 2f3 sin 28) 

gAB = , 

- sinh 2f3 sin 28 cosh 2(3 - sinh 2f3 cos 28 

(3.2) 

and (3, e, and ¢J are functions of 11 = l -~. (3 and e are 
arbitrary functions of 11, while cb is determined by 

(3.3) 

We see that the two gravitational degrees of freedom 
are here explicitly represented by the functions f3 and 8. 
Thus, the conformal 2-structure, as a function of the 
preferred parameter 11, embodies the radiation field in 
this representation of plane gravitational waves. 

The problem of gravitational waves with cylindrical 
symmetry was first solved in the case when they also 
possess reflection symmetry (and thus only one degree 
of freedom) by Beck, and rediscovered by Einstein and 
Rosen. The cylindrical waves without reflection 
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symmetry, and thus possessing both degrees of freedom 
were discovered by Ehlers, and independently by , 
Kompaneets. A detailed discussion, with references, 
may be found in a paper by one of us. 14 The metric, in 
the form given by Ehlers, is 

ds2 = exp(y - ~)(dt2 - dp2) - pgABdxAdxB, (3.4) 

where 

f 
p-l exp(2-v) p-1X exp(2\{!) J 

gAB = 

p-1X exp(2-v) p-1X2 exp(2 \{!) + p exp( - 2\{!) 

I.~AB I ::= 1, (3.5) 

and -V, X, and yare functions of p, t only. -V and X obey 
coupled nonlinear cylindrical wave equations 

e\{! = ip-2 exp(4\{! )(X~ p - X~ t), 

eX = 2p-1X,p + 4(x, t\{!, t - X,p-v,p), 

where 

(3.6a) 

(3.6b) 

is the cylindrical wave operator; y is determined by -V 
and X through the equations 

y, p = p(-V,2p + \{!.\) + tp-l exp(4-v)(x.2t + X.2p), 

y, t ::= 2p-v, p -V. t + ip-1exp(4 \{!) X. p X, t , 

(3.7a) 

(3.7b) 

whose conditions of integrability are precisely the 
coupled wave equations (3.6) for \{! and X. Thus, once 
again it is the conformal 2-structure gAB which em­
bOdies the gravitational degrees of freedom of the 
cylindrical waves. Note that while Eqs. (3.6) have been 
given in a form appropriate for discussion of the usual 
Cauchy problem, i. e., using one spacelike coordinate 
p and one timelike coordinate t, by introduction of 
coordinates u = t - P and v = t + p we can cast these equa­
tions into a form appropriate for consideration of a 
double-null initial value problem, a Bondi-Sachs prob­
lem, etc. The conformal 2-structure will then be given 
as a function of the appropriate parameter, depending 
on whether we look at a spacelike, null or timelike 
hypersurface. Of course, on a spacelike initial hyper­
surface, the velocities (or momenta) of the conformal 
2-structure must be given as well, in keeping with the 
usual feature of the spacelike Cauchy problem, i. e. , 
the "doubling" of the data needed on spacelike portions 
of the initial boundary (see the Appendix). 

Thus, we see that in both the known cases where 
exact radiating solutions can be explicitly given with 
as much generality as the symmetry conditions imposed 
will allow, it is indeed the conformal 2-structure, 
as functions of the appropriate parameter or param­
eters, which exhibits the gravitational degrees of 
freedom. It might be argued that these solutions are 
highly specialized, and that this may not necessarily 
be the case when considering more general situations. 

In linearized gravitation theory, it is well known that 
it is the transverse traceless part of the linearized 
deviations from the flat metric which explicitly embody 
the radiation field in the simplest way. 15 Here, the 
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FIG. 2. The initial surfaces and their respective data for the 
double-null case. 

removal of the trace of the transverse components is 
the linearized version of the removal of the conformal 
factor of the 2-metric; so that the standard treatment of 
linearized theory again uses the conformal 2-structure 
to embody the two degrees of freedom of the radiation 
field. This suggests the generality of our results; but 
we shall not enter into any further details of the linear­
ized theory, since we are able to verify our conclusions 
for the exact theory by considering several types of 
initial value problems. In the next section we recall the 
double-null and Bondi-Sachs type of initial value 
problems, and show that in both cases the initial data 
needed to characterize a solution uniquely is again the 
conformal 2-structure on some 3-hypersurfaces. 

4. DOUBLE-NULL AND NULL-TIMELIKE INITIAL 
VALUE PROBLEMS 

We review first the double-nul1 initial value problem, 
as formulated by Sachs. 5 The problem, here, is to find 
a set of functions given on a pair of intersecting null 
hyper surfaces U and V, together with some lower­
dimensional data on their intersection 2: (a two-dimen­
sional spacelike surface), which will serve to completely 
characterize a solution to the Einstein equations in the 
region R lying to the future of both null hyper surfaces 
(see Fig. 2). From the general nature of the double-
null initial value problem (see the Appendix), we expect 
that we shall have to prescribe a pair of functions on 
each null hypersurface, since the gravitational field 
has two degrees of freedom. 

Sachs shows that one can embed each of the hyper­
surfaces U and V in a family of null hyper surfaces, 
11 = const, v == const, in such a way that u is a preferred 
parameter along the null geodeSics on V, and v is a 
preferred parameter along the null geodesics on U 
(remembering that every null hypersurface is ruled by 
a family of null geodesics). Two additional coordinates 
x A are then chosen on, and continued off, the initial 
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null hyper surface in such a way that the xA are con­
stant along each null rayon the null hyper surfaces u 
= const (it is this latter condition which introduces the 
asymmetry between u and v in the metric given below). 
With this choice of coordinates, the general line element 
takes the form 

ds2 = _ exp(2q )du dv + exp(2h)gAB (dxA + CA dU) (d'? 

+ cB du) (4.1) 

with 

igABi=l, q=OonUandV, CA=OonV. (4.2) 

The conformal flatness of any 2-metric, mentioned in 
Sec. 2, is used to pick the xA on L: so as to make gAB 
take on the form 

(4.3) 

Sachs goes on to demonstrate, by means of an analysis 
of the field equations, that the following data suffice to 
determine a solution to the field equations in the region 
R, 

and the following additional data on 2: 

h, CA,v, h,., and h,v' (4.5) 

The data on U and Vare again the conformal 2-struc­
ture of the family of spacelike 2-surfaces u = const, on 
V and v = const, on U, as functions of these preferred 
affine parameters respectively. Of course, as Sachs 
points out, since these are null hypersurfaces, one may 
better think of exp(2h)gAB as giving the distance between 
two null rays at a point, rather than between two points. 
The data on 2: is also interpreted geometrically by 
Sachs. For example, giving h on 2: serves to fully deter­
mine the inner geometry of 2:, since it is known con­
formally already; h • and h v give the two mean ex­
trinsic curvatures ~f 2: with respect to its embedding in 
V and U, respectively. The most important point to 
note, for our purposes, is that an appropriate choice of 
coordinates has enabled Sachs to put the information 
about the two degrees of freedom of the gravitational 
field into the conformal 2-structure of the two initial 
null hypersurfaces. In fact, the initial value problem 
for this double-null case has been solved recently by 
Muller zum Hagen and Seifert, 16 who have obtained some 
strong theorems for the existence, uniqueness, and 
stability of the solutions. 

The null-timelike type of initial value problem has 
been considered in two variants. For our purposes, it 
will be simpler to consider the second case first, as 
worked out by Tamburino and Winicour. 8 They consider 
the initial value problem on a timelike world tube rand 
the initial forward null hypersurface No emanating from 
some two-dimensional spatial slice So across the time­
like tube (see Fig. 3). The initial hypersurfaces thus 
consist of the future portions of r and No, both hyper­
surfaces issuing from their intersection So. Coordinates 
are introduced in the following way: So' is coordinatized 
by a pair of coordinates x A

• The family of timelike 
curves issuing from So and lying within r, which are 
geodesics with respect to the inner geometry of r, are 
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FIG. 3. The initial surfaces and their respective data for the 
Tamburino-Winicour case. 

used to coordinatize r. Each geodesiC is labeled by the 
x A of the point of So from which it issues, and the arc 
length along each geodesic is taken as a timelike coordi­
nate u (==xo) on r. The intrinsic metric of r in these 
geodesic normal coordinates is then given by 

ds2 (r) = - du2 + gAB dxA dxB
• (4.6) 

The family 5 of geodesically parallel slices to So, u 
c:= const, are then used to generate a family of forward 
null hypersurfaces N, of Which No is the initial one. 
These surfaces are labeled by u, and each null rayon 
such a surface, issuing from a point on S, is also la­
beled by the x A of that point. Finally, the fourth coordi­
nate r (== xl) is introduc ed by choosing it as the 
luminosity distance along each null ray, 

(4.7) 

where jex-A) is some given function, depending on the 
exact choice of variables x A used for the spacelike 2-
surfaces, U = const, r = const. With this choice of co­
ordinates, the line element of the four-dimensional 
region between r and No is given by 

ds2 = goodu2 + 2 [gOldudr + gOAdudxA] 

(4.8) 

where 

(4.9) 

On r, Y is some given function of u and x A which is 
determined by the condition that (4.8) reduces to the 
form (4.6). 

An analysis of the field equations, paralleling that 
given by Bondi et al., 6 and by Sachs,7 then shows that 
a solution to the Einstein field equations in the region 
between r and No is determined by the following initial 
data: 

gAB onNo, as a function of (r,x A
), 

gAB on r, as a function of (u, x A
), 

with the lower dimensional data 
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(4.11) 

Hence, again, we see that in this coordinate system it 
is the conformal 2-structure on the initial hypersurfaces 
which embodies the information about the gravitational 
degrees of freedom. 

In fact, Tamburino and Winicour, by analogy to the 
approach of Bondi et al. and Sachs, actually use the 
time derivative of gAB on r; this is the analog of the 
"news functions" of Bondi. In the case when there was 
no incoming radiation initially present, it bears the 
news about behavior of sources of the gravitational 
field inside the timelike tube r that can affect the fields 
outside the tube in the region under consideration. 
Clearly the two choices are equivalent: The news func­
tions correspond to the conformal extrinsic curvature of 
the family of 2-surfaces S with respect to r, but this 
amounts to the same thing as giving the intrinsic con­
formal 2-structure of the family as a function of the 
parameter that takes us from one member of the family 
to the (geodesically parallel) next one. 

The approach of Tamburino and Winicour also illus­
trates, in part, the limitations of what we are attempt­
ing here. The data (4.10) is not, in fact, specifiable 
with complete freedom as initial data. For example, 
the data set on a small region of r will, because of the 
timelike character of r, automatically determine the 
data on a large region of r. Tamburino and Winicour 
suggest that this may in some sense limit the functional 
form of the data which may be specified on r. Thus, 
although this approach gives us considerable inSight 
into the structure of the field equations, it would appear 
that this particular initial value problem is not well 
posed. We now turn to a formulation given by Bondi 
et ai. 6 and Sachs, 1 which does not appear to have this 
same limitation. 

The Bondi-Sachs analysis is quite similar to that 
outlined above (and of course preceded it in time), 
except that the timelike tube is pushed off to infinity in 
the null directions defined by the family of null surfaces 
(see Fig. 4). This results in an asymptotic initial value 

i+ 

source 

i-

FIG. 4. Penrose diagram indicating the initial surfaces and 
initial data for the Bondi-Sachs case. 
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problem for the hypersurface No and the future null cone 
at infinity y+, as defined by Penrose. 17 The form of the 
line element adopted by Sachs (who treated the case 
where both gravitational degrees of freedom were 
present, after Bondi et al. has considered the reflec­
tion and axially symmetric case with only one degree of 
freedom) is similar to the form (4.8), but with some 
specializations of the six nonvanishing components of 
the metric to facilitate computation. The x A are picked 
by analogy with angular polar coordinates, so that j(xA) 
= sine, and gAB is explicitly parametrized in terms of 
two functions y and 0 so that 

gAB dxAdB = exp[2(y + o)]de2 +4 sine sinh(Y - 6)dedrp 

+ sin2e exp[ - 2(y + 6)ldcp2. (4.12) 

In addition various boundary cum coordinate conditions 
are imposed as r - 00 along the null hyper surfaces u 
= const, partly to ensure the existence of future null 
infinity. (It was originally hoped that these conditions 
might also limit the class of systems considered to 
those representing outgoing radiation only, but it now 
seems clear that while all outgoing radiation solutions 
are included in this class, solutions with sufficiently 
weak incoming radiation fields are also included. ) 

To summarize the results of their analysis of the field 
equations under these conditions, the following data are 
found to be necessary to determine a solution to the 
field equations in the neighborhood R or ~9· posterior to 
No (see Fig. 4): 

6 and yon No, as functions of (r, fJ, cp), 

Cj and C2 onY., as functions of (u, B, dJ), 

where Cl and c2 are the "news functions" given by 

Cl =-!- lim (ro), C2 =-:;~ lim (ry). 
uU r" 00 oU r .... 00 

u=const u=const 

(4. l3a) 

(4. l3b) 

In addition, three functions on the H2-sphere So at 
infinity" [analogous to (4.11)1, which are defined by 
appropriate limiting processes, must be specified. One 
of these, :'v[(u, 8, rp), was named the "mass aspect" by 
Bondi, since its integral over So gives the Schwarzs­
child mass of the solution; while the other two functions 
N(u, e, cp) and P(u, e, rf» are related to the "dipole 
aspect" of the field. 

So once again, we see that it is essentially the con­
formal 2-structure on No (in the neighborhood of y+) and 
on y. that embody the information about the degrees of 
freedom in the gravitation;.!l field. In the next section we 
shall show that a similar analysis of the spacelike 
initial value or Cauchy problem is also possible. 

5. CAUCHY INITIAL VALUE PROBLEM 

As is well known, 18 when the Einstein equations are 
analyzed with respect to a family of spacelike hyper­
surfaces, H, generated from an initial one, HQ, by 
dragging it with a transvecting vector field, V", they 
break up into two sets: Those prOjected once or twice 
into the normal to the hypersurface-the four con­
straint equations, and those proj ected twice into the 
hypersurface-the six evolution equations. When the 
metric tensor is similarly decomposed into its com-
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ponents with respect to the normal field, it is found 
that the evolution equations determine the second Lie 
derivatives with respect to the unit normal, N"', to H of 
the hyper surface components of the metric. This 
suggests that the Cauchy data on the initial hypersur­
face Ho be taken as the metric or first fundamental form 
of the initial hypersurface: 'gab in coordinates adapted 
to the surface; and its first Lie derivative with respect 
to ~ which (up to a factor -~) is the second funda­
mental form of the initial hypersurface: hab in adapted 
coordinates. However, the four constraint equations 
then give four relationships between the first and second 
fundamental forms which this initial data must obey. 
The contracted Bianchi identities then indicate that the 
propagation of the initial data off Ho by the evolution 
equations guarantees that the propagated data satisfy 
the constraint equations on any other hyper surface in 
the family H. The Einstein equations thus form a sys­
tem in involution. 19 

It might still seem that we have an excessive number 
of functions to describe the gravitational field: the six 
'gab and the six hab (=- ~LN 'gab' where LN denotes the 
Lie derivative), subject to four constraints. However, 
the freedom of choice of the coordinates on the initial 
hypersurface shows that three of these functions contain 
essentially information about the coordinate system, 
while the freedom to choose the initial hyper surface, 
when the characterization of this initial hypersurface 
is re-expressed in terms of the 'gab and hab' shows that 
there is an additional relation between them (which 
again merely represents coordinate information). Thus, 
we arrive at the need to specify four functions per 
space-time point on Ho, which in the above formulation 
are the remaining two "three-metric elements" and the 
two corresponding "velocities" (or equivalently 
"momenta"), to characterize a solution to the field 
equations. This again exhibits the typical "doubling" of 
the data needed on a spacelike portion of the initial 
hypersurface (see the Appendix). 

We shall restrict our attention in this paper to the 
four constraint equations. We shall show that the con­
straint equations can be solved, formally at least, by a 
two-pIus-one breakup of the initial hypersurface Ho with 
respect to a family, S, of spacelike 2-surfaces and a 
transvecting vector field which drags pOints along from 
one member of the family to the next (see Fig. 5). Once 

NV unit timelike normal 

I 

, (enlarged) 
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the "lapse" and "shift" functions2o fixing the family of 
2-surfaces and the relation between points on them has 
been speCified, together with one other function specify­
ing the initial hypersurface, then the conformal 2-
structure of the family of 2-surfaces S, as a function of 
the parameter characterizing the dragging by the trans­
vecting vector field, together with its Lie derivative 
with respect to N'" (the "velocities") is the freely 
specifiable data. The constraint equations may then be 
solved for the other variables needed to completely 
specify the first and second fundamental form of the 
hyper surface. In this way we establish that the initial 
data characterizing the two gravitational degrees of 
freedom on a spacelike hypersurface (the Cauchy pro­
blem) may be taken as the conformal 2-structure as a 
function of an appropriate parameter, together with the 
corresponding velocities. This we now demonstrate in 
some detail. 

Let the initial hypersurface H 0 be given by the 
equation 

<I> (xl" ) = constant. (5.1) 

We adapt coordinates to the initial hypersurface: <I> !: xO
, 

so that the surface H ° is described by the three coordi­
nates xa. We now introduce a family, S, of two-dimen­
sional hyper surfaces in H 0: <p = const. We can always 
think of this family (at least locally) as generated by 
dragging an initial 2-surface, So, with a transvecting 
vector field va, lying in Ho. As we shall discuss in the 
final section, this suggests the possibility of taking the 
initial 2-surface as a closed surface, bounding a region 
inside of which sources of the gravitational field may 
be enclosed, which would lead to consideration of mixed 
Cauchy problems. 21 However, nothing in our analysis 
(admittedly local and rather formal) prevents the taking 
of the initial 2-surface as an open surface. Then, 
adapting coordinates to the family of hypersurfaces, 

ct> '!x1 

and to the vector field, 

va,! 61 , 
the (intrinsic) metric 'Kab of Ho takes the form 

FIG. 5. The initial hyper­
surface Ho, the initial 2-

s surface So, the family S, 
and the various vector fields. 
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where 

p==p(xa), aA==aA(xa), gAB ==gAB(xa). 

Then the family of 2-surfaces, S, is given by xl = con­
stant, x A are coordinates in each 2-surface of S, p 
represents the lapse function (i. e., pdxl is the normal 
distance between two neighboring 2-surfaces of S), and 
a A represents the shift function (i. e., aAdxl is the 
vector between the point on the neighboring surface 
reached by va and the pOint reached by going in the 
normal direction-see Fig. 5). It proves advantageous 
for our breakup to use Lie derivatives with respect to 
wa 

'" pn', where n' is the unit normal to S in H o. This 
choice is merely one of convenience, but it does possess 
the following advantages: First of all it satisfies the 
normalizing condition w' CP,. = 1, giving the same pro­
jection operator as n' does; thus, applied to the metric 
it projects out the co- and contravariant 2-metric, i. e. , 
gAB and its inverse. Finally, any rigged hypersurface 
in an affine manifold has a unique connection induced on 
it, dependent on the rigging; the induced connection with 
w' as the choice of rigging field turns out to be identi­
cal to the metric connection of the induced metric XAB' 

We use the rigging vector 1(1a to construct the projec­
tion operator Bg into S, 

(5.3) 

with which we can decompose 'gab into six parts. Three 
of these parts, namely the projections twice into S, 
consist of the family of 2-metrics induced on S, namely 
gAB; we break this quantity up further by extracting its 
determinant which we denote by exp <tAl. (This choice 
of conformal factor makes the ensuing equations rather 
simpler to handle. In general, as indicated earlier in 
Sec. 2, we may extract any conformal factor for which 
the determinant of the remaining part is a fixed function 
of xA only.) Thus 

(5.4) 

from which it is clear that ffAB has only two independent 
components. The remaining proj ections of 'g.b: Twice 
into the normal, and once into the normal and once into 
S, yield p2 and aA respectively. We have now decom­
posed 'g.b into six parts 

(5.5) 

where the first three quantities are clearly connected 
with the choice of a coordinate system (or more geo­
metrically, with the adaptation of a coordinate system 
to a family of rigged hypersurfaces in Ho). We next 
break up h.b in an analogous manner. We define the 
quantities 

h ==h.bw'Wb, hA = B~ tlih.b, hAB = B'iBJhab' (5.6) 

where B'i is the proj ection operator of (5. 3) with its 
covariant index restricted to the coordinates on each 
2-surface. (Note that h is not the trace of hab in our 
notation, nor of hAB • We denote the former by h~, the 
latter by h1. ) We then extract the trace of hAB' relative 
to gAB, and a conformal factor, in order to define the 
quantity 

(5.7) 
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We have now decomposed hab into six parts which turn 
out to be just the velocities of the components (5.5) of 
'f( ab 

h=-iLNP2, hA=-iLNaA, h1=-iLNA, hAB 

= - iL N."ifAB. (5.8) 

We now insert these decompositions of the first and 
second fundamental forms into the four constraint 
equations 

G,.v N'" N" == 0, G,.v N'" B':, = 0, 

where B~ is the projection operator into the hypersur­
face HQ. Written in terms of the first and second funda­
mental forms of H Q, these take the well-known form 

'Vb(h·b_'g4bh~)=0, 3R+habh'b - (h~)2=0. (5.9) 

The resulting equations are 

(I) L w(h1) + (th1- p-2h)L wA - pHABTiAB - p_l exp( - iA) 

V A(ph A) = 0, 

(II) Lw(p-l{zA) + lp-lhA LwA + exp( - ~A)VB [p exp(~A)m.] 

- (p-lh ) A - ip-2(p-lh~) A =0, , . 
(III) L~A +i(LwA)2 - p_l (Lwp)(L wA) _ p2 exp( _ ~A)[2R] 

where 

(5.10) 

and all barred quantities are built out of ."ifAB and its 
inverse ,!?AB. (Of course, we could equally well formu­
late these equations in terms of Lie derivatives with 
respect to v' or n'. ) 

We then consider the following as initial data: 

(5. 11 a) 

(5. lIb) 

i. e., the conformal 2-structure of the family S, as a 
function of the preferred parameter xl specifying the 
family, and the corresponding velocities, also as a 
function of the preferred parameter. These four pieces 
of information then embody the two gravitational degrees 
of freedom for the usual Cauchy problem. As mentioned 
earlier, we take p and aA as given in the above equa­
tions, since they simply specify the family of 2-sur­
faces and the relation between them (being the lapse and 
shift functions) and thus fix the parameter xl. In addi­
tion, one more function must be specified on Hoi this 
corresponds, however indirectly, to the specification 
of the initial hypersurface Ho (and hence is again coordi­
nate information). Restricting attention to a scheme of 
formal integration in which we assume the solution in 
question is analytic, three choices for this additional 
function then suggest themselves, namely A, It, or ld. 
Corresponding to each chOice, we need also to specify 
some lower dimensional data on So. The three formal 
integration schemes are outlined in Table 1. 
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TABLE I. 

Functions specified on: Case 1 

Ho 
gAB' hAB• P. aA and :>.. 
(functions of 3 variables) 

So hi(>' 0). hA (functions of 2 variables) 

Formal integration by III - h (algebraically) 
iteration proceeds by: I-Lw hi 

II-LUI hA 

Let us consider the scheme in more detail in Case 1, 
for example. Equation III serves to determine h 
algebraically on So. Then I determines LUlhi on So, which 
is equivalent to knowing hi on the "next neighboring" 
surface to So, S1 say. Similarly II determines LwhA on 
So and hence hA on S1' Thus h A A and hA are known on S1 

and assuming h A 
A'" 0 we can repeat the above procedure 

on S1' Continuing in this way we can formally generate 
a solution of the constraint equations. The other cases 
are similar. These are not the only ways in which the 
equations may be viewed as formally generating a 
solution, but they do provide examples of the possibility 
of regarding the conformal 2- structure as the freely 
specifiable dynamical information. If we now assume 
that such an integration scheme leads to a knowledge of 
all the unknown quantities on H o, then we can construct 
the first and second fundamental forms by using 

(5. 12) 

and 

(5.13) 

The use of the evolution equations to construct a four­
dimensional solution into the future (or past) of Ho then 
proceeds as usual. 

Finally, we mention the way in which some particular 
simple choices for the nondynamical initial data on Ho 
are equivalent to particular coordinate conditions. 

P = 1: In this case wa = na, the unit normal vector 
field, and hence So is dragged into geodesic ally parallel 
surfaces. 

aA = 0: Points on the surface of any member of S are 
dragged normally into the neighboring surface of S, i. e. , 
no "shear. " 

(1) :>.. = :>..(xl): This means that A will in general be a 
function of XO and xl only in the four-dimensional mani­
fold. We cannot in general impose a Simpler condition 
on A, since A = 0 leads to hi = 0 and the integration 
scheme (for Case 1) breaks down: Similarly A = A(xO) 
only, leads to LwA=Lwh1=0 which turns I into a con­
straint between hAB and h A• An example of the occurence 
of condition (1) is found in the standard treatment of 
plane waves (see Sec. 3 or Ref. 13). 

(II) h = 0: This is equivalent to L NP = 0, and if this 
condition can be propagated in time it means that P will 
be time independent. 
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Case 2 Case 3 

h hi 

hi. hA• :>... hA• :>... Lw :>..(>' 0) 
LUI :>..(>' 0) 

I-LUI ~ I - h (algebraically) 
II-LUI hA II-LUI hA 
III-L~:>" III-L~ 

(TIl) hi = 0: This is equivalent to LNA = O. The sur­
face area of each SI in S is given by Is; exp(~A)d2x, and 
hence if this conditiOn can be propagated in time it 
means that the surface area of each SI will remain con­
stant in time. An example of the occurence of this con­
dition is found in the standard treatment of cylindrical 
waves (see Sec. 3 or Ref. 14). It might be termed a 
"Bondi-type" coordinate condition, since it includes 
the determinant condition (4.7). 

6. A POSSIBLE UNIFYING APPROACH 

It is well known from the variational principle formu­
lation of the "Newtonian" approach to the usual Cauchy 
problem18 that there is an intrinsic connection between 
the dynamical equations and the dynamical variables. 
More precisely, we start by using N"" to construct a 
proj ection operator into H 0 so that, in particular, 

(6.1) 

where' gV, the proj ection of the contravariant metric 
twice into H o, is the induced (contravariant) 3-metric 
on Ho. Then variation of the Einstein Lagrangian, 
[::7j4R, with respect to ',rt V leads to the equations. 

B~13fJGJl.v = 0, (6.2) 

i. e., the six evolution equations; and variation with 
respect to N"" leads to the equations 

(6.3) 

i. e., the four constraint equations. Thus, in this formu­
lation, the dynamical variables generate their dynamical 
or evolution equations. However, since there are only 
two independent dynamical degrees of freedom we 
should only expect two independent dynamical equations. 
In fact, investigations by one of US22 of the Bondi-Sachs 

5 
o 

-T 

the two null directions in T 

FIG. 6. The spacelike 2-surface So. and an orthogonal 2-plane 
element T. 
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characteristic initial-value problem demonstrated that 
in this case it is precisely the conformal 2-structure 
that generates the true dynamical equations. This 
suggests that instead of considering the three-pIus-one 
breakup of the field equations, as above, we consider a 
two-pIus-two breakup, 23 in the hope that we may be 
able to cope with all the various initial value problems 
simultaneously. 

We therefore consider a space like 2-surface So and a 
field of timelike 2 -plane elements orthogonal to So at 
each point of it (see Fig. 6), spanned by two vector 
fields 

e,..jJ. (X=o, 1) 
x 

whose character depends on the type of initial value 
problem under consideration. We can then continue 
these vector fields off So and use the resulting four­
dimensional family of vector fields to drag the initial 
2-surface and fill out some four-dimensional region. 
If the two vector fields are chosen so that their Lie 
bracket vanishes, the order of the dragging will be 
immaterial. We now proj ect the metric ,I/' v into So to 
obtain 

gV=/lgV+?Ye,.."flV (X, Y=0,1), 
x Y 

(6.4) 

where /I ftv is the 2-metric induced on So. Then varia­
tion of the Einstein Lagrangian with respect to "gIJ.V will 
generate three equations and variation with respect to 
e~ will generate seven linearly independent equations. 
x 

We next separate out a conformal factor y from II ,I/'v , 
(6.5) 

such that the resulting l!'"v is the conformal 2-structure. 
If we now consider variations with respect to g-v and y 

separately, then, in adapted coordinates, we find 

(6.6) 

(6.7) 

Of course, (6.6) only consists of two independent 
equations, as contraction with gAB reveals. Then in each 
of the three types of initial value problems we have con­
sidered in this paper, we find that the equations (6.6) 
are precisely the dynamical equations for the evolution 
of the conformal 2-structure. That is, the only terms 
involving second derivations in the e':, ef directions 
which occur in (6.6) are of the form 0 

Indeed, for the appropriate choice of vector fields (see 
Fig. 7) we find, in adapted (possibly anholonomic) co­
ordinates at any point that the only terms involving 
second derivatives with respect to 0, 1 coordinates 
which occur in (6.6) in the three cases are 

(1) Double-Null: In this case e~ are both null vectors, 
and x 
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X)t( 
Ii) Double-null Iii) Null-Timelike 

(iii) Cauchy 

FIG. 7. The two dragging fields eIJ. for each of the three initial 
value problems. 

where ~ means that an equation holds in adapted coordi­
nates; the only second derivative with respect to 0,1 
which occurs in (6.6) isiAB,Ol' 

(2) Null-timelike: In this case, eJ:' is timelike and e: 
is null, and 0 1 

g;Y ~(O 1); 
1 - 1 

the combination of second derivatives with respect to 
0,1 which occurs in (6.6) is 2iAB,ol-gAB,l1' 

(3) Cauchy: In this case, e!: is timelike and eJ:' space-
like, and o 1 

;~ ~(1 0); 
° -1 

the only combination of second derivatives with respect 
to 0, 1 which occur in (6.6) isgAB ,OO-gAB,l1' Reference 
to the Appendix will show that this is just the form the 
two-dimensional wave operator should take in each case. 

These preliminary results suggest that it is possible 
to pursue this two-pIus-two breakup further and eventu­
ally unify all the various approaches to the initial value 
problem. One of us (J. S. ), with another collaborator 
(Mr. Ben Rosen), has pursued this approach further, 
and investigated the full two-pIus-two breakup of the 
ten field equations. The results of this study will be 
published elsewhere. 

7. CONCLUSION 

General relativity is a gauge theory and hence, in 
common with other gauge theories, it possesses the 
property that the potentials (or various concomitants 
of them) are not uniquely determined by the physical 
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field but rather, by virtue of the gauge group, the in­
formation about this field may reside in the potentials 
in a variety of ways. Our thesis, in this paper, is that 
by an appropriate choice of coordinate system, the 
minimal information which determines a solution of the 
Einstein (vacuum) field equations, that is the gravita­
tional degrees of freedom, may be cast into that part of 
the metric tensor which we have termed the conformal 
2-structure. We have shown, at least formally, that 
this prescription works in the cases of the exact solu­
tions for plane and cylindrical gravitational waves, the 
Sachs investigation of the double-null characteristic 
initial value problem, the Bondi-Sachs and 
Tamburino-Winicour investigations of the null-time­
like characteristic initial value problems, and the usual 
spacelike Cauchy problem. We have also suggested that 
this may herald a new unifying approach to all the 
various initial value prOblems, namely by considering 
a two-plus-two breakup of the field equations. 

There are, however, considerable limitations to that 
which we have undertaken so far. As we have discussed 
before, our analysis is purely formal and, apart from 
the rather restricted case of analytic solutions, we have 
really only considered the question of uniqueness. The 
deeper, and more difficult, questions of existence and 
stability remain yet to be investigated and indeed further 
analysis may reveal that this approach does not in fact 
lead to a well-posed problem (at least in all cases). For 
example, as we have already pointed out, there appear 
to be considerable problems attached to the Tamburino 
-Winicour type of analysis. Nonetheless, our work so 
far suggests, at the very least, that this approach may 
well be worth pursuing further. One major task then 
would be to investigate the equations (I), (II), and (III) of 
Sec. 5 to determine, for example, whether or not they 
can be cast into an elliptic form and thereby attack the 
questions of existence and stability for the case of the 
Cauchy problem. Closely related to this are problems 
of a global topological nature: For example, do we 
require a global foliation or can we proceed with an­
holonomic 2-surface elements? In the case of the three­
plus-one decomposition for the formulation of the 
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Cauchy problem it is known that anholonomic three­
surface elements and a vector field with nonvanishing 
curl may be used (see work of c5 Murchadha and 
Kulhanek). 24,25 There is every reason to expect that 
similar anholonomic extensions of the two-plus-two 
approach will be possible. This subject is under study. 
Another interesting global problem would be the con­
sideration of solutions with closed spatial 3-surfaces, 
to see whether our approach could succeed there. 

There are also interesting possibilities for consider­
ing other types of initial value problems. Our consider­
ation of the Cauchy problem has been purely local, of 
course, and confined to consideration of a purely spatial 
bounding hypersurface. Yet the singling out of an initial 
2-surface on such a hypersurface in our approach 
suggests a very natural extension of our approach to the 
consideration of a mixed problem, in which data would 
be given on the spacelike exterior of the initial 2-sur­
face as well as a timelike tube of which the initial 2-
surface was a cross section (see Fig. 8). One would 
conjecture, on the basis of the discussion of the Cauchy 
and null-like initial value problems in this paper (as 
well as the mixed problem for the one-dimensional wave 
equation discussed in the Appendix), that the conformal 
2-structure and its Lie derivative in the normal direc­
tion would have to be given on the spacelike portion of 
the boundary, as well as the conformal two structure on 
the timelike tube, to uniquely determine a solution in the 
region they bound (see Fig. 8).21 

There is also the question of how this work relates 
to other approaches, notably the "conformal 3-geome­
try" approach, first suggested by Lichnerowicz26 and 
Choquet,27 and brought to considerable fruition by York 
and 6 Murchadha28 among others. There is no doubt that 
their approach is both very elegant and successful; for 
example, they have some very powerful theorems 
governing existence and stability. However, we feel 
that the conformal 2- structure approach is still worth 
pursuing because of its possible unifying property; more 
specifically, because it appears to also apply to (indeed 
is perhaps better suited to them) characteristic initial 

FIG. 8. Conjectured initial data for the 
mixed initial value problem. 
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value problems; whereas the conformal 3-geometry 
approach does not seem capable of such an extension, 
since there is no Riemannian 3-geometry or conformal 
3-geometry on a null hyper surface. There is certainly 
nothing wrong with the conformal 3-geometry approach, 
but it does fix attention on a feature which is more 
reminiscent of nonrelativistic theories, i. e., Galilean­
type theories with naturally preferred spacelike hyper­
surfaces. We would suggest that null hypersurfaces are 
more characteristic (pun intended) of relativistic 
theories than spacelike hypersurfaces; and therefore 
there may be some advantage to an approach which can 
handle null surfaces. Another lesser point is the practi­
cal one that, for some classes of solutions, one may 
often readily identify the conformal 2-structure but not 
be able to solve the partial differential equations needed 
to isolate the two degrees of freedom of the conformal 
three-geometry approach. 

Perhaps the biggest outstanding problem relates to 
the question of the possible quantization of general 
relativity. Opinions differ as to the physical significance 
of such a step, but presumably, to achieve this mathe­
mathically, one needs to formulate the problem correct­
ly. Conformal 3-geometry seems to suggest the use of 
superspace (or some restriction of it), which is once 
more a generalization of the quantum approach to 
special relativistic field theories in which the evolution 
of waves from one spacelike hyper surface to another is 
singled out-which again seems to stress the features 
of the theory more closely related to those of non­
relativistic theories. More recently, a good deal of 
attention has been focused on approaches to quantum 
field theory which single out families of null hyper sur­
faces and examine the dynamics with respect to these 
hypersurfaces. Again, this suggests the possible 
advantage of an approach to general relativity which 
enables one to consider null hypersurfaces naturally. 
Moreover, scattering experiments, which are our main 
source of information about elementary particles, can 
be idealized by imagining the target to be surrounded 
with detectors, which then count for some period of 
time. This means, of course, that in the relativistic 
theory they give us data on a timelike world tube (and 
even in the nonrelativistic theory not on a spacelike 
hypersurface). Thus, a formalism which can readily 
handle data on timelike hyper surfaces might be expected 
to be generally useful in quantum theory. 

In at least one approach to quantization one needs the 
two degrees of freedom of the gravitational field isolated 
(i. e., with the constraints eleminated); and, as 
Ashtekar and Geroch have emphasized,29 it is not enough 
to have the phase space of the classical canonical 
variables. One needs to have this phase space as a 
cotangent bundle over a configuration space in order to 
apply the canonical quantization procedure. It is natural 
to hope that in general relativity that" properly" chosen 
variables (assuming that such variables exist) will have 
a simple geometrical meaning even in this case. It 
seems worth investigating whether the conformal 2-
structure, and their Lie derivatives or "velocities," 
can provide such a natural configuration space for the 
gravitational field, since they have such a local geo­
metrical significance. 
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APPENDIX 

We shall consider briefly in this Appendix the one­
dimensional scalar wave equation, which serves as a 
simple prototype for illustrating various types of initial 
value problems. 30 The one-dimensional wave equation 
(c = 1) is 

¢, tt - ¢,xx = 0, (Al) 

where ¢ = ¢(t, x), and it admits as general solution the 
d' Alembert solution 

¢ =f(u) + g(v), 

where 

u=t-x, 

v=t+x, 

(A2) 

(A3) 

(A4) 

andf and g are arbitrary functions. Using this result we 
can write down the geneI;al solution in a two-dimensional 
region R (see Fig. 9), in terms of the initial data, for 
the three sorts of initial value problem considered in 
this paper, as follows: 

(1) Double- null: ¢, uv = 0, 

Initial data: 

¢ = ,jJ(u) on v = Vo (u ~ uo) 

¢ = x(v) on u =Uo (v ~ vol with x(vo) = </J(uo). 

General solution: 

¢(u,v)=</J(u)+X(v)-</J(uo) (u~uo, v~vo)· 

(2) Winicour- Tamburino (null- timelike): 2 rp, ux - rp, xx = 0 

Initial data: 

¢ = </J(u) on x =xo (u ~ uo) 

rp=x(x) onu=uo (x~xo) with x(xo) = </J(uo) 

General solution: 

rp(u, x) = X[x + Hu - uo)]- X[xo + ~(u - uo)] + </J(u) 

(u ~ uo, x ~ xo). 

(3) Cauchy: rptt - rp,xx= 0 We first consider the finite 
Cauchy problem. 

Initial data: 

¢=</J(x) on t=to (x1 ""x ""X2) 
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• 

X:Xl 

(to'x l ) R3 (t o ,x2) 

Ii) Double-Null (ii) Null-Timelike 

FIG. 9. The region R for each of the four initial value problems. 

General solution: 
x+t-to 

<p(x, t) = -H1ji(x + t - to) + 1ji(x - t + to)] + 1 J x(x)dx 
x-t+to 

(to - Xi .,,: t - x.,,: to - x2, to + Xi .,,: t + x.,,: to + X2)' 

The solution is only determined by the data in the region 
shown in Fig. 9 (iii). The infinite Cauchy problem 
follows by taking the limits xl ~ - <Xl, X2 - + <Xl. Note the 
way in which the initial data "doubles" in the Cauchy 
problem as compared to characteristic initial value 
problems. 

Thus, appart from the fact that the scalar wave equa­
tion has only one degree of freedom, the number of 
functions which may be specified freely as initial data 
for each of the problems considered is entirely analo­
gous to the number required for the Einstein vacuum 
field equations. 

We may also consider a fourth type of problem, not 
discussed so far for the Einstein equations as far as 
we know 

(4) Mixed Cauchy and timelike boundary problem 

Initial data on spacelike part of boundary: 

<p=1ji(x) on t=to (xl "':x.,,:co), 

<P,t=x(x)ont=to (XI"':X"':<Xl), 

Data on timelike part of boundary: 

<P = i\(t) on X =xi (to"': t.,,: 00). 

This is seen to break up into a semi-infinite Cauchy 
problem plus a Winicour-Tamburino type problem 
[see Fig. 9(iv)]. In this sense it offers nothing new; 
but physically it is clearly a well-posed problem, as the 
example of a half-infinite string shows: To determine 
the future behavior of such a string, its initial position 
and velocity must be given, as well as the motion of the 
end point for all times after the initial time. 
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In gauge theories of weak and electromagnetic interactions. it is generally assumed that the addition of 
extra groups [simple or U(I)] commuting with the standard Weinberg-Salam SU(2) ®U(I) group, 
generates new degrees of freedom for the model. simply because there are new coupling constants in the 
game. This assertion is not true in general. When looking at the effective Lagrangian of the physical 
system (- q 2 much smaller than any mass of the massive vector bosons). we see that a coupling constant 
completely disappears if the generators of its corresponding group do not enter in any surviving unbroken 
subgroup [U(I) for Weinberg-Salam model]. In those cases, the novelties are provided only by the 
quantum numbers of the fields and especially by the arbitrariness on the choice of "unphysical" Higgs 
fields. This effective Lagrangian is defined and constructed in the case where the initial and final 
symmetry groups are direct products of simple groups and U(l) groups. Some of its remarkable properties 
are investigated. 

INTRODUCTION 

The mechanism leading to the spontaneous breakdown 
of a gauge symmetry in a field theoryl is well known by 
most of the theoreticians working in elementary parti­
cles. In particular, everyone knows the form of the 
fundamental Lagrangian of the gauge theories and the 
procedure to obtain the Lagrangian for the broken theory. 
But at present state of experiments, this fundamental 
Lagrangian has no direct use for phenomenologists who 
need what we will call an effective Lagrangian. 

This effective Lagrangian has a part of the type cur­
rent x current which is constructed by taking the second­
order processes occuring with the exchange of a mas­
sive vector boson and by supposing that we always make 
experiments where the transferred momentum - t/ is 
much smaller than any of the masses of those massive 
vectors. 

In this work, we apply ourselves to construct this 
effective Lagrangian, 

In a first stage, we shall give the definitions of the 
coupling constants of the broken theory constructed with 
the old ones. There are two types of new coupling con­
stants (Sec. VI, §l4). They couple the conserved cur­
rents to the zero mass vector bosons. Those of the 
second type are all in the form cos2 ,p(Sec. VI, § 15). 
They appear only in the part of LeU which is due to the 
massive vector bosons. 

In a second stage we construct the currents which are 
coupled to the massive vector bosons (Sec. VIII). They 
are combinations of well-known quantities (initial gen­
erators): The coefficients of the combinations are the 
cos21J!'s which were constructed previously. 

Finally (Sec. IX) we give the effective Lagrangian: 
It is obtained by the diagonalization of a matrix con­
structed with the "unconserved" currents defined in 
Sec. VIII. In Sec. X we draw the conclusions which are 
based on the properties of this effective Lagrangian: 

(a) the electromagnetic-like coupling constants appear 
only in the part of Lou due to the zero mass vector 
bosons. 

(b) In the other part of Low all coupling constants 

have disappeared except the cos2,p's. 

(c) Some initial coupling constants have completely 
disappeared from the game. 

(d) There is a kind of scaling for Left: The physical 
results are dependent only on the ratios of quantum 
numbers of the fields [or the matrix elements of the 
generators J. 

I. NOTATIONS 

We are interested in a spontaneously broken gauge 
theory based on the symmetry group G which is a 
direct product of n simple groups S Ii) and r groups U(l); 
we shall denote them U (i): 

The physical problem is described by a basic interac­
tion Lagrangian constructed with multiplets of physical 
fields-(a) the Dirac spinors ,p (Q!)(x) transforming under 
a global gauge transformation under irreducible repre­
sentation of G (generally the lowest faithful one); 

(b) one multiplet of vector bosons transforming under 
the adjoint representation of G. The number of its con­
stituents is equal to the dimension of G-
and multiplets of "unphYSical" fields-

(c) the scalar Higgs fields cf>8(x) grouped into one big 
multiplet cf>(x) transforming under a generally reducible 
representation of G. We list here the mathematical 
quantities which will be used in the text. 

For each simple group S (a): 

da is the dimension of the group; 

G (!) are the infinitesimal generators (i = 1, ... , da); 

gj(;; are the completely antisymmetric structure con-
stants (the metric of the group is proportional to the 
unit matrix); 

A (!ll' are the vector bosons; 

g <a) is a coupling constant. 

In the same manner, we define for U<a): 
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G Cal the infinitesimal generator, 

AC a l" the vector boson, 

g(a 1 the coupling constanL 

The symmetry of the Lagrangian under the local gauge 
transformations of G will be broken by a Higgs-Brout­
Englert mechanism2 in such a way that the Lagrangian 
will still be invariant under local gauge transformations 
of a gubgroup H of G. 

We will restrict ourselves to a subgroup H of G which 
has the same structure as G, a direct product of m sim­
ple groups SIll and of s groups U(l) noted Uej)" 3 

We list here the notations which will be useful: for 
Siap 

d~ is the dimension of the group; 

H Cial are the infinitesimal generators (i = 1, ... ,d~); 

hiC~ are the completely antisymmetric structure con-
stants (the metric is again taken as proportional to the 
unit matrix); 

B Cial " are the vector bosons; 

hCal is the coupling constant; 
while for U[ a l' 

H (a l is the infinitesimal generator; 

BCal" is the vector boson; 

h'( al is the coupling constant. 

II. REVIEW OF GAUGE THEORIES 

We start with the basic interaction Langrangian L. 
It is invariant under local gauge transformations of G: 

L=-~ :0 Tr{A(a) ACa)"v}_~:0A'CalA,(al"v 
4 ."v "v' 4 a"v "v 

where 

A~~l = a "A~a) _ o~~a) - igca ) [A~'>' A v
Ca»). 

The A~a) are constructed with the adjoint representation 
of SCa): 

A~al=:0Ac!)vGc~), Tr(G/al )2=1, 
• 

+ i :0 g(a l(G CalX)Acal". 
a 

V(cf.» is a quartic polynomial of cf.> invariant under lo­
cal gauge transformations of G. We now apply the Higgs 
mechanism, and we try to rewrite L so as to see the 
local invariance of L under H. cf.> has a nonvanishing 
vacuum expectation value (cf.»: V(cf.» has a minimum for 
.p = (cf.» '* 0. We want a theory describing fields with a 
vanishing vacuum expectation value. We define 1) (x) 
=cf.>(x)-(cf.». Then (1)=0. 
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We write L in terms of 1) (x) instead of cp(x). The 
terms (D"cf.»+ (D"cf.» + V(cf.» are replaced by 

The fourth term is a mass matrix for the fields 
Aia)" and A Ca )" destroying the local invariance of L un­
der G. It must be diagonalized and the remaining part of 
the Lagrangian must be rewritten in terms of the 
eigenstates of the mass matrix. 

We obtain then a new Lagrangian which must be proven 
to be invariant under local gauge transformations of H. 

III. DIAGONALlZATlON OF THE MASS MATRIX 

§1. H is a subgroup of G. The infinitesimal genera­
tors of H must be independent linear combinations 
of the infinitesimal generators of G. 

(1) 

When we consider a physical problem, the coefficients 
(3 are known and given. 

§2. H is the little group of invariance of (cf.» (genera­
ted by all the combinations of the initial generators 
which annihilate (cf.»). 

(2) 

No other independent linear combination of the G's 
can annihilate (cf.», In physical problems, usually G and 
H are given and in turn cf.> and (CP) constructed in order 
to have the results (1) and (2). 

§3. The vector fields A C
i
a)" and A Ca )" are real, thus 

the mass matrix :0,,[D"(cp»)+ [D,,(cf.») is symmetric and 
its eigenstates are orthogonal combinations of the A's, 

§4. Some of the eigenstates of the mass matrix have 
a null eigenvalue. In order to see this, let us discuss 
more precisely the mass matrix 

:0 (D"(cf.»)+ (D,,(cf.») 

" 

Each matrix element of M 2/2 is a scalar product of 
two vectors belonging to the set r ={gCa)G/a) (cp), 
g(a)G(a) (cf.»}. 

If we diagonalize M2/2, we have 

[AJ! ~ [A)=([A)tO)(ot ~2 0)(01 [A)) 

=(Ot [A))t ~\ot [A)) 
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with M2/2 a diagonal matrix, Each of its diagonal ele­
ments is the squared norm of a vector belonging to the 
set r'. 

r' ={:0y.O·f IYi E r} 
j J J 

Proof: 

(iP/2);; =:0 0L(y j' Yk)Ok i = (Ly j ° ji' :0YkOki) 
jk J k 

= II:0YkOki 11
2

0 

k 

One obtains a null eigenvalue if and only if the vector 
:0 jY P ji is the null vector, This means that :0 jY P ji is 
a linear combination of the generators of H applied on 
<¢). 

The preceeding points § 1 and § 2 ensure us that the 
number of null eigenvalues is exactly the number of 
generators of H. 

Going from the kinetic part of the initial Lagrangian 
for the fields A to the kinetic part for the vector fields 
B in the broken Lagrangian, one sees that the B's must 
be orthogonal combinations of the A's. The eigenstates 
of the mass matrix being also orthogonal combinations 
of the A's, we have the result that the eigenstates having 
an eigenvalue zero are orthogonal combinations of the 
vectors BL) and BCa)' 

§ 5. All other state s having an eigenvalue different 
from zero are noted Cw ' We shall use the following 
notations for the matrix of orthogonalization 0: 

IV. THE "BROKEN" LAGRANGIAN 

(3) 

§6. The nonkinetic part of the Lagrangian is construc­
ted with expreSSions DjJ.X, where X is any field AjJ., iJrCod ,7j. 

We have just to look to these expressions written in 
terms of new vector fields Band C. Using (3) 

DjJ.X = il jJ.X + i .:0 [gea)Gcia)oia~) + g(a)Gca)O(a~)Jx Blm)" 
l.ajm 

+i :0 [gcO)Gca)Ocom) + g(a) G ea ) 6cam )Jx CCm)jJ.o (4) 
iam 

§7. The part proportional to CCm) is noted 

Thus we have for DjJ. X 

The local invariance under H is achieved by imposing 
that the two parts separately transform as X does o 

§8, The correct transformation of u..x is obtained if 
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By comparing with (4), we have the equalities 

~ gea)G/a)0/1m) + 6g(a) G Ca ) O(a~) .a a 

§9o With all these substitutions we obtain for the 
broken Lagrangian 

(5) 

where I is a quartic polynomial describing the interac­
tion between 7), B" and C jJ.' 

V. THE DIAGONALIZATION MATRIX: "SOME 
RESTRICTIONS" ON THE DEFINITION OF THE 
SUBGROUP 

§10. In all these developments we are interested in 
the definitions of the new coupling constants h Cm ) and 
hIm) and also of the matrices KCmP giving the coupling 
of the massive vector bosons to the currents 'ifeOl ) iI'" iJrCOI)j' 

In order to do this, we exploit the relations (5). By 
replacing there HC~) and H Cm ) by the expressions (1), we 
obtain the following identities: 

OU - ~ (3ii Cam)-g CamP 
Ca) 

o J _!!:uu ~ J 
(am) - nI (am)' 

hla) 

(6) 

[i, a are indices referring to the groups SCa) (i = 1, 0 •• , da) 

[or Uta»); j, In are indices referring to the subgroup 
S(j) (j=l,oo"d~) [or U(m»)J, 

Those relations can mean some restrictions on the 
coefficients (3 defining the subgroup H, We shall see that 
it is not the case, 

§1L We shall prove the following identities in the 
next paragraph o After each identity, we discuss its 
meaning: 

(a) ~(a~) = 0: No generators of UCa) can enter in the 
definition of a generator of S{m)O 

(b) 6 j f3/.:")i3c':n) = Ii~ Ii! A;m: 

-When a generator of one SCa) has been used for the 
construction of one S{m), it cannot be used in another 
S{n); 

-a matrix (3ean) can be different from zero only if 
S{n) is a subgroup of Sea); then by a choice of the genera­
tors, (3(an) is proportional to the unit matrix of dimen-
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sion d~ completed with (ds - d~) lines of zeros; the co­
efficient of proportionality is Acn ' 

(c) .0ii3:am)i3lo~)=O: When a generator of SCs) has been 
used in the construction of 5(.) it cannot be used again 
in the construction of 5(.) it cannot be used again in the 
construction of V(m)' 

(d) By a choice of the generators in the center C. of 
Sc.) and the generators of Vc.) and of V(ml' we claim 
that it is possible to have 

and 

When a generator of Sc.) or Vc.) has been used for the 
construction of VIm)' it cannot be used again for the 
construction of V(.). 

§12. The proof is made using the commutation re­
lations4

: 

The three relations lead to 

2:g Clol Clbj -0 
.~ Cm).be '"'CmP) '"'(m')-

"hCM 7'i k -0 L.J ijkiJ(mP)- , 
k 

(7) 

(8) 

(9) 

" uCm) {Jai Clb c- 0 7;;; babe (mp) ~ (mn) -- , 
(10) 

(a) Relation (9) implies ~(m~) = 0 0 

(b) Multiplying (7) by i3{':n) and using (8) (n*p), we 
have 

"hcP) Clek Cled -0 
~ Ii. f-'(mP) f-'(mn} - • 

(11) 

This implies the first part of §11 (b). Multiplying (7) 
by i3C';!P) , we obtain 

The first term is a completely antisymmetric tensor 
in the group 5(,)0 For a simple group there is only one 
completely antisymmetric tensor which can be construc­
tedo This means .0eJ3~!p) i3c';!P) =A!,okd, and we have 
proven the second part of §l1(b). (c) Multiplying (7) by 
i3lmn) and using (10), we have 

.0 hiJk J3c"'::t> i3{mn) = 0, c. 
which proves relation §11 (c)o 

§13 0 We give in Fig. 1 a symbolic resum~ of the con­
clusions of §11 on the matrix 13: 
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(a) A generator of an initial group S(j) or Vw can be 
used at most once in the construction of a subgroup or 
a line of 13 has at most one element different from zero. 

(b) A generator of a final group S(/) or V(J) can ori­
ginate from at least one initial group and must be con­
structed with at most one generator in each given initial 
group. 

VI. DEFINITIONS OF THE NEW COUPLING CONSTANTS 

§14 0 The electromagnetic-like coupling constants: 
We see that the columns of 13 are orthogonal in a very 
particular manner [§13 (a»). Thus the orthogonalization 
of the columns of 0 defined in § 10 is automatic. We 
just must be aware of the normalization of the columns. 
This leads to the definitions of hc.) and hIlt): 

(12) 

The summations are taken over the indices with Ac• 

different from zero o 

§15. other new coupling constants. 

First we attach an index k to a subgroup S(k) and an 
index (k) to a subgroup V(.)O 

For each k, there is a vector normalized to 1 noted 
x. with (Xk)i = (hc.i gcn )Aik' This vector belongs to Rnk 
where n. is the number of Alk which are different from 
zero (It '" n). 
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We use a recursion procedure to define nk - 1 angles 
>¥kt and a system of nk - 1 vectors orthogonal to x

k 
in Rnk 

[an orthogonal basis of Rnk is et with (e;)j=<'i;j]' 

(a) >¥k! is the angle between xk and e1 

cos>¥u = (Xk , e1 ) = h(k) Aal gU)' 

In the plane (x k' e1 ) we distinguish two vectors: 

-x~ is the (normalized to 1) projection of xk in the 
space R nk-

1 orthogonal to e1 : 

~1_ (0 A2k ~)~. x k - , , ••• , ., 
g(2) gIn) Slll>¥k1 

-k1 is the vector (normalized to 1) orthogonal to xk 

in the plane (xk,e 1) 

~k . ,T, ~ ,T, ~1 
1 = - sln"'k1 e1 + COS"'k1 Xk • 

(b) Knowing >¥w ki and x~ we define in the plane 
(x!, ei +1 ): 

ki+l as the (normalized to 1) vector orthogonal to 
x!, X~+l as the (normalized to 1) projection of i! On 
R"k-i-l, orthogonal to e1 , e2 , •• 0 , et +1o 

(c) The procedure stops when for i =nk , COS>¥kl = 1. 
The procedure is also applied for each index (k). We 
shall see late r that the cos>¥;/ s play the role of new 
coupling constants. 

VII. CONSTRUCTION OF THE ORTHOGONALIZATION 
MATRIX 

§16. We construct an orthogonal matrix Vo The first 
columns of V are the same as those of O. [The matrix 
(hi g)f3 constructed in §14]. Each of the first columns 
of 0 is attached to an index k, with this index we can 
construct nk - 1 vectors kt • For each of the first col­
umns of 0, we construct nk - 1 new columns of V by 
replacing each nonzero element 

by (k;) j where i = 1, ... , nk - 1 and by keeping zero 
everywhere else. The same is done for each index (k). 

§17. Counting the number of lines of 0 it is given by 
)'" !-Jk=l dk + r But the special form of f3 says (see §13) that 
this number is also equal to 'Er=l d~ nk + 'E:=ln(k) + no, 
where no is the number of generators in G which do not 
contribute to the generators of Ho There are 4=1 d~ + s 

columns in f3. We have just constructed with those first 
columns 'E:'1 d~(nk -1) + 'E:.1(n(k) -1) new columns for 
V. Thus it remains to define no columns to complete V. 
For each missing generator of G we construct a column 
by putting 1 on the line corresponding to this missing 
generator and by putting zero everywhere else. 

§18. Thus we have p= E:1d;(n
k 
-1) 'E:=l(n(k) -1) +no 

massive vector bosons. The matrix V which has been 
constructed in §16, 17 is not very different from O. This 
last one is obtained by rotating the p last columns of V 
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by an orthogonal matrix of dimension p. We shall note it 
by O(P)o 

VIII. CURRENTS COUPLED TO THE MASSIVE 
VECTOR BOSONS 

§19o At this stage we have constructed some ortho­
gonal combinations of the real massive vector bosons 
C(m)' We call them C(i): 

elm) =.6Ai.) V/.m ) + 6A(.) V(am) 
',. « 

The matrices V and O(p) were defined in the preceding 
chapter. They are coupled to the infinitesimal genera­
tors of G in the following manner: 

with 

K(m) = 6g(.) G(~) Vi.m) + 6gi.) G(4) V(.m)' 
., i • 

We are now able to write the elements V in terms of the 
matrix elements of the matrix f3. For each index k re­
ferring to a subgroup SCk) we have the first columns of 
V given by 

bj _ Ob J -!!J&.!. f3b j _ (~ ) f3t.~). 
V( .... ) - (ok) - (.k) - x k ., , 

g(.) I\.ak 

with each of these columns we find (n k - 1) new columns 
of V indicated with i) by 

This_expression leads to the coupling K;I~) for the vec­
tor C(I') 

Klli) = 6g(.)G(~) (k i ) f3(~~/A.k· 
.b 

Now (kl).=O for i<a (§15)o The summation begins at 
a = io Moreover, this summation is made over the 
groups S(.) which contribute to Sik): 

K(I')= ~ (kl)1 'EGliJNI{) 
I\.ik • 

The construction of kl has been made (§15) such that 

IntrodUCing those definitions and putting in evidence a 
coupling constant 
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But for i < a <> nk we can also sec that 

(Xk)j _ ~~ _ coslJ!ki 1 
(xk ). - A.kg(/) - sinlJ!kj (iD. 

Thus the coupling to C'it) becomes 

or 

K J - g(jl {"G b Dbi 
Ilk)-- sinlJ!kiAIk ';: (Of.1(jk) 

"k 

_cos2 lJ!kj 6B Gtc)/3tlk)}. 
a=i b 

(13) 

For index (k) referring to the subgroup Uh) we obtain 
a similar formula, 

(14) 

for the coupling to the vector C(m(i=1,., 0, n(kl -1 is 
never a U' subgroup index). The no last columns give 
the couplings to the vectors C(~,O) or Cw,.) 

(15) 

§20. We want to isolate quantities which can play the 
role of coupling constants, so we write 

with the definitions for the four types of couplings giv­
en below. When 

(17) 

K-' b K- J 
(lml= (lOP 

This leads to a very simple form of the couplings to 
the massive vector bosons [by comparing (16) and (17) 
with (13), (14), and (15)) 

(18) 

n 

- cos2 lJ! (k)i {6 6 Gla )i3!ak) + L: G(e) i3(ak)}' 
Ihi b a 

(19) 

(20) 
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IX. THE EFFECTIVE LAGRANGIAN 

§21, The basic Lagrangian which was written in §9 
is of minor interest to phenomenologists. Our final 
aim is to describe a part of physics which is accessible 
to the present energies, By this we mean that we re­
strict ourselves to an effective lagrangian of the type 
current x current; the massive vector bosons are ex­
changed with I if I negligible with regards to the masses 
of vector bosons, 

The part of the Lagrangian due to the zero mass 
vector bosons is 

- iBB(lll"vB(~) + i'fyl" a I" lJ! - B hm'fyl" 
I I 

Hi nlJ! B~Il" - 6 h(!) ify" H(I) lJ! Bm ". (21) 
I 

By L!u we mean the kinetic part of Left while L~ff 
stands for the interaction part with conserved currents, 
While the interaction part due to the massive vector 
bosons is defined as 

L~ff = (1/,12") B [if y"K(i)lJ!) G j [if y"K!i) lJ! l' + h, c. , 
i 

where G/,I2" = 1/ ~ is the inverse of the squared mass 
of C(j) 

§22. We claim that this last part of the effective 
lagrangian can be written 

L!ff = (1/2,12")6 ['fy "KlolJ! )(K2)i~[ifY"K(IllJ!)+ + h. c" 
1/ 

(22) 

where 

The coupling constants k(i> have completely disappeared 
from this expression [see (18), (19) and (20)). We just 
remember of the old coupling constants g and g' by the 
expressions cos2lJ! which are contained in the definition 
of K(i)' All generated cos2 lJ! are included in it. 

Proof: The matrix 

is not diagonal. By diagonalization we obtain the eigen­
states Cm 

C(Il=6 0 'kC(k) 
k 

with eigenvalue M~/2. The matrix 0 is the matrix O(P) 
defined in § 19. Then we obtain the following two 
relations: 

-
(0 M2 Ot)ij=M~Oij and K(z I =~k(i$!iIO:I' 

i 

Remember that 

BK(ZIC(ZI=i] k(i$(;>C(;). 
Z I 
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Using the definition of M2/2, the first relation is 
written 

2 [) Oimk(m)(K2)mlk(r>O~j =M~Ojj, 
m,l 

which implies by inversion 

1 1 " 1 ( 2) _1 1 t 
Ml Ojj=-2:DOjm-k- K mlk0l)' 

i m,Z (m) (ll 

And replacing, in L~ff> G j by its value, 

L I 1 '>'[:T. I ]( 2-1 
off =mLJ ",YILK(jl>lt K )/1 

X. GENERAL PROPERTIES OF l"ff 
§23. Now we count the number of coupling constants 

which appear in L~ff + L~ff' Originally we were in pos­
session of n coupling constants of the type g(/) and r 
coupling constants of the type g{I)' They have been used 
to redefine new coupling constants: In of the type h(z J, 

s of the type hi z ) (12), and some number of COS2>1tki 
(§15). The following possibilities can occur (§13): 

(1) A subgroup S(jl or U(jl is constructed with only 
S U Th (,) hI,) . one group (j) or (jl. en g(jl = (jl. The new couplmg 

constants h [or h'] appears only in L;ff [(21)]. The old 
coupling constant g( j) can also appear as a "coupling 
constant" k(IO) (17) but disappears in L~ff [(22)]. 

(2) A subgroup Sijl or Uijl is constructed with more 
than a group S(j) or U(jl [nj groups]. This case gives 
right to a relation (12) defining a new coupling constant 
h [or h'] and (nl - 1) coupling constants of the type 
cos2>1t jj (§15). An old coupling constant can appear as a 
k-type coupling constant but disappears in Loff [(17)]. 
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The coupling constants h [or hi] appears only in L;ff 
while in L~ff all COS

2>1t ji appear [(21) and (22)]. 

(3) An initial group S(j) [or Uti)] can be "completely 
broken": There is no subgroup which is constructed with 
its generators. The old coupling constant g(n [or gi j )] 

becomes trivially a "coupling constant') of the type k(IO) 
or k(Oil [(15), (17)] but disappears in L~!! [(22)] and it 
does not appear in LK nor in LC

• The coupling constant 
g(j) (gljl] has completely disappeared from the Lagran­
gian we constructed in §21. 

§24. Looking at the form of L~!!> we can see a kind 
of scaling for the physical results. Let us suppose that 
for each generator Kill we have fixed a scale IJ.j: This 
means that all matrix elements of Kljl are proportional 
to IJ. j. By the same reasoning we did in §21 to suppress 
the coupling constants k(;> of the Lagrangian, we obtain 
for L~ff a result independent of the IJ. i' 

Thus the physical results for processes of the type 
current x current will only depend on ratios of matrix 
elements of each K(jl. Thus we cannot believe that such 
a theory can provide equivalent processes with cross 
sections differing by orders of magnitude. Such differ­
ences can only naturally proceed from the matrix (K2)-1 

defined in § 22, but this matrix is, apart from the fac­
tors cos2>1t, entirely dependent of the Higgs sector. 

We thus claim that the really interesting features 
(the explanation of processes involving same type of 
physical particles interacting with the exchange of mas­
sive vector bosons but with cross sections differing 
by orders of magnitude) of such theories become almost 
entirely from the Higgs sector and have very little to 
do with a choice of the groups G and H. 

CONCLUSION 

Throughout this work, we have been interested in 
writing an effective Lagrangian of type current x cur­
rent for spontaneously broken gauge theories. 

We have seen that almost all the old coupling con­
stants which were in the initial symmetric theory are 
recovered in the broken theory either in the form of 
an "electromagnetic"-like coupling constant [our h(z) 

and hi z )], either on the form of a term cos2>1t. The 
"Fermi" -like coupling constants are functions of those 
cos2>1t's and of an arbitrariness in the theory: the choice 
of ¢ and its vacuum expectation values. 

An old coupling constant disappears in the broken 
theory if the group corresponding to it is completely 
broken: None of its generators enters in the definition 
of the generators of the entire surviving subgroup. 

The arbitrariness in the Higgs sector of the theory 
has very much to do with results of experiments pro­
ceeding by the exchange of a massive vector boson: The 
scaling properties which are exhibited by the effective 
Lagrangian suggest us that differences of orders of 
magnitude between the cross sections of "equivalent" 
experiments come almost entirely from the choice we 
did in the Higgs sector and not really from the choice 
of groups. 
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The retarded Josephson equation 
w. A. Schlup 

IBM Zurich Research Laboratory, 8803 Riischlikon, Switzerland 
(Received 6 April 1978) 

The retarded Josephson equation, which takes into account, in a simplified form, retardation etTects of 
the Werthamer equation, is a nonlinear, nonsimultaneous, causal integroditTerential equation. It will be 
solved for kernels which are essentially the asymptotic kernels from BCS theory. Of physical interest are 
the rotational solutions, especially the characteristics and dynamics, which describe the steady state of a 
Josephson junction. 

I. INTRODUCTION 

The Josephson equation can be derived by means of 
Maxwell's equations together with the frequency relation 

(1. 1) 

and the current phase relation (CPR), which connects 
the current perpendicular to a planar junction j(<p) to the 
phase difference <po This CPR is a nonlinear, non­
simultaneous relation, which is invariant by time trans­
formations and obeys causality 

t 
j[.p]= J dt' K(t- t';.p(t), <p(t'». (1. 2) 

-~ 

The current therefore vanishes as long as the phase 
difference is zero. If the two sides of the Josephson 
junction are interchanged, <p - - <p, the current changes 
its sign, j[ - .p] = - j[.p]. If voltage changes are slow or 
small, then second- and higher-order derivatives of 
<p(t) are neglected and the CPR becomes 

j(<p) = k(<p, ip). (1. 3) 

This is the first-order adiabatic approximation (AA), 
since only the first-order term (P (voltage) is retained. 
If the voltage itself is small, the linear adiabatic ap­
proximation (LAA) is sufficient, 

(1. 4) 

The Josephson equations for these different approxima­
tions (A.A, LAA) has been discussed in the literature 
under various conditions, i. e., for local or extended 
junctions, for capacitive or inductive loading, and for 
various inputs. We consider here a capacitive local 
junction with current input, which will be written in 
dimensionless units. The classical Josephson equa­
tionl - 6 

(3rp + <,11(1 + Y cos.p) + sin.p = ex, (1. 5) 

where {3 is the capacitance parameter, y the interference 
term anisotropy, and ex the dc current applied, is a 
result of the LAA. The equation in the adiabatic 
approximation AA is 

(3rp + io(ip) - il (ip) cos<p + it (<,11) sin<p = Ci. (1. 6) 

These differential-type Josephson equations have been 
used predominantly for practical calculations (see, 
e. g., Ref. 7). 

The retarded Josephson equation8,9 is the simplest 
integrodifferential equation based on (1. 2). It can be 

considered as a nonsimultaneous generalization of (1. 6), 
~ 

(3:P + <,11 + J dt' F(t') sin.p(t - t') = (Y, (1. 7) 
o 

where the retardation in the CPR is given by a memory 
function (kernel) F(t), which is assumed to be normal­
ized. The most complete equation for a junction has 
been given by W erthamer, 10 

{3.p + {dt' (G(t') sin <p - ~(t - t') 

+F(t') sin <P+ ~(t- t'») =Ci. (1. 8) 

It takes the time dependence of the voltage fully into 
account. The Werthamer equation (WE) has been solved 
in the zero-temperature case. 11 The kernels F, G can 
then be given analytically. 12 They are functions 
oscillating with the gap frequency and decaying very 
slowly. 

The equation (1. 7) can also be considered as the 
special case of (1. 8), which neglects the regular part 
G1 in G (t) = G 1 (t) + Goo' (t - 0+) and instead of a half 
[.p(t) + <p(t - t')]/2 takes a full retardation <p(t - t') for 
the second integral term into account. The first 
assumption assumes a linear quasiparticle (dissipative) 
term, which is well realized for junctions working just 
below the transition temperature. The second assump­
tion should be considered as a mathematical simplifica­
tion which is more easily visualizable. 

The retarded Josephson equation (RJ) can be trans­
formed into higher-order differential equations, if the 
kernel is a solution of a linear differential equation 
of arbitrary (finite) order. Two kernels of this type 
were investigated earlier. 13 In order to be near to the 
Werthamer problem, essentially the asymtotic form of 
the kernel has been used for the present purpose. 

The characteristic will be discussed over the whole 
range of {3 values, especially the singular frequencies, 
being submultiples wn = wg / n of the gap frequency Wg 

= 21:,./1i (1:,. energy gap), will be investigated in great 
detail. Together with the characteristic the dynamic of 
the junction will also be elucidated indicating a special 
feature not present for the instantaneous case. To 
support numerical results, limit results, especially for 
large {3, will also be obtained. 

II. MATHEMATICAL PRELIMINARIES 

The integrodifferential Josephson equations [(1. 7) 
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and (1. 8) ] become simple differential equations of higher 
order, if the kernels F(t) and G(t) are finite Dirichlet 
series of type 

I n" 
F(t) =L L a,,"t"-le-~" t, 

,,=1 r:1 
(2.1) 

where n = L;"I=ln" is finite and related to the order of the 
differential equation. 8 The kernels entering can, to 
some extent, be approximated by a Dirichlet series. 13 

The major deficiency of such series is their behavior 
for long times, since the physical kernels oscillate with 
the gap frequency but decay like l/t, i. e., with infinite 
decay time A" = O. The simplest non-Dirichlet kernel 
for the retarded Josephson equation, which has the 
properties mentioned and does not generate a singular 
equation (1. 7) is 

(2.2) 

Apart from general analytical results, the numerical 
treatment will use the kernel (2.2) with Wg = 1. A more 
general problem would be the three-parameter case 
with arbitrary a, {3, and Wg or the equivalent problem 
with a, {3, and an arbitrary coefficient for the first­
order term rP in (1. 7). 

The unilateral Fourier transforms of (2.2) are 

f(w) = f dtF(L)e iwt = j(w) + ii(w), (2.3) 
o 

. 2 2 • 1 I W+w I J(w)=I..>(wg-w), z(w)=-ln -~ , 
rr W-Wg 

(2.4) 

where j(w) is an even step function and i(w) is an odd 
function with a logarithmic singularity for w = Wg' This 
is in contrast to the Riedel singularity, 14 which enters 
in the even tunnel function j(w). A model for F(t) con­
sistent with the Riedel singularity will be discussed in 
Sec. VI. 

We want to find rotational solutions qJ(t) to the RJ 
equation (1. 7), i. e., periodic solutions with a linear 
time term. Introducing the variable x = wt with w = 2rr/T 
and T the period, qJ(x) fulfills the periodicity 

qJ(x + 2rr) = qJ(x) + 2rr, 

which as a Fourier series is 
~ 

<p(x) =X + 6 an(cosnx - 1) + bnsinnx, 
n=1 

(2.5) 

where for convenience qJ(O) = 0 is assumed, since time 
origin for the steady state can be freely chosen. Then 
the Fourier expansion of sinqJ(x), which is now a (true) 
periodic function is 

sinqJ(x) =L An cosnx + En sinnx, (2.6) 
n=O 

where A o = - 'Zn:1An because of qJ(O) = O. This defines 
the multi variable functions An(al' bj, a2, b2, ••• ) and 
En(aj, bb a2, b2, ••• ), which express the nonlinearity of 
the problem. 
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Using these functions, (1. 7) can be written as 

(
{3w

2

n
2

, - wn) (an) = (~(nw), 
wn (3w 2n2 bn z(nw), 

- i(nw») 

j(nw) 

xc:} n~1,2, .•• (2.7) 

and 

w+AO=O', (2.8) 

where the right-hand side of (2.7) is the integral term 
in (1. 7). In order to solve (2.7) and (2. B), the infinite 
system has to be truncated; introducing the 2N com­
ponent vector Y = (aj, bj, •.• ,aN, b N), there are two 
methods to find a solution: 

(1) The iterative method, which in analogy to the 
iterative solution of Fredholm integral equations, starts 
with an initial solution Yo, puts it into the integral term, 
i. e., into the right-hand side of the first N equations of 
(2.7), and finds an improved value Yj • The solution up 
to a given precision is found by repeated iteration. N 
has to be increased until relevant digits no longer 
change. 

(2) The Newton method considers (2.7) as a transcen­
dental system of 2N equations for the unknown Y. In 
contrast to the iterative method, it converges fast, but 
only if initial values Yo are near to the solution. For an 
optimal calculation one starts with the iterative and 
ends with the Newton method. 

On the other hand, there are two procedures possible: 
either (a) 0', {3 is given and w, at, ... , b N will be deter­
mined, or (b) w, (3 is given and 0', ai, ... ,bN is calculated. 
Since the characteristic 0' (w,;3) is a unique function, 
procedure (b) has to be preferred; (a) is useful only in 
regions with positive slope dw/ dO' > O. Since in case (a), 
the characteristic decays into disconnected branches, 
the solution, which needs a fairly good knowledge of 
approximate initial values, has to be traced down from 
large {3 values, where analytical asymptotic solutions 
are known, to the {3 value considered. 

III. THE ASYMPTOTICAL SOLUTION 

The asymptotical solution for {3» 1 has been discussed 
earlier (see Ref. 9) in connection with various (averaged) 
approximations in the RJ equation. Here the character­
istic has been investigated up to an order, where con­
tributions appear that account for W'" w2 = wg/2, 

0'= W _ i(w) + j(w) + 1 (3i(cJJ)j(W) +fJw) + i(w) 
2w2{3 2w3{32 fY 8~ 8c:;F 2W4 

i(w)j(2w) + i(2W)j(W») 0 (1) 
- 16w6 + (34' (3.1) 

This expansion is good for large {3 and w not too near 
the singular frequencies wn• For W'" Wt the first- and 
third-order terms contribute mainly, whereas for w'" W2 

the last third-order term becomes singular. In order to 
extend the validity of (3.1) into the singular frequencies, 

W.A. Schlup 2470 



                                                                                                                                    

certain dominant terms in all orders have to be taken 
into account (see Appendix A). In the limit f3 - co, the 
characteristic a (w, (1) becomes W = a except for W = Wj, 

where the singularity degenerates to a double lateral 
peak extending to a = O. 41813 (wg = 1). 

This asymptotical solution for f3» 1 can also be ex­
tended to the critical current a c(f3) which is defined as 
the limit 

(I' cUi) = lima (w, (3). (3.2) 
w- 0 

The general result has been derived in Appendix B of 
Ref. 9; it becomes rather involved if i(w)/w has a 
logarithmic singularity in W = O. 

In the case [(2.2)-(2.4)] considered here, the 
critical current is 

where i' (0) = 2/1T. 

IV. THE CHARACTERISTIC 

The average voltage (.jJ) = (I/T)f%'dt.p= 21T/T = W 

(3.3) 

versus current a, i. e., w(a,l3), is called the character­
istic of the RJ equation. It has the symmetry w( - a, (3) 
== - w(a, (3), since for a - - a and rp - - rp Eq. (1. 7) 
remains invariant. 

The characteristic w(a, (3) will be discussed numeri­
cally for the kernel (2.2) with Wg == 1. It shows a very 
special behavior for the singular frequencies WI = I/Z 
where the integral in (1. 7), extending over a periodic 
function, should diverge indicating a self-resonance of 
the kernel (t period 21T) with the solution rp(t) (t period 
21TZ). Nevertheless, the value a (wI> (3) = (;1 (f3) remains 
finite, since the lth order Fourier coefficients of 
sinrp(t) vanish (see Appendix B). The (finite) singularity 
of w(a, (3) near the singular frequencies WI can be 
dissolved by using the regularizing transformation 

(4.1) 

in the vicinity w'" Wzo For small 'f) I the characteristic J} I 

I 

0.2 I 

0, 

I 

I 
- 0.2 1-

(3 = 1 

l_--1 __ L_~ _--'-_.-.-1 
0.4 0.6 0.8 1.0 

a 
• 

1.2 

FIG. 1. The regularized characteristic 1)i(a) near the first 
singular frequency wi for various fJ values. 
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versus a behaves linearly, 

a(w, f3) '" CV;«(3) -A/(f3)J}/, (4.2) 

and the slope IdJ}/da I = I/A/(f3) decreases with in­
creasing f3. 

For WI = 1 the regularized characteristic is shown in 
Fig. 1. a has two minima (lateral pOints), which be­
come more pronounced and tend to W = 1 or J}j = 0, if f3 
is increased. For smaller {3's they approach each other 
again, flatten out and finally join for {3 = O. The 
characteristic for {3 = 0 and w> 1 is exactly w = a (see 
Appendix C). 

The regularized characteristic for {3 = 1 is given in 
Fig. 2. It shows five curves with five different ordinate 
regions, which are connected (by dots) in the points, 
where, between neighboring singular frequencies, the 
current has a maximum. The upper current minimum 
lies at 7)/ - 0.1, which means Zw'" 1. 0001, whereas the 
lower is still nearer to 171 = 0 and higher in a. There 
is an absolute current minimum at a = O. 667 for 
U)''" O. 5001, which plays an important role for the hys­
teresis if the current is reduced quasi statically. 

Figure 3 shows the characteristics w(O', (3) for f3 
ranging from 0 to 00 in a plot with displaced origin. As 
mentioned before, {3 = 00 is w = cY for w * 1, with an 
infinitely narrow lateral double peak at w = 1 extending 
to (\' = O. 41813. For {3 = 10 the curve has a hyperbolic­
like shape if one disregards the special behavior of the 
singular frequencies. This shape is generally explained 
by simple approximative models to the RJ equation. 9 

In this case, (3 is also large enough for the asymptotic 
solution (3.1) to give reliable results. Also, the 
asymptotical critical current (3.3) for f3 = 10 becomes 

In) 

(1) 

(2) 

(3) 

(4) 

(5) 

YJ

n 

~ o.~ ~ 
-02. 

0.2 

o 
-0.2 

0.2 

0 
- 0.2 

I 
o~ ~ 

- 0.2 ~ 
r-

o~ E 
-0.2 

0.6 

J 

,~ a 

0.8 1.0 

FIG. 2. The regularized characteristic 1)n(a) for fJ = 1. Differ­
ent regions connected at a maximum (dots). 
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w 

FIG. :). The (usual) characteristics w(O',fl} for (3=0, 0.1, 1, 
10, 00, and F(t) = (2/rrt) sint with displaced origin (scale belongs 
to case (3=00). 

(V c - O. 3172 in agreement with the extrapolated numerical 
result. The curve /3 = 1 is identical to Fig. 2. The 
double-peak structure of the singular frequencies cannot 
be seen in this conventional plot, in particular the lower 
(w = WI - O. 00· .. ) (V minimum disappears completely. 
Nevertheless, all curves 0 < f3 < 00 show the double-peak 
structure at WI, although the lower peak becomes a 
small nose for small /3. For f3 = O. 1 even the (V maximum 
CY I (/3) which was clearly visible for {3 = 10, 1, immerses 
in the lower branch. For {3 = 0, W = (V for w> 1, and for 
WI (Z = 2,3, ..• ) there are single peaks which seem to 
diverge numerically. 

For technical reasons, the characteristics could not 
be traced down to W = 0 since, for smaller w, more and 
more Fourier coefficients (N large) have to be taken for 
a certain accuracy. It is therefore difficult to form any 
conclusions about existence and value of the critical 
current (V c(/3). This question has been investigated for 
some simple Dirichlet kernels, 13 where the RJ equation 
becomes a differential equation of higher order. 

Another problem in connection with the characteristic, 
is the hysteresis arising when the current is changed 
quasistatically. If the Josephson junction is at rest, 
Leo, cp '" 0 and the input current is slowly increased, 
the solution is stationary and stable at qJ = cp '" = arcsin (V 

for (V < 1 with (,p) = W = O. For (V is 1, the solution be­
comes rotational, i. e., the W value jumps from W = 0 
to the rotational characteristic of Fig. 3, for {3 = 1 onto 
the upper (w> 1) wI branch, where it remains as long as 
(lI does not go below the upper (V minimum. If it does, 
the frequency, which is related to the energy of the junc­
tion, falls onto the next branch below or down to W = 0, 
if a rotational solution is no longer possible. This is 
certainly the case, if (V is below the absolute (V 

minimum, which is at (lI = O. 667 for f3 = 1. A similar 
hysteresis structure holds for other f3 values; the small-
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<p' 

7.5 

5.0 

2.5 

0-----

<p 
-2.5 _________ LI ________ --'I'--_ ..... 

o ~ 2~ 

FIG. 4. The phase trajectory <p' (x) = (l/w) ~(wt) versus cp(x) 
for {3= 1, w=~ and 0' =0. 73875. 

est current, where the junction resets to W = 0 always 
very near to (but larger than) a singular frequency, be· 
cause of the general shape of the characteristics. 

V. THE DYNAMICS 

The dynamics of the solution is contained in the set 
of Fourier coefficients or in the function cp(x) with x 
= wt. It is too extensive to give a detailed description 
of cp(x), but there are a few general features which can 
be stated more easily. As shown earlier8,13 the voltage 
cp'(X) may become negative in the steady state. An ex­
ample for {3 = 1 and w = 1/4 with (]I = a4 (1) = O. 7388 is 
demonstrated in Fig. 4. The voltage cp' has then three 
negative and one positive minima. Therefore, the phase 
trajectory· cp'(cp) has a triple loop which encloses the 
unstable equilibrium cp", =2. 3104. A similar behavior 
has been observed for the other singular frequencies 
w,, where there are 1 minima in cp'(x), only 0 or 1 being 
positive (up to fifth order). As a measure of higher­
order harmonics which enter into the solution, the 
number :vl of minima of cp'(x) can be used. For large w 
down to a little above w2, M = 1; from there down to a 
little above w3, M = 2, etc. The boundary (a little above 
WI) is almost independent of f3, if {3 is not too large. If 
(3 is large, the first harmonic is sufficient to describe 
cp' (x) everywhere except near the singular frequencies. 9 

Near WI higher harmonics are required, the more the 
higher l; this again increases 1\11 in the vicinity of w, 
with the order of the singular frequency, whereas 
everywhere else M = 1 seems to be sufficient. 

VI. THE CHARACTERISTIC FOR RIEDEL 
SINGULARITIES 

The problem discussed so far l (2.2), (2.4)] has the 
logarithmic singularity in the odd function i(w), whereas 
BCS theory predicts it for j(w). 14 Assuming 

. w Iw+w I J(w) ='":L In ~ 
2w w- Wg 

the corresponding Hilbert transform15 is 

i(w) =! 1. ~ j(x)dx =~L:;.(W2 - w 2) 
1T _~ W - x 2w g , 

(6.1) 

(6.2) 

where f means the Cauchy principal value of the integral. 
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It is easy to verify that these functions, according to 
(2.3), belong to the kernel 

(6.3) 

being an integral sine function, 16 which is normalized 
because of (6.1). The asymptotics for long times, 

F(t)_~O~Wgt , (6.4) 

are in agreement with the asymptotics of the BeS theory 
for T = 0,12 and for T> 0 (see Appendix D). Note that 
(6.4) taken as F(t) would lead to a singularity in the 
integral term of (1. 7). 

The RJ equation will now be solved for the kernel (6.3) 
with Wg = 1. The characteristics for {3 = 1, 10 and'" are 
plotted in Fig. 5. The straight line W = (}' is given by 
f3 = 00 (dashed curve), since similar limits to those 
derived in Appendix A and Sec. III can be considered. 
The characteristic for {3 = 10 is again hyperbolic with 
cusplike singularities in WI' This result can be inter­
preted by means of the asymptotical formula (3.1), 
which gives CY - W - 7T14w3{3 for w> 1 and, since i(w) == 0 
for W < 1, CY - W + j(w)/2w3{32 for w < 1 with the singular­
ities in W I pointing to the right. In contrast to Fig. 3, 
the discontinuity in w = 1 originating from i(w) being of 
order 1/{3 is well visible. Again, the asymptotical 
critical current CY c({3) from (3.3), with i'(O) =0 giving 
CY c = 0.4026, is in good agreement with the value ex­
trapolated. Finally, the characteristic for f3 == 1 is 
shown. It has qualitatively the same behavior as Fig. 3, 
except near the singular frequencies which consist of a 
cusplike singularity pointing to the left. It would need a 
more detailed investigation to understand how the direc­
tion of the singularities changes by going from {3 == 10 to 
(3 == 1. 

VII. FINAL REMARKS 

The retarded Josephson equation has been solved 
for two different non-Dirichlet kernels, which are in 
asymptotical agreement with the BeS theory. As a 
result, the characteristics of the rotational solutions, 
which are essentially hyperbolic, show a very specific 
structure at the singular frequencies, where the period 
of the integral kernel is commensurate with the period 
of the solution. If the tunnel function i(w) has a 
logarithmic singularity and j(w) is bound, this struc­
ture consists of two lateral peaks, i. e., (}' minima lying 
extremely near the singular frequency WI' In the op­
posite case, where j(w) is logarithmically singular 
(Riedel), the structure has one cusplike peak. For 
small damping, i. e., large {3, the solution can be well 
understood by means of asymptotical expansion. The 
steady-state solutions again show negative voltage 
parts, which can be qualitatively understood as a con­
sequence of retardation. The number of negative re­
gions of the voltage and therefore also the number of 
loops in the phase trajectory is of the order of the 
nearest singular frequency, if w'" w! and {3 is not too 
large. 
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APPENDIX A. LIMIT BEHAVIOR OF 
CHARACTERISTICS NEAR Wn = lin FOR 
LARGE {J 

For w"'l and {3»1, the asymptotic expansion (3.1) 
gives 

X X3 
0'=1--+-+'" 

2 8 ' 
(AI) 

where X = it (w)/{3 Z (1/7T{3) 1n21 I w - 11 is assumed to be 
of order 1. If XN is included, XN(O') with XN(l) = 0 
fOllows as a root of the polynomial (At). 

The limit behavior X( 0') for N - 00 can be derived 
from the RJ equation for the Fourier coefficients (2.7) 
by taking the limits w -1, (3 - "', and X fixed: 

Using a1 =p COSY, bt ==p sinY, 

Ao =J1 (p) cos[(p COsy) - Y], 

At == J2(P) sin[(p COSy) - 2y] - Jo(p) sin(p COSy), 

B1 ==J2 (P) cos[(P COSy) - 2y J + Jo(P) cos(p cosY), 

and (A2) gives 

(1) p cosy=y =) 

w 

1.4 

1.0 

0.6 /-

/ 
/ 

/ 
/ 

.r-:: 
h 

,,? 
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FIG. 5. The characteristic w(a.fl) forfl=l. lO(full). 
",,(dashed) for F(t) = If dz (sinz)/z - (cost)/t. 
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_ 1 I!OJ 1 (Po) ~ _ 1 1. 69498 
0' - - 2Jo(Po) X - - X • (A4) 

An investigation of XI(O') shows that X I(l) =0 and XI(l) 
=-2; XI increases with 0' decreasing until 0'1=0.41813, 
where XI(ff j ) = 2. 91297 and X\(ffl) = 00. For 0' '" O't. 
XII (a) continues with XII (a 1) =X l(a 1), XlI(a 1) = 5.0062 
and being a hyperbola. 

The characteristic w(a) in the vicinity w;; 1 is there­
fore 

w = 1 + 2 exp( - 1T!3X(a)], (A5) 
(-J 

where XI (0') holds for w> wi (a), i. e., beyond the a 
minimum, and Xu(a) for 1 < W < wj(a). For w;2 1 the 
results are analogous. 

The solution XII(a) also agrees with the regularization 
found near the wn Singularities, 

-1 

a(w,J3)=an(f3)- An(i3{lnl~~~~ \J 
-2 

(A6) 

since for {3 - co, a 1 ((3) - 1, and if d(3) - 5. 34 {3 has been 
found numerically, whereas (A4) would give Al ({3) 
-1. 69498 1T{3. This proves that, in the limit {3 - 00, the 
w( singularity shrinks to an infinitely narrow (in w) 
lateral double peak extending to a = a j. 

An investigation into the w N singularities under 
similar assumptions is not straightforward; this can 
also be seen by the 1/{3 expansion, where the first term 
contributing to w2 is 

1 • i(2w) 
a=2- 4J(1/2)-r +"', 

indicating that another quantity X has to be used. 

A numerical calculation of (A6) verifies its validity 
for all wn, where a N(i3) - liN and A N(f3) - aNi3 for large 
(3. In the same limit, the 0' minima a~({3), 0'~({3) have 
been investigated. In contrast to n = 1 they vanish com­
pletely giving rise to w = 0' for w *- 1. 

APPENDIX B. FINITENESS OF THE CURRENT FOR 
W = WI = 1// 

For w = Ill, the RJ for the Fourier coefficients (2.7) 
becomes 

2474 

Az=O, Ez=O, 

- wn) (an) (j(nw), 

(3w2n2 bn = i(nw), 

xC)· 

- i(nW)) 

j(nw) 

(Bl) 

n=1,2,"', 1-2, 1-1, 1+1, 1+2,"', O'=w+Ao• 

J. Math. Phys .• Vol. 19, No. 12, December 1978 

Equation (B1) has been calculated numerically for 2N 
equations n = 1, 2, ... ,N with 2N unknowns, an, bn with 
increasing N. As a numerical result ('I, at. b j a2, b2, ••. 
exist, and can be calculated to any degree of accuracy 
if f3 is not too small (dots in Fig. 3 for (3 = 0 character­
istic), i. e. , 

(B2) 

If w'" WI' an expansion with respect to 1/i{Zw) or small 

I 
1

1W + 1 I 1)1(w)=sig(lw-1) In lW-1 

is possible, giving for X = (0', an, bn, An> En) 

X =Xo + 1)Xj + 1)2X2 + ... , 

(B3) 

(B4) 

where Xo is the solution resulting from (B1). 1) is small 
only when w is extremely near to wn (e. g., w = 1 + 10-1000 

1)1'" 1(ln10)1000- O. 434X 10-3
), which means that only 

the first equation of (B1) changes, giving 

-1 ) 

1Tj(lW) 

(B5) 

If instead of w, 1)1(W) is used as ordinate for w'" w" the 
singularity, being a cusp in WI' is made regular. 

APPENDIX C. THE CHARACTERISTIC FOR (3 = 0 AND 
w>1 

Because of (2.4), j(nw) = 0 for w> 1 and n = 1, 2, ... ; 
therefore (2.7) for {3 = 0 becomes 

(
0, -wn) (an) = (.0 , -i(nW)) (An) (C1) 

wn, 0 bn z(nw), 0 En 

for n = 1, 2, .. '. This allows for the special solution 
al = a2 = .•. = 0, since sinrp(x) is then an odd function 
with 

(C2) 

Therefore, by means of (2.8), w = 0', whereas 

i(nw) ) 
bn =--En(O, bt. 0, bh .. • ,n = 1, 2,,,, 

nw 

gives a nontrivial rp(t) 

(C3) 

APPENDIX D. THE ASYMPTOTICS OF THE KERNELS 
FOR t-*<>oAT TEMPERATURE T 

The pair-retardation kernel in the Werthamer equation 
at temperature T with an energy gap A is 

F(t) = 2~N[tP' (t, T)tP" (t, 0) + tP" (t, T)tP' (t, 0)], (Dl) 
1Tne 
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where 

() I/!~ t:.. E 
cp t, T "" cp' + iCP "" l> dE,; E2 _ t:..2 tanh 2T 

x exp (i~ t) . (D2) 

By means of the method of steepest descent, it is found 
that for large t 

t:.. 
cp(t, T) - tanh 2T cp(t, 0). 

In the case T=:O one easily finds 

A..(t 0) - rri H(j) (~1) 
'1', - 2 0 n ' 

(D3) 

the Hankel function of the first kind, which asymptotically 
becomes 

cp(t, O)~::i)~~p [i (t:..;, +~)J 
Inserting into (Dl) finally gives 

F(t) -~. £..osw,l 
rr J", l ' 

with Wg =: 2t:../n and j", =: (rr/2)(t:..G N/ e )tanhLi/2T. 
gously for the kernel G: 

G(t)=:2GN [>It'(t T)>ItI/{t O)+>ItI/(t T)>It'(t O)J 
rrne ' , , " 

f
~ E 

>It(t, T) =: >It' +i>It" =: dE-:jE2 _ t:..2 tanh £.. exp 
l> 2T 

t:.. 
t» n/2t:...:d)>It(t, T) - tanh 2T w(t, 0), 

w(t 0) =:~ dcp(t, 0) - A..(t 0) 
, it:.. dt '1'" 
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(04) 

(D5) 

Analo-

(D6) 

(i~t) 
(D7) 

(D8) 

(D9) 

G(l) -~. cosw,t 
rrJm t ' (DlO) 

i. e., F(l) and G(t) in the Werthamer equation (1. 8) have 
the same asymptotics for large t. 

The Werthamer equation would then be 

eli .. +GNIi • +4 .. J!.. (~dt,COSWgt' cp(t-t') 
2e cp ~cp ;J", Sln 2 10 t' cos 2 

(Dll) 

where the linear term comes from the linear quasi­
particle characteristic. Also in (Dll), the integral 
would not exist because of a singularity in t' =: O. 
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Evolution of a stable profile for a class of nonlinear 
diffusion equations. II 

James G. Berryman8) and Charles J. Hollandb) 

Courant Institute of Mathematical Sciences. New York University. New York. New York 10012 
(Received 7 April 1978) 

First. explicit formulas are found for all the eigenfunctions and eigenvalues of a Sturm-Liouville problem 
associated with the class of nonlinear diffusion equations studied previously. The formulas for the 
eigenfunctions are proportional to Gegenbauer polynomials whose argument depends on the separable 
solution shape function. Next. rigorous bounds on the asymptotic amplitude are found in terms of integrals 
of the initial data. These bounds are the best possible bounds of the given type since they produce the 
exact result for the separable solution. Finally, results of numerical experiments are reported for D~ n 8 

where I) = I, -1/3, -1/2, and -2/3. The rigorous bounds are compared to the perturbation estimates 
from the earlier work and to the computed values of the asymptotic amplitude. 

PACS numbers: 02.30Jr, 05.60. + w 

I. INTRODUCTION 

A previous paper1 introduced the nonlinear diffusion 
equation 

- D(n)- =f(x)- for 0~x~1 a ( on) on 
ax ax at ' (1) 

where n is a particle density, x is the spatial variable 
in one dimension, and t is the time. The factor f(x) is 
a strictly positive function of x. The diffusion coefficient 
D(n) - nO where 15 > - 1. Two regimes of the parameter 
15 should be distinguished. When 15> 0, the diffusion 
coefficients, and, hence, the diffusion rate, decreases 
as n - O. Therefore, we may call this "decelerating 
diffusion. " When - 1 < 15 < 0, the diffusion coefficient in­
creases as n - 0 so we may term this "accelerating 
diffusion. " Alternatively, we could label the two regimes 
as " slow diffusion" and "fast diffusion" respectively. 

For convenience, a new dependent variable m =n1
+

6 

was introduced so (1) becomes 

mxx = f(x)(m O
-
1 )t, (2) 

where q = (2 + 15)/(1 + 15). It was shown that the separable 
solution of (2), m(x,t)=S(x)T(t), was stable against 
small perturbations whenf(x) = const because all per­
turbations decay like TP(t) where p '" 4. Recall that 

5" (x) + Aj(X)S"-l(x) = 0, (3) 

with 5(0) = 5(1) = 0 and sup S(x) = 1 by definition. 

The conjecture that arbitrary initial data evolves to­
ward the separable solution of (2) has now been proven 
for f(x) a bounded positive function and all q> 2. See 
Ref. 2. 

The present paper contains several new results in­
tended to supplement the work of Ref. 1. First, for f(x) 
= 1, we find explicit formulas for all the eigenfunctions 
and eigenvalues of the Sturm-Liouville problem 
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Company. Also supported in part by NSF-MCS-75-09837. 
New permanent address: Bell Laboratories, Whippany, 
New Jersey 07981. 

blVisiting member, supported by a grant to the Courant 
Institute from the Sloan Foundation and in part by AFOSR-
77-3286. Permanent address: Department of Mathematics, 
Purdue UniverSity, West Lafayette, Indiana 47906. 

(4) 

The un's are the expansion functions of m(x, t) used in 
the perturbation analysis of Ref. 1. The functions 1I0(X) 
and Ul(X) were known previously, Each un(x) is shown 
to be proportional to a hypergeometric function (or 
Gegenbauer polynomial) whose argument depends on the 
separable solution shape function. Next, we find rigor­
ous bounds on the asymptotic amplitude of the separable 
solution. For fast diffusion (q> 2), these bounds give 
upper and lower bounds on the extinction time t* (the 
finite time at which the solution vanishes identically). 
For slow diffusion (1 < q < 2), the results are limited to 
rigorous upper bounds on the asymptotic amplitude. 
Next, the results of numerical experiments on various 
nonlinearities (q = t L 3,4) are presented. The pre­
dictions of the perturbation analysis of Ref. 1 are ana­
lyzed in light of the new rigorous bounds. Finally, a 
method of obtaining a high accuracy numerical represen­
tation of S(x) when q is an integer and t(x) = const is 
presented in the Appendix. 

II. EIGENFUNCTIONS AND EIGENVALUES 

In Ref. 1, it was recognized that, with t(x) = 1, the 
first two eigenfunctions of (4) are expressible in terms 
of S(x), the solution of (3). In particular, 110 (x) = S(x) 
with KO = A and Ul (x) = S(x)S' (x) with 1{1 = (q + 2)71.. Note 
that (5')2 =p2(1_ SO) where p is a known constant. 

To obtain the general relation between lIn(X) and S(x), 
we will change independent variables from x to y = -""(x). 
While 0'" x'" 1, we have 0 ~ y '" 1 on the half interval 
o ~ x '" ~. It is straightforward to show that (4) becomes 

Y(1-Y)~1In(y)+[(1-~) - (~-Dv] d;~ + En!ln 

=0, (5) 

where En = Kn/p2l. Note that (5) has the form of the 
hypergeometric equation. However, the correct bound­
ary conditions for our problem are 1In (0) = 0 for all 11 
and Un (x =~) = 0 for n odd while (au n/3x)(x =~) = 0 for n 
even. The hypergeometric function does not satisfy 
these boundary conditions. Therefore, we try the fol­
lowing ansatz for Uno 

Un(Y) =yr(l_ y)SF(y). (6) 

Substituting (6) into (5), we find 
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y(1- y)F" + [«(3 + 2r) - (0' + 2r + 2s)y ]F' + [En - O'(r + s) 
- 2rs - r(r-l) - s(s -O]F + r«(3 + r- 1)y-1F 
+ s(O' - (3 + s - 1)(1 -y)"1 F = 0, (7) 

where 0' = ~ - 1/q and (3 = 1-1/q. F(y) will satisfy a new 
hypergeometric equation if the last two terms vanish. 
To satisfy un(O) = 0, we must have r> O. Therefore, (3 
+r-1=00rr=1/q. Whennisodd, wemusthaves 
> 0, 0' - (3 + s - 1 = 0 or s = t. When n is even, we mus t 
have s = O. 

Now when n is even, F satisfies 

Y(1-Y)F"+[(1+~) - G+~)YJ F'+ (En-2~)F=0. 
(8) 

When n is odd, F satisfies 

y(l-y)F"+ [(1+~) - G+~)YJF'+ (E.-~-~)F 
= O. (9) 

After transforming back to x, we find that 

Un (x) 

( 
n n+1 1 1) ( =S(x)F -"2'-2-+q;1+

q
;S"(x) forneven, 10) 

Un(x) 

(
n-1n 11 ()) =p-IS(x)S'(x)F --2-'"2 + 1 +q; 1 +q; SO x 

for n odd, and (11) 

Kn = t(n + 1)(qn + 2)X for all n = 0,1,2, .. • . (12) 

In (10) and (11), un has been standardized so that U~(O) 
=p. 

We wish to normalize the un's so that uo(x)=S(x) and 

f u~ (x )5"-2 (x )dx = C '= f 5" (x )dx. (13) 

In order to compute the normalization, it is helpful to 
recognize that the particular hypergeometric functions 
in (10) and (11) are related to Jacobi polynomials. It is 
well known3 that 

F(- n, n + 0' + 1 +(3;0' + l;y) 
r(n + l)r(O' + 1) 

r(n + 0' + 1) 

xp(",~a)(1_ 2y), (14) 

where r(.) is the gamma function and p(",~a) (.) is the 
Jacobi polynomial. Following Bavinck,4 we define 

R(",~a) (cos&) = p(",~a)(cos8)/p(",~a) (1) (15) 

and 

Then it is known4 that 

frd8w(""al(8)[R(",~a)(cos8)]2 = [w(",~a)]-t, 
o 

where 

(16) 

(17) 

(2n + 0' + (3 + 1)r(n + 0' + (3 + l)r(n + 0' + 1) (18) 
r(n + (3 + l)r(n + l)r(O' + l)r(O' + 1) • 
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Combining these expressions, we find after some alge­
bra that 

1 
cn '= f u~(x)SO-2(x)dx 

o 

From (19), we obtain the remarkably simple formula 

2 
c=co=q+2' 

It follows that the un's are correctly normalized by 
taking 

(20) 

un (x) = (~:) 1I2Un (x). (21) 

The un's are related to the Gegenbauer polynomials as 
well as to the Jacobi polynomials. In particular, 

un (x) 0:: S(x)C(I/o~1/2) «1- .so)1I2) for aU n, (22) 

where c(~) (.) is the Gegenbauer polynomial. The reader 
who is interested in studying the general properties of 
these eigenfunctions (i. e., location of zeros, product 
formulas, asymptotic behavior for large n, etc.) will 
find the books of Bavinck4 and Szeg05 to be especially 
helpful. 

The formulas presented here for un(x) have been 
found useful in numerical experiments when a monitor 
of the nth Fourier coefficient of 11/ (x, t) is desired. 

III. RIGOROUS BOUNDS ON THE ASYMPTOTIC 
AMPLITUDE 

In order to establish rigorous bounds on the asymp­
totic amplitude A 0 for slow diffusion (1 .~ q < 2) and on 
the extinction time t* for fast diffusion (2< q), it is 
useful to consider the following integrals: 

ao (t) = C -I f 111 (x, t V(X ).So -I (x )dx, (23) 

(3(t) = c-I f m o-I (x, tlj(x)S(x)dx, (24) 

Q(t) = c-I f mO(x, tV(x)dx, (25) 

R(t) =c-I f m;(x, t)dx, (26) 

and 

c = fj(x)SV(x)dx. (27) 

For the formal calculations that follow, we assume only 
that rex) is a positive integrable function. 

First considering (3(t), we find 

d~ (3(t) = c -1 f n1 xxSdx = c- I f I11Sx,£lx = - Xao(t), (28) 

where we have used Eqs. (2) and (3) and integrated by 
parts twice. USing Holder's inequality, it is not diffi­
cult to show that 

(29) 
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Thus, 

- d~,B(t) ~ A({3(t) ]11 (0-1l, 

from which it follows upon integration that 

{3P(t) ~ ,BP(O) - APt, 

(30) 

(31) 

where p = (q - 2)/(q - 1). Equation (31) is valid for all 
1 < q < 00 except for q =2 (the linear case) which we need 
not consider. 

For fast diffusion (2 < q), the density and therefore 
{3(t) will vanish in finite time. Equation (31) shows that 
the extinction time t* must satisfy 

(32) 

Equation (32) provides a rigorous lower bound on the 
extinction time. This argument was first suggested to 
us by Varadhan. 6 

For slow diffusion (1 < q < 2), p < 0 and (31) shows that 

(33) 

If m(x, t) - S(x)T(t) asymptotically (this has not yet been 
proven for q < 2 although it is observed in computer 
experiments) where Tq-2(t) =Aqo2 + A Ip It, we find easily 
that (33) implies 

Ao ~ ({3(O)]I / (q_l1 =A
u

, (34) 

where Ao is the asymptotic amplitude. 

Another class of inequalities may be derived by first 
noting that 

and 

d q 
-Q(t) =--R(t) ~ 0 
dt q-1 ' 

d 2 j m 2 dx 
dt R(t) := - q _ 1 mqf5z ((x) ~ 0, 

Applying Schwarz's inequality to (37), we find 

(35) 

(36) 

R2 (t) ~ Q(t) j ;;~ ~ . (38) 

From (35), (36), and (38), it is straightforward to show 
that 

(39) 

Equality occurs in (39) only for the separable solution. 

Thus, the quantity in brackets in (39) is always de­
creasing except for the trivial case. Furthermore, the 
limiting value as m (x, t) - s(x )T(t) is 

R(t)Q-21 q(t) - A, 

since 

jS;ctx=- jSxxSdX=AjfSOdx=AC. 

Equations (39) and (40) clearly imply 

AQ2 /0 (t) ~ R(t). 
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(40) 

(41) 

(42) 

(Equation (42) also follows easily from a straightforward 
variational calculation. J Combining (42) and (35) yields 

_ ~[Q(q_2 II q(t) _ Q(0-2 110(0)] ~ At. (43) 

For fast diffusion, p> 0 and, since Q(t*) = 0, we have 

t* ~ (Q(0)](0-21/0/Ap=tu' (44) 

ThUS, we have a rigorous upper bound on the extinction 
time in terms of an integral of the initial data. For 
slow diffusion, p < 0 and 

[Q(t) ](2_0110 ~ {Q(q-211 q(O) + A Ip I t}-I. (45) 

The same ideas used to derive (34) show that 

(46) 

However, (34) remains the best bound on the asymp­
totic amplitude because Holder's inequality shows that 

(47) 

The only lower bound known for Ao is the trivial one Ao 
~ O. 

These bounds do not exhaust the possibilities; how­
ever, they are the best bounds known to the authors at 
this time. These bounds are the best possible bounds in 
terms of (3(t) and Q(t) since equality is achieved when 
m(x, t) is the separable solution. These bounds will be 
compared to the perturbation results of Ref. 1 in the 
next section. 

IV. NUMERICAL EXPERIMENTS 

In Ref. 1, a perturbation analysis was used to derive 
an approximate formula for the asymptotic amplitude 
Ao in terms of the initial data. The resulting formula 
was 

(48) 

(49) 

and r =-q - 2. For fast diffusion, (48) may be used to 
estimate the extinction time. Since t* is related to Ao 
by t* =:A5/Ap for the separable solution, we define the 
perturbation estimate to be 

(50) 

For our numerical experiments, we take ((x) = 1. 
Then, to provide an independent estimate of the asymp­
totic amplitude and extinction time, we consider the 
integral 

N(t) = j n(x, f)dx = J mq
-
1(x, t)dx, (51) 

which has the physical Significance of being the total 
number of particles. When m (x, t) = S(x)T(t), N(t) 
=yTQ-l(t) where y=4/qp is a known quantity and T(t) 
=- (Ab - Apt)11 T. In general, the amplitude Ao is given by 

Ao = {[N(t)!Y r + Aptpi T (52) 

for the separable solution. For fast diffusion, we find 
from (52) that 

t* = t + [N(t)!Y r lAp (53) 
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TABLE I. Values of the rigorous lower bound fL' perturbation 
estimate tl'" extinction time t*, and rigorous upper bound 
tu for numerical experiments on (2) with q= 3 and f(x) = 1. The 
formulas appear in Eqs. (32), (50), (53), and (44), respective­
ly. The initial data for the first four cases is given by m (x, 0) 
= L;a, sin(l + l)7rx, where (at, a2, as, a4) equal: (i) (1, 0.4, 0, 0), 
(ii) (1,0,0.3,0), (iii) (1,0, -0.3,0), and (iv) (1,0,0,0.225). 
For the fifth case, m (x, 0) = 1. 

Case tL tp t* t. 

(i) 0.1834 0.18379 0.1847 0.1927 
(ii) 0.1673 0.1675 0.1677 0.1750 
(iii) 0.1894 0.18949 0.1895 0.1925 
(iv) 0.1761 0.1762 0.1762 0.1793 
(v) 0.2102 0.2104 0.2107 0.2301 

for the separable solution. For arbitrary initial data, 
we expect (52) and (53) to approach limiting values as 
m (x, t) - Sex )T(t). We will use these formulas to obtain 
our numerical estimate of the asymptotic amplitude and 
extinction time. 

We decided to study four values of the nonlinearity: 
q=i,~, 3,and4. For slow diffusion, wehaveq=i 
which is the midpoint of the interval 1 < q < 2 and also 
corresponds to the physically interesting case of class­
ical diffusion in a plasma7 (5 = 1). For fast diffusion, 
these values of q correspond to 5 = - t, -~, and - t. 
Okuda-Dawson diffusion8 scales like 5 = -~. The cases 
5 = - t and - ~ have no known physical significance. 
However, an interesting qualitative difference exis ts 
among these last three cases. As t - t*, we find 
mt(x,t)-Ofor O>5>-~, m t (x,t)--(A!2)S(x) for 5=-L 
and mt(x, t) -- 00 for - ~> 5>-1. 

In Table I, the results for q = 3 are presented. We 
immediately observe the empirical relation tL -'" tp -'" t* 
-'" tu' It turns out we can prove t L -'" tp for q = 3. The 
formulas for tL and tp in this case are 

tL =2f:l1!2(O)/iI.=2BI / 2(0)/iI., (54) 

whereas 

(55) 

Recalling that 2 -'" y + y_l with y = Bli 2 I aD, we easily find 
that tL -"'tp. By expanding m(x,t) in terms of its 
eigenfunctions, we can also show that 

QI/3(t) = M(t) + 3ao(t)[B(t) - at(t)] + ... p/3 
(56) 

B(t) - a~(t) 
~ ao (t) + ao(t) = B(t)1 ao(t), 

so that tu ~2B(0)/il.ao(O) ~ tp since B(O) ~ a~(O) by Schwarz' 
inequality. The remarkable agreement of the perturba­
tion estimate tp with the true extinction time t* may be 

TABLE IT. Same as Table I with q = 4. 

Case tL tp t* tu 

(i) 0.1382 0.1384 0.1409 0.1493 
(ii) 0.1040 0.1024 0.1047 0.1138 
(iii) 0.1515 0.1523 0.1516 0.1539 
(iv) 0.1231 0.1231 O. 1234 0.1270 
(v) 0.1612 0.1563 0.1622 0.1880 
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TABLE Ill. Same as Table I with q=~. Note that i\= 10.8286, 
p= 2.9433, and y= O. 5436 for this case. 

Case tL tp t* tu 
(i) 0.2835 0.2835 0.2842 0.2921 
(H) 0.2761 0.2762 0.2762 0.2823 
(iii) 0.2863 0.2862 0.2865 0.2901 
(iv) 0.2801 0.2801 0.2802 0.2830 
(v) 0.3104 0.3115 0.3106 0.3252 

partially explained by the fact that tJ> always lies between 
the rigorous upper and lower bounds. 

The results for q = 4 in Table II do not show any 
simple relationship between tp and tL or tp and t*. The 
perturbation estimate is, however, observed to obey 
tp -'" tw' Again this follows from the fact that 

QI!2(t) =M(t) + 6aW)[B(t) _ at(t)] + ... p!2 
(57) 

so 

(58) 

whereas 

(59) 

In general the perturbation estimate is not as good at 
predicting t* for q = 4 as it is for q = 3. 

For q =~ in Table III, the perturbation estimate is 
again remarkably accurate for all cases. However, we 
also see that the lower bound tL is a more reliable 
predictor of t* since it is often as close as tp but always 
remains a lower bound. 

Our one case of slow diffusion is q =t presented in 
Table IV. One important difference between results for 
this case and the previous ones is accuracy. Because 
computing Ao from (52) involves taking the difference of 
two large numbers as t - 00, we cannot expect a high 
accuracy estimate of Ao from a short-duration computer 
experiment. The values presented were taken at t = O. 1 
in the numerical experiment (as were the values in the 
fast diffusion experiments) and can be trusted to two 
significant figures. Practically speaking, the value of 
Ao does not possess as much inherent interest as the 
extinction time does for fast diffusion. As t - co, 

T(t) = [A~ + iI. Ip I tJl/T -1/(iI. Ip I t)1I ITI, (60) 

which is completely independent of the initial conditions. 

TABLE IV. Values of the asymptotic amplitude Ao, the pertur­
bation estimate AI» and the rigorous upper bound flu for numer­
ical experiments on (2) with q = ~ and f(x) = 1. The formulas 
appear in Eqs. (52), (48), and (34), respectively. The initial 
data for the five cases was the same as for Table I. 

Case Ao Ap Au 

(i) 0.917 0.941 0.935 
(H) 1. 001 1. 009 1. 013 
(iii) 0.889 0.909 0.901 
(iv) 0.959 0.969 0.970 
(v) 1. 277 1. 227 1. 302 
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The lack of dependence of the asymptotic state on the 
initial data is a general characteristic of slow diffusion. 

We may conclude from the results of these numerical 
experiments that the perturbation estimates AI> and tl> 
are valid approximations to the asymptotic amplitude 
Ao and the extinction time t* for a wide range of non­
linearities. However, still better estimates may exist. 
In fact, it was found here that the rigorous bounds were 
occasionally better estimates. 

In conclusion, we remark that one of the most inter­
esting questions which remains to be answered is just 
how the initial data determine the extinction time for 
fast diffusion. We conjecture that it may be possible to 
derive a formula for t*. The rigorous upper and lower 
bounds on t* presented here are a first step in that 
direction. 
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APPENDIX 

In order to use the formulas for the un's derived in 
Sec. II, we need an accurate numerical representation 
of the shape function 5(x). A general method of succes­
sive approximation for arbitrary q was presented in 
Ref. 1. When q is an integer, another method has been 
found to be more convenient. 

Consider the power series 

5(x) = px L; (- l)n(V nX°n, (61) 
n=O 

where p2 = 2">../ q and 0' 0 = 1. Substituting (61) into (3) when 
j(x) = 1 and q is an integer yields a recursion formula 
for the (Vn's. For example, when q=3, 
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(62) 

and, when q =4, 

">..p2 L; 0' 0' 0' 
4(n+1)(4n+5)ml> n-m-I> m p. 

(63) 

The resulting representations of 5(x) were used in the 
numerical experiments of Sec. IV. By computing the 
first fifty O'n's and using the ratio test, we found that the 
expected radius of convergence of the power series, with 
q =3, was for all x< 1 and, with q =4, for all x < O. 707. 
Since 5(x) = 5(1- x), we only need to compute S(x) for 
o ~ x ~ i, which is well within the radius of convergence 
of the series in both cases. 
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Dirac equations with a short range potential 

S. N. Banerjee 

Department of Physics, Jadavpur University. Calcutta-7000I9, India 

S. N. Chakravorty 

s.c. Institution, CalclItta-7000I9. India 
(Received 16 January 1978) 

The total and partial wave scattering amplitudes in the Schrodinger equation with a short range potential 
have been derived. The Dirac equation for a short range potential has been exactly solved analytically for 
all partial waves for positive energies, and an expression for the S1l2 wave phase shift has been explicitly 
deduced. 

I. INTRODUCTION 

We know that the Schrodinger equation undergoes 
analytical treatment in all partial waves for the Coulomb 
and square-well potentials. The short- range nuclear 
interaction V(r) = - VQ(1/r -1/a) for r ~ a and V(r) = 0 
for r> a for which one gets exact analytical solution for 
all partial waves was analyzed by the authors1a for 
positive energies in the context of the neutron proton 
scattering. In the present work, we have derived the 
total scattering amplitude f(e) and the partial wave T 
matrix in momentum variables for the above short­
range potential having a sharp cutoff at r = a. The 
separable representation of the T matrix for negative 
energies is also suggested through numerical solution 
of the Lippmann-Schwinger equation. 

As is well known, the Dirac equation in the Coulomb 
field of a point charge can be solved exactly. 2 Further, 
for nuclear charge Z> 137, the corresponding solutions 
of the Dirac equation are not well behaved as they oscil­
late near the origin. Popov3 has studied the Dirac equa­
tion for an electron in a Coulomb field with Z> 137, 
which results in a collapse to the center in the point 
charge approximation. Here we have solved the Dirac 
equation analytically for the scattering of a spin 1/2 
particle moving in a centrally symmetric force field, 
V(r) = - Vo(1/r- 1/ a) for r ~a and V(r) = 0 for r> a. 

II. SCHRODINGER EQUATION WITH SHORT-RANGE 
INTERACTION 

The Schrodinger wave equation with the above-men­
tioned potential becomes for r < a 

-v2if+ (K/2 - /3/r) if = 0, 

where (3 = - (2m/1l2) Va, K21 =K2 _ y2, y2 = (2m/ 112) 

(Vol a); all other symbols have their usual meanings. 
Substituting 1jJ= exp(iK' z ) G we get 

3C G 
-V2G+2iK/-- 8-=0, where z=rcose. 

3z r 
A solution of the type G = G(r -z) satisfies the above 
equation and we get (with P = r - z) 

(1) 

2{1-3:.)~ +~ dG + 2iK/(3:. -1) dG _ ~ G=O. 
\ r dr r dr r dr r 

(2) 

Here 

P d
2
G dG 'K' dG (3G-O "'7:"I + -- t p- - - -dp dp dp 2 • (3) 

Following Mott and Massey, 2 we G=1F1(-iO',1;iK'p) for 
r < a, where a =/3/2K'. Since we require an incident 
wave of unit amplitude, we take for the total wavefunc­
tion representing the scattering as 

1jJ(r, e) = e-u
/

2r(1 + i 0') elK' III FI (- in', 1; iK' p). (4) 

In the limit a - 00, 1jJ(r, e) represents the exact wave­
function for pure Coulomb scattering. At r'? a, ~(r, e) 
should behave as an incident plane wave and a spherical­
ly outgoing scattered wave; that is, 1jJ(r, 8) = exp(iKz) 
+ f( e) exp(iK r)1 r, for r? a, where f( 8) is the total scat­
tering amplitude. Matching the two solutions at the 
boundary r= a, we get 

f( e) = [exp(- 7Ta/2)r(1 + ia) exp(iK' a cos e) 

XjFj (_ iQ,1; iK'a(1- cose» - exp(iKacose)]aexp(iKa). 

(5) 

In the high energy limit, we get 

x exp(- ira cos8/2KhF j (- ia, 1; iK' a(1 - cos8» - 1]. 

In the extreme high energy limit, 

f(8) "" [exp(- iy2a cos8) - 1]a exp[ - iKa(1 - cos8) J. 
It is worth mentioning that in the limit a - 00, f( 8) does 
not go over to that for the Coulomb scattering amplitude 
since the distortions of the incident plane wave and the 
spherically outgoing scattered wave which are the 
characteristic featUres of the long-range Coulomb in­
teraction, are not reproduced in the amplitude in the 
above limiting case. For forward scattering, we have 
f(O) as 

f(O) = exp(- 7TCl'/2)r(1 + ia) exp[i(K' - K)a] - a. (6) 

Consequently, unlike the pure Coulomb interaction case 
for e = 0, it is not singular. USing the optical theorem, 
we get the total cross section Q as 

Q = (41f/K) Imf(O) 
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411aa (11) l/Z 
=-K exp(- 11a/2) . h a sm 11 a 

x cos{ (K' - K)a + argr (i a)} 

which is not divergent for n < 00. 

From the well-known relation of j(e) to the total on 
shell T matrix, we can calculate the partial wave T 
matrix elements by partial wave analysis as 

., 
T(K1, Kz; Kz) = 6 (2l + 1)T1(Kl,K2; K2)P, (cose). 

1=0 

Hence 

T, (K1, K2; K2) 

1 J+1 = "2 T(Kl, K2; K 2)P, (cose)d(cos e) =Ai - B" 

.1 

where 

A, = _ 11art r(l + ia) exp(- iKa - 11a/2) 
111 

(7) 

+1 
X f exp(iK' aJJ.hF1(- ia, 1; iK'a(1- JJ.»p,(JJ.) dJJ. 

.1 

and 

B, = - 11art i l exp(- iKa) f+1 exp(iKaJJ.)P, (JJ.) dJJ.. 
m 

.1 

Further, 

X{exp[- iKa(l- JJ.»)lF1(- ia, 1; - iKa(l- JJ.»}dJJ.. 

Using the Kummer transformation exp(- xhF 1(a, c; x) 
=lF1(c - a, c; - x), we are finally led to the on-shell 
partial wave T matrix as 

T,(Kl,K2;K2) 

= - 2'+1 exp(- 11a/2)r (1 + 1 + i a)il (K' a)1 

x exp(iK' a)lF 1(Z + 1 + ia, 21 + 2; _ 2iK' a) 11n2a 
m 

exp(- iKa) 411an2il 
x (21+1)! + m(2l+1)!jl(Ka)exp(-iKa l. (8) 

In the limit a - 00 so as to correspond to the Coulomb 
case, our partial wave on-shell T matrix, however, 
does not approach a well-defined limit. 3 F or the investi­
gation of the binding energies of the three-particle sys­
tems by the Faddeev equations, one needs the partial 
wave two-body T matrix for negative energies, as an 
input. Hence it will be interesting and useful to study 
the partial wave T matriX of such short-range potentials, 
in separable form, which are used as inputs in the 
Faddeev equations. To derive a partial wave T matrix 
in the form of a separable expansion in momentum 
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variables K1 and K2 for two-particle negative energies, 
we may use the normalization 

is the two-body center of mass energy and 0, is the lth 
partial wave phase shift. 4 Consequently, the partial 
wave Lippmann-Schwinger equation off the energy shell 
runs as (Ki '* K~ '* E) 

for negative energies E, the kernel is nonsingular. We 
can now write 

T I (K1, Kz; E) = 0b., (Kz, E)1>.I(K1, E), 

where bnl ' s are the coefficients in the expansion and 
1>n' (Kl, E) are the solutions (eigenfunctions) of the 
homogeneous Lippmann-Schwinger equation with eigen­
values \.1 (E) such that 

X. I (E) 1>.1 (E) 

=11.1 f'" V/(Kh K")1>n,(K", E)K" dK"2 
K,,2 _ E 

o 
U sing the orthonormal property 

we get 

TI (KI, K z; E) 

~ Xn~ ( ) ( ) =~ 1- Xn (E) 1>., Kb E 1>nl K2, Eo 
I 

(10) 

It is to be noted, however, that the SchrOdinger equa­
tion does not undergo exact analytical solution for 
negative energies with our short- range potential because 
of the finite cutoff in our potential at r = a as discussed 
in our previous work. Ib Consequently, to obtain exact 
analytical solutions 1>.I(K, E), one has to solve Eq. (10) 
numerically. However, an approximate analytic form of 
1>. (K, E) may be obtained from the Fourier transforms 

I 
of the corresponding approximate bound state solution 
WI (r) of the SchrOdinger equation where IjJI (r) represents 
approximately (neglecting terms -1/ a2

) the hydrogen­
like bound state eigenfunctions. Hence the correspond­
ing approximate momentum space eigen function can 
be represented through the Gegenbauer polynomials 

C!:~(x) 

where 

x F(q + 2l + 1,1- q, 1 + 3/2;tO- x» 
as 
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V m l/2 

\1 (E):::: n{ _ ~(E _ vol a)' 

( 
_ !3

nl 
(E)KI 

¢nl K, E) - K2 _ (E _ Vola) 

n >1 
E<O, 

[ 
( 1 1)1] 1/2 ( V) (21+3)/4 

B (E)= 241+3nn- - 11 _E+~ 
nl r(n + 1 + 1) a 

III. DIRAC EOUATION WITH SHORT-RANGE 
INTERACTION 

The Dirac equations ,6 for a spin 1/2 particle with 
mass m and (relativistic) energy E is H1jJ = [13m + O! • P 
+ V(r)]1jJ = E1jJ, where all other symbols have their 
usual meanings. Since the angular momentum and the 
parity (relative to the centre of the field, taken as the 
origin) are conserved in a central field, we have to seek 
solution of the Dirac equation in the form 

(

/(rHJlm ) 
1jJ(r) = , 

g(r)TJjl m(- 1) 11_1'+1) 12 

.1_1' a' r t 
TJJI'm = l -- SjI m r 

and 

(02.. (r J, ~;Im~jlmsinededcp = 1, . 0 

where 1=j±L 1'=2j-l. Using the orthogonality of 
~jlm and 1/jlm since they belong to different eigenvalues 
of 13, we arrive at 

and 

df 1 +K 
-d + --1- (E+m - V)g=O r r 

(11) 

~; + 1; K 1+ (E _ m - V)I = ° (12) 

for r < a, where K = - (1 + 1) for j = 1 + t and K = 1 for 
j = 1 - ~. Equations (11) and (12) will yield scattering 
state solutions so long as E > m. 

Similar ly, for r? a, we have 

dl l+K 
- +--I-(E+m)g=O, 
dr r 

dg 1-K 
-d + --g+ (E - m)j=O. 

r r 

(13) 

(14) 

Defining the new quantity E' as E' = E - Vol a, Eqs. 
(11) and (12) may be recast into the Dirac equation for 
the pure Coulomb field with the reduced energy E' as 

dr + e ;K) j- (E' + m + Vo/r)g=O, 

dg (l-K) (' dr + -r- g+ E - m + Vo/r)I=O, 

for r< a. For small r, the terms in (E' ±m) may be 
ignored leaving 
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(15) 

(16) 

( )' KI Vo Ir +- - -g=O, r r 

(gr)' _ !S.g+ Vo/=O. 
r r 

(17) 

(18) 

As the functions I and g occur in an equivalent manner 
in (17) and (18), we write/(r) ·r=ar and g(r).r 
= lr, where a and b are now two constants and 
y = K2 _ V~. If V~ < K2, Y is real and for the well­
behaved solution at r = 0, we take y to be positive. The 
corresponding solution either does not diverge at r = ° 
or does so less rapidly than the other. It should be 
noted, however, that if V~ > K2, Y becomes purely 
imaginary; the corresponding solutions oscillate 
violently near the origin and the subsequent steps in the 
calculation carry no meaning, Similar to the corre­
sponding Coulomb problem with the Dirac equation. 1,8 

Now, a(y+K)=IVo and aVo+l(y-K)=O, whence 

I(r) = [Vo/(y+K)]g(r) -I-I. 

With 

1/=2Ar, A=-iP',P'=+~m2, 

1= ,fE'Tiii exp(- 1//2)'Ij' -I{hl (1/) + h2(1/)};: Uh (19) 

g= - N E' - m exp(- 1//2)'Ij'-I{hl (1/) - h2(1/)};: VI, (20) 

for r <1 a. These forms of I and g are justified because 
of their behavior near the origin and that they switch 
over exactly to the corresponding solutions of the pure 
Coulomb scattering problem when E' = E. Hence from 
(15) and (16), we are finally led to 

1/h{+ (y- V1E')h1 + (K- v1m)h2=0, 

, ( VoE' ) ( Vom) 1/h2 + y + -A- - 1/ h2 + K + -A- hi = 0, 

for r< a. The solutions of these equations which are 
finite when 1/ = ° are given by 

V E' 
hl (1/) =AF 1- +, 2y + 1; 1/) 

h2(1/) = BF(y + 1 - VoE'/A, 2y + 1;1/). 

Substituting 1/ = ° in (21) or (22), we get 

B = _ (Y + VoE' liP') A 
K + Vom/ip' 

for r> a, we have 

(
2) 1/2 1 (E + m) 1/2 . ( lrr ) 1= - - -- sm pr - - + OK 
rr r 2E 2 

(
2)1/21 (E_m)1/2 ( l'rr ) 

g = - 1T r 2E sin pr - "2 + OK , 

(21) 

(22) 

(23) 

(24) 

where OK is the phase shift and p = + (E2 _ m 2)1/2. It is 
interesting to observe that the potential having a sharp 
cutoff at r = a precludes that both I and dg / dr or g and 
dlldr can be continuous at such a point. That is, the 
required conditions for matching the functions on the 
two sides of the discontinuity is the continuity of the 
functions flr) and g(r) themselves. Matching the solu­
tion j(r) or g(r) at r = a from the two Sides, we have 
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Ul I r=a = U2 I r=a , 

vllr=a=V2Ir=a • 

(25) 

(26) 

Combining (25) and (26), we get for j = 1/2, l = 0, i. e., 
for K = - 1, the 51 / 2 wave phase shift as 

(27) 

X 
[

(iV0111 K) F ( ., 2 1 2·') (iVoE' ) F ( 1 . I 2 1 2·,)_1 \7- 1 l Y - ZlJ , y+ i- lpa + -p-'--Y 1 lY+ -lV, Y+ i- zpa 

(
E 111) 1/2 

= E : 111 cot(pa + 0_1), where v'=VoE'/p'. 

IV. CONCLUSION 

The exact scattering solution of the Schrodinger 
equation with such a short range potential yields the 
scattering amplitude which serves to study and compare 
it with the corresponding Coulomb problem when a - 00 

for which exact solution is also known. The short range 
interaction we have investigated, which is an approxima­
tion to the Yukawa potential, la may be used to simulate 
the effect of screened Coulomb type interaction and as 
such it may be used to investigate analytically the high 
energy scattering of electrons and the polarization of 
electrons by heavy atoms like mercury, gold, etc., 
through Dirac equation. 
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The Laplace transform of the product of three confluent hypergeometric functions is expressed in terms of 
Lauricella's function FA(a,a"al,a3' b l ,bl,b3; x.y.z). Two analytic continuation relations of the FA 
function are obtained by making use of its Barnes integral representation. One analytic continuation leads 
to a set of one term transformation relations and in the second, FA is expressed in terms of eight 
Lauricella FB series. Analytic continuations are given for the FB series, thereby allowing one to obtain a 
new analytic continuation fOf the FA series. OUf result is useful for calculating the FA function when 
Ixl +IYI +I~ = 2, which occurs in the analysis of the electron scattering from the nucleus. 

I. INTRODUCTION 

Radial matrix elements of the radiative transitions 
between the states of a relativistic electron in a Coulomb 
field can be expressed as a Laplace transform of the 
product of three confluent hypergeometric functions: 

~ 

1= J dr exp( - tlr)r"'-\F1 (at. bb k1r) 
o 

This integral can be expressed in terms of the hyper­
geometric function of Lauricella1

•
2 by integrating the 

power of the integrand term-by-term to obtain 

(1) 

1= r(a)tl"" F A(a, al> a2, a3, bt. b2, b3; kl/ tl, k2/ tl, k3/ tl), 

(2) 

where FA is the Lauricella's hypergeometric series 
which is defined as 

F A (a, al> a2> a3, bt , b2, b3; x, y, z) 

The Lauricella FA series is absolutely convergent if 
Ix 1+ Iy 1+ iz I < 1. 

(3) 

Rozics and J ohnsona have given analytic continuations 
of the Lauricella function F A when one of its variables 
(say x) is greater than one and the remaining two are 
less than one. Also, the integral [Eq. (1) J can be ex­
pressed as infinite series of Appell's F2 functions which 
are double infinite series. For problem of electron­
nucleus scattering this integral [Eq. (1) J can be reduced 
in terms of a finite series4,5 of Appell functions. Analy­
tic continuations, as given in Refs. 5 and 6, for Appell's 
F2 series have been used to compute the Lauricella 
function FA, and Sud et al. 7 have developed a technique 
to evaluate the radial matrix elements of the radiative 
transitions. In this method the integrals are expressed 
in terms of a matrix generalization of the gamma func­
tion. 7,8 By making use of the recurrence relations 
satisfied by the matrix gamma function, the number of 
basic integrals that are required for the various electron 
scattering process are reduced to a minimum. This 
results in considerable saving of calculation time. The 
elements of such a 8 x 8 matrix gamma function are 

Lauricella function FA' This has led us to investigate 
in details the analytic properties of the Lauricella func­
tion. We give in this paper two analytic continuations for 
the FA function. In Sec. II we shall obtain eight one-term 
transformation relations for the FA function and with 
the help of such relations we can continue FA to a differ­
ent region of x, y, and z space. A second continuation 
relation (given in Sec. IV) expresses the FA series in 
terms of eight Lauricella's F B series which have non­
overlapping convergence domains. The Lauricella 
hypergeometric series F B is defined as, 2 

= L 
m,n,l 

(al)m (a2)n (aa)/ (b\)m (b2)n (ba) /xmy"z I 
(c)m.n+/m! n!I! 

(4) 

which is absolutely convergent for I x I < 1, I y I < 1, and 
I z I < 1. Analytic continuations of the F B series are 

given in Sec. V, which combined with the above result 
gives a new analytic continuation of the FA function. In 
Sec. III we give an analytic continuation of the F B func­
tion which has been used to derive the second analytic 
continuation relation for the FA type of function. Finally 
in Sec VI we present a summary and our conclusion. 

II. ONE-TERM CONTINUATION RELATION FOR 
FA SERIES: 

We shall obtain one-term continuation relations9 for 
the FA series by using the Barnes integral representa­
tion which is explicitly given as, 

F A(a, al> a2, a3, bl> b2, b3; x, y, z) 

x r( - s)r( _ t)f'( _ u)( _ x)S( _ y)t( _ z)". (5) 

The integrand has the following sequences of poles: the 
increasing sequences of poles 

s=n, t=n, and u=n, wheren=O,1,2,"'; 

2485 J. Math. Phys. 19(12), December 1978 0022-2488178/1912-2485$1.00 @ 1978 American Institute of PhYSics 2485 



                                                                                                                                    

the decreasing sequences of poles 

s = - al - n, t = - a2 - n, and u = - a3 - n, where 

n=O, 1, 2,···. 

The FA series is obtained by closing the contours in the 
t, u, and s planes on the right-hand side of the imagi­
nary axis, and integrating by making use of the residue 
theorem. The Barnes integral representation for the 
F2 series is given as lO 

F2(a, at> ah bt> b2;x,y) 

x r(a + s + t)r(al + s)r(a2 + t)r( - s)r( - t)( _ x)S( _ y)t 
r(b l + s)r(b 2 + t) 

(6) 

Thus by using the relation (6) we can express the 
integral representation for the Lauricella function FA 
as a single integral which is explicitly given by 

I~ 

r(b3) f du r(a+u)r(a3+ u)r(-u)(-z)" 
2rrir(a)r(a3) r(b3 + u) 

_ia':) 

We will use the following transformation relations for 
the F2 serieslO

: 

F 2(a, at> a2, bl , b2; x, y) 

=(I-x)·"F2 (a,b l -al , a2,bbb2 ; x~I' I~X) 

(7) 

x + ~ _ 1) . (8) 

Substitution of the above transformation relation in Eq. 
(7) and integrating the resulting expression by closing 
the contour on the right-hand side of the imaginary axis 
with the help of the residue theorem, we obtain the 
following one-term relations for the FA type of 
Lauricella function: 

F A(a, ail a2> a3, bt, b2, b3; x, y, z) 

= (1- xt"'F A (a, bl - at> a2, a3; bl , b2, b3; 

x y z) 
x-I' I-x' I-x 

= (1- y)"'" FA (0', ah b2 - a2, a3; bh b2, b3; 
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x _y_ z) 
l-y' y-l' l-y 

_x -.-1.._ _z ) 
1 - z' 1 - z' z - 1 

X+~-I' x+~-I' l-:-y) 

= (1- z -X)-'" FA (0', b1- al, a2, b3 - a3; bj, b2, b3; 

x y z) 
z+x-l' y:-z:x, z+x-l 

~~-Z'y+~-l' y+:-l) 

=(I-x-y-zt"'FA (cy,bl-ai> b2-a2, b3-a3;bl,b2,b3; 

x y z 
x+y+z-l' x+y+z-l' x+y+z-l 

III. AN ANALYTIC CONTINUATION OF THE Fe 
FUNCTION 

( (9) 

In this section we will obtain an analytic continuation 
of the F B type of Lauricella function in terms of eight 
F A series where the variables of the FA series are the 
reciprocals of the corresponding variables of the F B 

series. The integral representation for the F B function 
is given as 

x real +s)r(a2 + I)r(a3 + u)r(b l + s)r(b 2 + t)r(b 3 + It) 
r(c + s + I + u) 

(10) 

The integrand has the following sequences of poles: 

(a) an increasing sequences of poles: s =n, t =n, and 
u = n, where n = 0,1,2, ... ; (b) a decreasing sequences 
of poles: s = - al - n, l = - a2 - n, U = - a3 - n, S = - bl - n, 
t = - b2 - n, U = - b3 - n, where n = 0,1,2, .... The 
analytic continuation of the F B function is obtained by 
closing the contours in the t, u, and s planes on the 
left-hand side of the imaginary axis, and integrating by 
making use of the residue theorem. The expression so 
obtained is given by 
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( 
1 1 1) F B aj, a2, as, bh b2, bs; e; -, -, -x y z 

=t{ah~' aa, bh b2, bs)(-x)aj{- y)"2{_ z)asF A[{1 + aj +a2 +as - e), aj, ah as, 1 +aj - bh 1 +a2 - b2, 1 +as - b3;x, y, z] 

+ t(aj, az' ba, b j , b2, a3)( - x)"j{ - y)az (- z)bSF A[{1 + aj + az + b3 - d, aj, az, ba, 1 + aj - bh 1 + az - b2, 1 + ba - a3;x, y, z J 

+ t(a1> b20 a3, b1, az, baH - x)aj{ - y)bZ (- z)asF A[(1 + aj + bz + aa - e), ah b2, as, 1 + aj - b1> 1 + b2 - az, 1 + aa - bs;x, y, zJ 
+ t{ah b2, bs, b1, az' as)( - x)"j( - y)bZ( - z)bSF A[(1 + aj + bz + b3 - e), ah b2, bs, 1 + aj - bh 1 + b2 - az, 1 + ba - aa;x, y, z] 

+ f{b j, a2, aa, ai, bz, baH - X)bj {- y)OZ (- z)a3F A[ (1 + b j + az + a3 - e), bh az, aa, 1 + bj - ah 1 + az - bl , 1 + a3 - ba;x, y, z] 

+ f(b j, az, bs, a1> bz, as)( - X)b j{ - y)a2{ - z)bsF A[(1 + b1 + a2 + b3 - e), bj, az, bs, 1 + bj - a1> 1 + az - bz, 1 + ba - a3;x, y, z] 

+ t{b l1 b2, aa, a1> a2, ba)( - X)bj( - y)b2{ - z)aaF A[(1 + b1 + bl + as - e), bh b2, aa, 1 + b1 - a1> 1 + bl - a2, 1 + as - ba;x, y, z] 

+ t{b1> b2, ba, a1> az, aa)( - X)b j (- y)bZ( - z)bsF A[(1 + bl + bz + bs - e), b1> bz, bs, 1 + bl - a1> 1 + b2 - az, 1 + b3 - as;x, y, z], 
(11) 

where 

teA, 11, ll, p, a, T) 
r{e )r(p - A)r(a - ll)r(T - I) 

r(p)r(a)r(T)r(e - A- 11 - I) 

and [I arg( - 1/ x) I < 1T, larg( - 1/ y) I < 1T, I arg( - 1/ z) I < 1T]. 

IV. THE FA FUNCTION EXPRESSED IN TERMS OF Fe FUNCTIONS 

We can apply Eq. (11) to the following eight F B series which have special relations among their variables and 
parameters: 

( 
1 1 1) ( x-I I-x 1-X) FB at. a2, as, b1> bz, bs;1 +al +a2 +a3 - e;-, -, - , FB 1- bJ, a2, as, 1- a1> b2, ba;2 - bl +az + as - e;--, --, -- , 
x y Z x y z 

( 
x+y+z-l x+v+z-1 X+Y+Z-I) 

FB 1 - bt.1- b2, 1- ba, 1 - al> 1- a20 1- aa;4 - b1 - b2 - ba - e; , ------, • 
x y z 

By making use of the one-term continuation relations for the FA series, as given in Eq. (9), the eight FA series 
obtained from use of Eq. (11) for each of the F B series in Eq. (12) can be written in terms of eight FA series 
explicitly appearing in Eq, (11). That is, we have a 8 x 8 matrix connecting eight FA series and eight F B series. 
This matrix can be inverted to give the following results: 

F A(1 +al +a2 + a3 - CY,a1> a2,a3, bJ, b2, b3;x,y, z)=AFB (a1> a2, as, 1 +al - bl> 1 +a2 - bz, 1 +03 - b3;CY;~' ~, ~) 
+ BF B (b 1 - a1> a2, aa, 1 - aj, 1 + a2 _ b2, 1 + as _ b3;b1 _ 2al + CY; X - 1, 1 - x, 1 - x) 

x y z 

( .. 1 -y Y - 1 1 - ;) +CFB a1> b2 - a2,aa, 1 +al- bj , l-az, 1 +aa- ba,bz - 2a2 + ct, --, --, --x y Z 

+DFB (a1>az,ba-aa,1+at-b1>1+az-bz,l-a3;b3-2aa+CY; l-z, 1-z, Z-1) 
V x Y z 

+ FF B (a1> b2 - a2, ba - aa, 1 + aj - bl> 1- a2, 1 _ aa;bz _ 2az + ba _ 2aa + ct; 1 - ~ - z, Y + ~ - 1 

( z+x-l l-z-x 
+ GF B \ b l - a1> a2, ba - aa, I - a1> 1 + a2 - bz, 1 - aa;b 1 - 2al + bs - 2aa + CY; X ' Y 
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where 

c 

(_ X)a1-bl(y)-a2(Zra3(1_ X)bl-2al+a-l 

r(al)r(b2 - a2)r(b3 - a3)r(b1 - 2al + a)' 

(x)-al(_y)~-b2(zta3(I_y)b2-2a2+a_l ,D 

r(b1 - al)r(a2)r(b3 - a3)r(b2 - 2a2 + a) 

(Xtal(yra2 ( _ z)a3-b3(1_ z)b3-2a3+a-t 

r(b1 - al)r(b2 - ~)r(a3)r(ba - 2a3 + a) 

E (- x)"l-bl( - y)a2-b2(z)-a3(1_ x _ y)bl-2al+b2-2a2+a-l 

r(al)r(a2)r(ba - a3)r(b1 - 2al + b2 - 2~ + a) 
F (X)-al( - y)a2-b2( - z)a3-b3(1_ y _ z)b2-2a2+b3-2a3+a-l 

r(b1 - al)r(a2)f'(aa)r(b2 - 2a2 + ba - 2a3 + a) 

G = (- x)al-bl (y )-a2 ( - z )a3-b3 (1 - z - X )bl-2al +b3-2a3+a-l ( - X)arbl (- y)a2-b2 ( _ z )a3-b3(1 _ x _ y _ Z )bl-2al +b2-2a2+b3-2a3+a -1 

r(al) r(b2 - a2)r(a3)r(b1 - 2al + IJ,j - 2a3 + a)' H = r(al)r(a2)r(a3)r(b1 - 2at + b2 - 2a2 + b3 - 2a3 + a) 

V. ANALYTIC CONTINUATION OF THE Fe FUNCTION 

In this section we will obtain analytic continuations of the F B series which are useful when its variables are as 
follows: 

(a)x"'l, y<l, andz<1 (b)x"'1, y>1, andz<1 (c)x<1, 1<y<S2, andz>2. 

(13) 

The Barnes integral representation for the FB type of Lauricella function is as given in Eq. (10). This can be ex­
pressed as a single integral representation by identifying the terms for the Appell's hypergeometric function F3 and 
is given as, 

(14) 

The contour in the u-plane parallels the imaginary axis, except that where necessary it is indented so that poles of 
r(a3 + u), r(b3 + u) lie to the left of the contour, and the poles of r( - u) lie to the right of the contour. The real 
parameter k is chosen such that k = Re(al + b1 - c) + E, where E is a small positive number. 

Appell's hypergeometric function has a number of analytic continuations. We make use of the following one which 
is valid for lyl<1and 11_x-1 1<16 : 

F 3(ab a2, bb b2;c;x, y) = Q1 + Q2' 

Ql and Q2 are explicitly given as 

Ql - x-at r(c)r(c - al - b1) L (al)m(b2)n(a~(al + 1- c)m_n(1- x-l)myn 
- r(c - al)r(C - b1)n, n (c - b1)n(al + b1 + 1 - c )m_nm! n! 

(15) 

(16) 

Substituting this continuation relation into Eq. (14), we obtain two integrals in the u plane. We will write these as 
FB(abaha3, bb b2> b3;c;x,y,z)=11 +12, where II and 12 are given explicitly by the following: 
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X~ (a2)"(b2)"(1 - at) m(c + u - al)m+"(1 - x-I )m[y(l - x-I)]" 
m," (u +c - al)"(1 +c +u - al- bl)m+nm!nl 

(17) 

Two different analytic continuations of the F B functions can be obtained by either closing the contour in the u plane 
on the right in both terms, or by closing the contour on the left for II and on the right for 12 , By using the asymp­
totic behavior of the gamma function, we find the conditions for absolute convergence of II and 12 when the contour is 
closed on the right in u plane to be Re(a3 + b3 - c) < 1, Iz 1 < 1, and Re(a3 + b3 + al + bl - c) <: 2, Iz(l- x-I) 1 <: 1, re­
spectively. The conditions for absolute convergence for II when the contour in the u plane is closed on the left is 
Re(a3+b3-c)<:1, 11/zl <1. 

The integrand of II has ascending sequences of poles at u =n and u = al + bj - c + 1 + n lying in the right-hand 
contour, and decreasing sequences of poles at u = - a3 - n, U = - b3 - nand u = aj + bj - c - n lying on the left-hand 
contour where n= 0,1,2, .. '. The integrand of 12 has ascending sequences of poles lying in the right-hand contour at 
u = nand u = aj + bl - c + 1 + n for n = 0, 1, .. '. Note that the particular separation between the left and right contours 
depends on the choice of k given following equation (14), but since the original integrand contains no singularities 
at al + bj - c + n, the final result is independent of the particular choice of I? When closing both contours on the right, 
the sequences beginning at aj + bj - C + 1 cancel and we can write F B(at. a2, a3, bt. b2, b3;c;x, y, z) = Aj + j\ 2, where A j 
and A 2, obtained by explicit integration in the u plane and use of the residue theorem, are given by 

Aj =x-aj r(c)r(c - at - OJ) L (aj)m (a2)n(02)n(a3) l(b3)/aj+ 1 - c )m_n_1 (1 - x-I )mynzl 
r(c - aj)r(c - bl ) m.n, 1 (c - bl)n+l (aj + bl + 1 - c)m_n_zl11 ! n!l! 

For Iz 1 > 1, we need to close the contour in the u plane for I j on the left and for 12 on the right. DOing so we can 
write 

F B(at. a2, a3, bt. b2, b3;c;x, y, z) =Cj + C2 + C3 + C4 + c5 

where these are explicitly given as 

(1- al)m(a2)n(a3),(btW?3),(C - aj),+m+n(l- x-j)m[y(l_ x-
j
)]n[z(1_ x-j)], 

(c - aj)l+n(1 +C - aj - bt)l+m+ni1l !n!l! 

C3 = r(c )r(03 - a3)r(c - aj - b j - a3)x-aj ( - z)-a3 L (aj)m(b2)n(a2)n(a3)/(1 +~j + a3 -e)m_a+,(l - x-j )myn( - z)-' 
r(b3)r(c - at - a3)r(c - bj - a3) m,n,' (1 + a3 - bs),(l + aj + bj + a3 - e)~_n+/(c - bj - as)n_,I)1!n!l! 

C4 = r(c)r(a3 - b3)r(c - aj - bj - b3)x-aj( - Z)-b3 L (aj)m(b2)n(a2)n(b3),(1 + aj + b3 - e)m_n+z(l - x-j)myn( __ z)-z 
r(a3)r(c - aj - b3)r(c - b1- b3) m,n,' (1 + b3 - {l3)/(C - bj - b3)n_,(1 +aj +b1 + b3 - c)m_n+,m!n!Z! ' 

_ r (c)r(aj + bj + a3 - c)r(aj + bj + b3 - e)r(c - aj - bj)x-aj (_ z)a 1'b j-c 

C5 - r(aj)r(b j)r(a3)r(b3) 

XL (aj)m (b2 )n(a2 )n(l - OJ)m_n+z (c - (lj - bl ) t(l _ x-j )myn ( - Z )-/ 

m,n,l 

(19) 

VI. CONCLUSIONS 

The results given in Eq. (9) provide one-term trans­
formation relations for the FA function. To demon­
strate this more explicitly, consider the case of electron 

scattering in the presence of a point nucleus of charge 
z. The incident and final electron energies (momenta) 
are Ej(P j) and E2(P2), where P= (E2 - I)12)j/2 and the 
energy lost by the electron is UJ = El - E2• The radial 
integrals describing this process in the distorted-wave 
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Born approximation can be expressed in terms of 
Lauricella's FA function with variables. 

2w 

Moreover, x + y + Z == 2, and, therefore, the Lauricella 
function FA needs to be analytically continued. The use 
of Eq. (9) leads us to FA functions having the following 
new sets of variables: 

(1) 

2Pl 2Pz and 
2m 

x 
Pj-PZ-w' 

y 
Pz+w-Pj' 

z 
Pz+w-Pt 

, 

(II) 

2Pt 2P2 and 
2w 

x y- z------
P j +w-Pi -P2 -P1 -W' -Pj +w-P2' 

(III) 

2w 
x 

This in itself does not lead to convergent series for 
the FA function, but the different combination of vari­
ables provided by one term transformation relations 
opens avenues for seeking new continuation relations for 
the FA functions. 

The use of Eq. (13) transforms the FA functions in 
terms of eight F B functions thus providing a new analytic 
continuation of the FA function. In the problem of 
scattering that we are considering here, this leads to 
F B series of four different sets of variables (two series 
for each set) which are, 

(1) 

p!+P~+w PI +P2 +w 
and 

PI +P2 +w 
2P1 2P2 2w 

(II) 

PI-P~-w P 2 +w-Pt and 
P2 +w-P j 

2Pt 2P2 2w 

(III) 

P j +w-P2 P2 -Pj -w 
and 

!:j+w-P2 

2P j 2P2 2w 
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(IV) 

In set I we have one variable x < 1 whereas the other 
variables are for w < ~E(, 1 < Y < 2, Z> 2 and for w 
> ~E1> y> 2 and 1 < z < 2. The use of the analytic contin­
uation relation given in Eq. (19) will result in 
absolutely convergent series for both regions. The 
variable set II is very small for all w except at the end 
point Pz'" 0 and hence the F B function with set IT variable 
is absolutely convergent except very near the end point 
which we do not consider. One of the variables in set III 
is always very near unity (ZIII'" 1) and XIH< 1. The re­
maining variable Yru depends upon the energy transfer, 
for w < 1EI> YIll < 1 and for w > ~E1> YI II> 1. The use of 
continuations relation given in Eq. (18), for w < ~Ej, and 
Eq. (19) (for w> iEj) will result in absolutely convergent 
series. The variable set IV needs the same continuation 
relations as used for the variable set lIT. In set IV we 
have XIV < 1, YIV "'1 whereas the third variable is ZIV > 1 
(for w < ~El) and ZIV < l(for w > ~Ej). 

To summarize, we have found a new analytic continua­
tion of the Lauricella FA function when I xl + I Y I + I z I 
==2. This condition occurs in the analysis of the electron 
scattering from the nucleus and may be of use in 
calculating the radial matrix elements. 
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Yang-Mills equations in Maxwell forma) 
R. Maciejko 
Institut fur Theoretische Physik E, Technische Hochschule Aachen, Federal Republic of Germany 

The Yang-Mills field equations are written in a form analogous to Maxwell's equations. The inherent 
nonlinearities are to be thought of as arising from a medium: The gauge fields then look like waves 
propagating in a medium. Some well-known solutions are considered in this approach. 

1. INTRODUCTION 

It is a nontrivial step to go from an Abelian to a non­
Abelian gauge field theory. It is therefore natural to ask 
how much a non-Abelian theory differs from an Abelian 
one. The crucial difference is, of course, that the non­
Abelian fields themselves carry the gauge quantum num­
bers or that they couple back to themselves; instead of 

F.,.v == a"A v - a~.,. 

one has 

(2) 

From the mathematical point of view, the essential dif­
ference is that P,.v is not an exact form anymore! Un­
usual magnetic properties are therefore expected. 't 
Hooft's monoploe1 is just a manifestation of that state of 
affairs. The gCa~,litA~ term is at the same time interes­
ting and cumbersome. Kogut and Susskind2 prefer to 
consider an Abelian model with Higgs scalars, propos­
ing the idea that the latter can mimic the gCab.,A!A~ 
term. The role of those Higgs scalars is to provide a 
medium with negative dielectric susceptibility such that 
electric flux tubes will be created, leading to confine­
ment. We want to pursue the idea somewhat but we wish 
to keep a non-Abelian theory. We shall identify the non­
linearities in the Yang- Mills equations with the pres­
ence of a "medium." 

The point is that the complete Yang- Mills field equa­
tions (for any gauge group) can be thrown in the form of 
the Maxwell's equations. 3 Some partial results were ob­
tained using the idea of the holonomy group. 4 General 
symmetry conditions of homogeneity and isotropy were 
found which lead to Maxwell's equations for microscopic 
media. Here, we obtain Maxwell's equations for macro­
scopic media. The main difference is that the Maxwell 
fields E, B, H, D, the polarization P, the magnetization 
M, the charge denSity p and the current j beome ma­
trices because those objects are elements of the gauge 
group algebra. The non-Abelian character of the gauge 
field tensor is contained in the polarization P and in the 
magnetization M. 

2. THE YANG-MILLS FIELD EQUATIONS 

The gauge field equations are 

D" 4>" v = a" 4>"'. + 1][ r .,. ,4>"'.] = J" , 

where 

a)Supported by Bundesministerium fUr Forsehung und 
Tee hno logie. 

(3) 

(4) 

and J" is the current due to external fields and may, if 
one wishes, contain a term linear in rv. We want to 
write Eq. (3) in the Maxwell form. Split <p". as follows: 

(5 ) 

with 

(6) 

M.,.v=1][r.,.,rJ. (7) 

This splitting is not gauge covariant. The question of 
gauge transformation is studied in the Appendix. Intro­
duce the effect of a macroscopic medium with a polari­
zation P and a magnetization M 

p=1][ro,r], 

M = 1]r x r = 1]€"lmr~r~LaLb '# 0 

(8) 

(9) 

where €123 = 1 and vanishes if two indices are equal. It is 
odd under permutation of two indices. The three-vector 
r ={r It} satisfies 

r It = - r" == - Ak , 

ro==ro= cpo 

Then we have, as in the usual Maxwell theory: 

B==vxA, 

E=-vcp-aoA, 

D=E+P, 

H=B-M. 

( 10) 

(11) 

(12) 

(13) 

(14) 

(15) 

Remember that the above quantities do not commute in 
general! The equations of motion (3) become 

VoO=p+1][A,D], (16) 

VXH - DoD = - j + 1][CP,D] + 1I(A xH+ HXA). (17) 

One can show that ail"· = 0 which boilS down to 

VoB=O, 

aoB +V XE =0. 

Let us define 

A = D.,. r'" =a.,.r" = aocp +V·A. 

The equations of motion (16) and (17) become 

(a~ - V2)cp =p + aa1\- v· P + 1][A,D] 

(a~ - V2)A = - j + VXM+ 1I(A xH+HxA) - VA 

+aoP+lI[cp,D] • 

or in Lorentz-covariant form as 

(18) 

(19) 

(20) 

(21 ) 

(22) 

(23) 

2491 J. Math. Phys. 19(12), December 1978 0022-2488178/1912-2491 $1.00 © 1978 American Institute of Physics 2491 



                                                                                                                                    

where 1= oXox is the D'Alambertian. We would like to 
get some insight from classical electrodynamics of 
media. We are still allowed to choose a gauge and a 
gauge group. Consider Eq. (23) and rewrite it as 

(24) 

In our point of view, M x" should represent the medium 
due to the nonlinearities of the field. If we assume that 
those nonlinearities are everywhere uniform, the 
"polarization" and the "magnetization" behave as co­
variant constants in all directions: 

(25) 

Let us choose a less stringent condition of the form 

V'XMx" =0, (26) 

i. e., we assume that there are no sources for ~". 
Furthermore, choose the Lorentz gauge 

Using Eq, (26) and (27), Eq. (24) becomes 

(27) 

or" -1J[p, [rx,r "JJ -1J[p, o"rxJ=o. (28) 

If we assume an ansatz where the space- time and in­
ternal degrees of freedom are related as follows, 

r ,,=J (x)L" 

where L" are constant matrices, we obtain 

rJ r " -1J[rX,[rx,r ,,]]=0. 

(29) 

(30) 

Such an equation was first obtained by Treat,5 where 
he used some ad hoc assumptions. We obtain it as a 
consequence of a physical condition. This brings some 
support to our approach. Now, specify the system fur­
ther: assume that 

ro=rz=o, r,= <(J(z,t)X, ry=<{J(z,t)Y 

so that X, Y, Z are related by an SO(3) algebra: 

lX,Y]=z, lz,x]=y, [Y,Z]=X. 

(31) 

(32) 

One then gets a well known 1-space, 1-time dimensional 
problem: 

(33) 

The relevance of the <(J-cubed equation as a limit of 
the Yang- Mills equation was stressed by many, 6 espe­
cially in relation to conformal invariance and the in­
stanton. 

For a source-free Yang- Mills field, the uniformity 
condition (25) or the ansatz (29) is not so general. We 
would like to evaluate our approach and see whether the 
quantities we defined previously characterize the known 
solutions or not. We see it is so indeed in the case of 
two well-known solutions. 

3. TWO EXAMPLES 

It is interesting to compare the different ansatzes 
people used to look for solutions of the Yang- Mills 
field equations. Let us first consider the Wu- Yang 
ansatz7

: 
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where L= (L 1 ,L2 ,L3 ) are the generators of the SU(2) 
algebra. In our framework, we can describe it as fol­
lows. 

(1) It is a static solution: no time dependence. 

(2) The scalar current denSity and all electric com­
ponents vanish 

(35) 

(3) The vector current density is essentially given by 
the vector potential 

( 36) 

(4) All the magnetic quantities are proportional and 
point in the same direction of isospace, R = raLa 

M =H=tB = (er 3)-1r R. (37) 

(5) The field equations reduce to: 

V' • B = 0, GoB = ° , V' x H= i . (38) 

The next step is the version of Prasad and Sommer­
fieldS: 

r= (ey 2)-1(1-K(r»rXL, ro =0, 

where 

K(r) = Cr csch Cr, 

H(r) = Cr coth Cr - 1, 

(39) 

Here also exact solutions have been found, We can sum­
marize it as follows 

(1) It is a static solution ~ No time dependence, 

(2) The scalar current density and all electric com­
ponents vanish, 

E=P=D=O, p=O. (40) 

(3) The magnetic components have more structure. 
The magnetization has the nice Wu- Yang behavior, 

(41) 

On the other hand, Band H need a superposition of 
two canonical directions in isospace; 

B = (e y3)ol(2 - 2K - KH)rR + (er2 )olKHL, 

H = - (ey3)ol (KH + ~ -OrR + (er)olKHL , 
(42) 

The conclusion to be drawn from those examples is 
that given a simple ansatz for r, the magnetization re­
mains simple, On the other hand, the magnetic field is 
complicated due to the presence of the derivative V' xr, 
although it has an Abelian look: (Okr, - D,rk)' The new 
approach is to look for a simple ansatz for B = V' x r 
instead I Work is in progress and will be reported sepa­
rately. 

4. CONCLUSION 

At the present time, the full Yang- Mills equations 
are untractable except for very special cases. It is thus 
welcome to gain as much physical insight as possible. 
The present note is an attempt to stress this point: non­
linearities should be thought of as a medium, We 
brought the Yang- Mills equations in a form which re-
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sembles that of a wave propagating in some sort of med­
ium; this is to be contrasted with all the static solutions 
discovered so farl 

We have shown that a covariant divergence-free medi­
um supplemented by some elementary assumption leads 
to a well known case related to the instanton. Using the 
Wu- Yang and the Prasad- Sommerfield solutions, we 
discover that the magnetic part contains all the infor­
mation o 

APPENDIX 

Consider a general gauge transformation, 

r~ =U (8)r ,.u-l(8) - T/~1('a,.u (8)V~1(8) 

with the following infinitesemial properties 

or,. = iT/-1 'a,. 8 + i[r,. , 8], 

O<l>,.y =i[<I>,.y, 8L 
It is straightforward to show that D and H transform co­
variantly: 

oD =i[D, e], oH=i[H, e] 
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On the other hand, all the other fields transform with 
a noncovariant piece: 

oE=i[E,e]+i~E, oP=i[P,9]+i~P, 

where 

~E =- ~P = [r, 'aoe] - [ro, vel. 
oB=i[B,e]+i~B, 

oM =:i[M, e] +i~M, 

where 
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Note on the entropy production in a discrete Markov 
system 
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The Prigogine inequalities on the rate of entropy production are derived by information theoretic methods 
for a discrete open Markov system. A new inequality is proposed. A comparison is made with similar 
results due to Levine and co-workers. 

1. INTRODUCTION 

The information theory has been used with success 
by several authorsl-4 to determine the time-dependent 
orientational distribution function of molecules in liq­
uids and gases from the experimentally measured dipol­
ar and quadrupolar autocorrelation functions. A sim­
ilar method has been applied by Bernstein, Levine, 
and co-workers5

-8 to predict the time evolution law of 
averaged values of observables, with practical appli­
cations for vibrational relaxation of a gas and chemical 
reactions. 

These methods are based on the extremal properties 
of the information entropy or of the entropy deficiency, 
which have been studied extensively by Levine and co­
workers6

-
8 for systems obeying a linear discrete 

Markov equation. 

The purpose of this article is to show that the ex­
istence of a master equation is not indispensable in 
these considerations. In particular, the Prigogine prin­
ciple on the rate of entropy production9-

11 will be de­
rived easily by using the characteristic evolution equa­
tion of a Markov system, which even provides additional 
informations on the entropy production. 

In the first place we shall briefly review the definition 
and the properties of the entropy deficiency. 

2. ENTROPY DEFICIENCY AND EVOLUTION OF A 
DISCRETE OPEN SYSTEM 

2.1. Evolution equation 

Following the model of Refs_ 7, 12, or 13, we con­
sider a discrete Markov system, satisfying the cha­
racteristic evolution equation 

pj(t + r) =BPi.(t) yj.j(r) (r > 0). 
i' 

(1) 

Here Pi(t) is the probability of finding the system in 
state i at time t, and yj.j(r) is the transition probability 
from i' to i during the time interval [t, t + r]; thus 

.0 yj.j(r) = 1. (2) 
j 

The Markov process is supposed to be homogeneous, 
so that Yj'l(r) does not depend on the origin t of the time 
interval. 

If the system is in contact with thermodynamic re­
servoirs, it usually tends to thermodynamic equili-

brium with the reservoirs if they are in equilibrium 
between themselves, or more generally to a stationary 
state. Thus we admit the existence of a stationary solu­
tion {Pt} of (1), satisfying the relation 

.0pt. Yj.j(r) =pt =.0 pt Yjj • (r) (3) 
i' i' 

or in terms of the transition rates Wji' = lim,._ or
1

• Yw(r) 
(i '" i'), 

(3') 

a relation which replaces the bilateral normalization of 
the transition rates for an isolated system_ 13-15 

However we shall use relation (2) rather than (3), 
since for our purpose it is not necessary to introduce 
the master equation corresponding to (1). 

2.2. Entropy deficiency 

In order to study the evolution of the system, it is 
convenient to define the function 

() )' () Pi (t) F t =LJ Pi t log-o-. 
j Pi 

(4) 

With different notations, this function has been intro­
duced by Tolman16

; it was used by Levine, Bernstein, 
and co-workers6 •7 under the name of entropy deficiency: 
indeed when the system tends to equilibrium with a 
thermodynamic reservoir, F(t) is the entropy produced 
in the system during its evolution from time t to equili­
brium, excluding the entropy transferred from or to 
the reservoir. 7 

In this case the system interacts with the reservoir 
by exchanging n extensive quantities Xl, '" ,X"; the 
equilibrium distribution has the claSSical form 

pt=Z1 exp (-t ~~x>;), (5) 
o r=1 

x>; being the value of the quantity xr corresponding to 
state i of the system, 

Thus one may write 

F(t) =A(t) -A 0 = - AA 

using the thermodynamic potential 

A 0 =-logZ 0 

and its nonequilibrium value 

(6) 

(7) 
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A(t) =6 >--,.0 LtP~1 + LtPf logpf 
r i i 

=Lt ;';(X')(t) -S(t) 
T 

with the usual definition of the time-dependent aver­
ages (X') (t) and of the entropy 5(0. 

Noting that during the evolution of the system from 
time t the change in the entropy of the reservoir is 

1:..SR = - Lt;'; 1:..(X') = 0 >--,.O«XT)(t) _ (XT) 0), 
T r 

Eq. (6) may be written 

F(t) = 1:..SR + 1:..S = 1:..(SR + S) 

which indeed shows that F(t) is the entropy produced 
by the inver sible process. 

However the definition of the function F(t) is not re­
stricted to this case, since the distribution {P t} need 
only be stationary in order to established its main 
properties. 

2.3. Properties of the entropy deficiency F(t) 

(8) 

The physical interpretation of F(t) and its formal de­
finition involves two well-known properties: F(t) is posi­
tive and decreases to 0 as t tends to infinity. 7 It is 
worth noting that these properties may be proved easily 
with the aid of Eqs. (1), (2) and (3) only, Indeed, since 
the function cp(x) = x logx is concave (d2 cp / dX2 > 0) and 
since by (2) 

". p.~ 
L1 --\; Y f , f(T) = 1 
i' Pf 

(9) 

we have 

(10) 

Multiplying (10) by pt and summing on i give the clas­
sical result 

(11) 

The equality holding only if Pi(t) =pt for all i, in which 
case F = O. The positivity of F also follows from the 
concavity of cp since 

=!...1PfCP -0 ?ocp LJPf-O = . F )" ° (P/) (" OPI) 0 
i Pf I Pf 

(12) 

As it has been pointed out by Levine7 the same proper­
ties would hold if cp were any concave function such that 
cp(1) = O. Levine has shown that the present choice, 
leading to the entropy deficiency F, is more significant 
physically, but we shall see that the quadratic approxi­
mation of F near the stationary state may be mathe­
matically simpler. 

3. EXTREMAL PROPERTIES OF ENTROPY 
PRODUCTION 

3.1. Rate of entropy production 

It follows from Sec. 2.1 that F(t) - F(t + 1') may be 
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identified7 with the entropy produced between t and 
t + l' and that the rate of entropy production is 

dF 
a=-di' (13) 

With the aid of classical irreversible thermodynamics, 
Prigogine9 has proved that da/ dt < 0 near equilibrium, 
when the linear relation between fluxes and forces hold, 
and that dxa/ dt < 0 in the general case, dxa/ dt being the 
time derivative of a for constant fluxes. 

By considering the discrete equilivalent of d2 F / dt2
, 

1:..2 F = F(t - 1') + F(t + 1') - 2F(t), (14) 

it will be shown that the method of Sec. 2,3, based on 
the direct application of the evolution equation (1), per­
mits us to derive similar results in the framework of 
information theory. 

This approach will partly follow the method of 
Levine,7 with appreciable Simplifications and additional 
results. 

3.2. System near equilibrium 

Let us suppose that the system is at the end of its 
irreversible evolution, so that the distribution p/(t) is 
not very different from the stationary distribution pt. 
Then writing 

Pi(t)=Pt+Xi(t) 

one may expand F(t) in powers of x/(t), the quadratic 
apprOXimation of F being 

Fa(t) =6 21 o (Xi(t»2. 
i Pi 

(15) 

Like F(t), Fa(t) is positive and decreases to 0 as t goes 
to infinity. Furthermore, we shall see that Fa is a con­
cave function of time: 

(16) 

if the detailed balance relation is satisfied by the dis­
tribution {Pt}, This relation is realized if {Pt} cor­
responds to equilibrium with a thermodynamic reser­
voir17

,18 and may be written with the aid of the transi­
tion probabilities 

(17) 

or, more conventionally, with the transition rates 

P~,Wf'f=ptWff" (17') 

Then we have 

Fa(t) = Lt -2
1 

oXi(t)Xf,(t - T)Y/'f(T) 
i,f' Pf 
~ 1 

= D -2 oxf,(t - T)Xf(t)Yii'(T) 
i,f' Pf' 

(18) 

=~ -2
1 

oxf(t- T)Xf(t+ 1'), 
f Pi 

so that 

1:..'lFa =Fa(t - 1') + Fa(t + 1') - 2Fa(t) 

= 0 -2
1 

o(x/(t - 1') - xf{t + 7"»2 ?o 0, 
f p/ 

(19) 
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the equality being only satisifed if xl(t - T) = Xl (t + T) for 
all i, which implies Fa(t - T) =Fa(t) =Fa(t + T) 
and {p/(t)} ={pj}. 

The inequality (19) is equivalent to (16) and may be 
considered as a microscopic version of the inequality 
of Prigogine. It should be noted that (19) applies if 
{p~} is not thermodynamic equilibrium but any stationary 
distribution satisfying the detailed balance (17L 

3.3. General case 

Far from equilibrium, (19) still holds, but Fa(t) is no 
longer an approximation of F(t). 

In order to find an equivalent to the generalized in­
equality of Prigogine, one has to define forces and 
fluxes, which may be done according to the method of 
Levine and co-workers. 6,7 

Let us consider a number of physical quantities X r 

associated with the system, and their average values 
at time t: (X')(t), which may be measured by real 
experiences. In prinCiple, the nonequilibrium probabil­
ity distribution {p/(t)} could be completely specified by 
giving the values (X1)(t), • ", (XN)(t) of N such average 
quantities, 13 but Procaccia, Shimoni, and Levine6 have 
shown that practically the evolution of the system is 
determined by the knowledge of a small number of 
(xr)(t) only, say (X1)(t),"', (X'l(t), with Il«N; the 
remaining quantities change in such a way that the 
entropy deficiency F(t) has always the smallest value 
consistent with formula (4) and the constraints on {Pi}: 

01);=1, 
i 

o PiX'; = (xr)(t) (r=1,2, ... ,n). 
/ 

Then with the notations of formula (5), the desequi­
librium distribution {Pi(tj} is given by the semiequi­
librium form 

p/(t) ~ p/(t) = Z~t) exp (- ~ A,.(l)X~). 

(20) 

(21) 

The time-dependent parameters Z(t), A1(t), ... , \,(1) 
are determined by the constraints (20), and tend to the 
equilibrium values Z 0, Al, .•. , >.;: as t _ 00 • 

A,.(t) is naturally identified with a force, correspond­
ing to the flux (d/dt)(Xr)(t). [(d/dl)(xr)(t) is a flux in the 
conventional sense only if X T is an extensive quantity, 
as assumed in Sec. 2.1; this is generally true.] 

Weare now in a position to derive the generalized 
Prigogine inequality immediately. Indeed we may write 

c,.2F =F(t - T) + F(t + T) - 2F(t) =A + B, (22) 

with 

~ PI(t_T) ( p/(t+T) 
A=,;-, p/(t-T)log PI(t) +PI t+T)log PI(!) 

(23) 

and 

(24) 
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The concavity of x logx, which involves the positivity of 
F by (12), also involves the positivity of A; it may even 
be asserted that A decreases with time (see Sec. 4.2). 

As for B, it may be written, by (21), 

B = - t Mr (L){ (xT)(t - T) + (xT)(t + T) - 2(xT)(t)}, (25) 
r=l 

with 

J.lr(t) = Ar(t) - A 0 (26) 

Thus B vanishes if the fluxes (d/dt)(Xr)(t) remain con­
stant, and we may conclude, with obvious notation, 

c,.~F =A ? 0 (27) 

4F = c,.xA <:: O. (28) 

The inequalities (26) and (27) are equivalent to the 
generalized inequality of Prigogine, 

and to 

d2 

-'jft (J? O. 

(29) 

(30) 

Another, still easier way to recover inequality (29) is 
to note that 

dF = ~ {I Pi(t) l . dPi = _ ~ (t) • -.!l (xr)(t) (31) 
df ~ og pt) dt '-;' Mr . dt 

by (5), (21), and (26), and that 

(32) 

The first term on the right-hand side of (32) is pOSitive; 
the second term may be expressed as 

d2 

- 0 J.lr(t)· d? (xr)(t) 
r 

and it vanishes at constant fluxes. Inequality (29) fol­
lows, but (30) is not obtained so easily in this way. 

4. DISCUSSION 

We shall conclude with some remarks on the preced­
ing results. 

4. 1. At first, it should be remembered that formula 
(21) for the probability p;(t), although convenient for 
practical purposes, is only an approximation: such a 
probability distribution need not satisfy the microscopic 
evolution equation (1) exactly. 

Thus the positivity of the entropy production (J 

=-dFidt, is given by (4) and (21), does not result 
from a rigorous derivation, but from a physical ap­
prOXimation. Contrarily, the generalized Prigogine 
inequality: rix(J/dt < 0 is exact when Pi(t) takes the 
semiequilibrium form (21). 

On the other hand, if the entropy production is com­
puted with the exact probability distribution, its posi­
tivity is mathematically established, but the Prigogine 
prinCiple follows from the approximation of F near 
eqUilibrium. However, from a macroscopic point of 
view, this principle does not simply express the micro-
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scopic inequality (16), which only holds very near 
equilibrium: The domain of validity of the principle is 
probably much wider macroscopically than it is in its 
microscopic form. This is due to the fact that the 
Prigogine inequality follows from the generalized form 
(29) in the region where the fluxes depend on the forces 
linearly; but it is known19

•
20 that linear macroscopic 

laws does not imply microscopic linearity. 

These considerations are made more precise in 
Appendix A. 

4.2. Finally, we shall note that definition (4) of F(t) 
may be extended by replacing the stationary distribu­
tion {P~} by any distribution {qIU)} solution of the evolu­
tion equation (1). It is easily verified the new function 
F{ql) (t) obtained in this way is a positive and decreasing 
function of t, since the derivations of Sec. 2.3 apply 
word for word if (9) is replaced by 

o ql~t) Y.,.(T) = 1 
I' ql(t+T) " . 

(33) 

This remark has already be employed to derive (28), 
but it may have other applications. Let us suppose for 
instance that the external constraints due to the reser­
voirs are changed slowly, so that the "stationary" dis­
tribution {P~} follows these changes, that is to say, it 
varies slowly with time, but the relaxation proper to 
the system is much faster. Then it is natural to define 
the F function with the aid of the quasistationary dis­
tribution {P~}: This function is positive and decreases 
to ° as does the entropy deficiency defined with a time­
independent distribution {p~}. 

This problem is similar to the evolution of a probabil­
ity distribution {PI(t)}, solution of Eq. (1), towards the 
semiequilibrium form FjU) given by (21). It is shown in 
Appendix B, with the aid of the previous discussion that 
the entropy deficiency F(t), calculated with {pj(t)} is 
always greater than the entropy deficiency F(t) calcu­
lated with {Pi (t)} (which is obvious from the definition 
of pj) and that 

(34) 

conformly to a result of Levine. 1 
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APPENDIX A: PRIGOGINE PRINCIPLE AND 
LINEAR LAWS NEAR EQUILIBRIUM 

The flux of quantity (xr) may be expressed with the 
aid of the master equation corresponding to (1), as6 •

i3 

~ (xr) = .~, p;(t) Wjj • (~, - Xi) 
'.' 

= B pj(t) LwXi" (A1) 
i,i' 

with 

Lj/' = Wij • - 15;;.(:0 Wii'~' 
iff I (A2) 
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If Pi (t) has the semiequilibrium form (21), we may 
write 

p.(t) (.A ( )xr) ~ = exp - 0 /lr t j, 
Pj roO 

with 

/lo(t) = log(Z(t)/ ZO), 

JJ.r(t) = \.(t) - AD (r= 1, ... , n). 

As 1_°''', J.Lr(t)-O, and near equilibrium 

(A3) 

(A4) 

Then, since LIP~Lii' =0, (A1) is transformed into the 
linear relation 

with 

Mrs = B p~Lii'XjX~ •. 
i,i f 

The Onsager symmetry relation 

Mrs =M ST 

corresponds to the relation of detailed balance, 

Now, following the method of irreversible thermo­
dynamics, one sees that by (A5) and (A6) 

(A5) 

(A6) 

(A7) 

n d2 n d d 
r~ J.L r • d? (xr) = r?j dt J.L r • dt (xr). (A8) 

Thus the two terms on the right-hand side of (32) are 
equal and pOSitive, and d2F/dt2 > 0, or d2a/dt2 < 0. 

APPENDIX B: COMPARISON OF F (t) AND "F (t) 

Let PI(t) be any probability distribution satisfying the 
evolution equation (1), and Fj(t) the semiequilibrium 
distribution (21), corresponding to the same average 
values (xr)(t) as PI(t). FlU) is supposed to be also a 
solution of the evolution equation. Then the entropy 
deficiencies F(t) and F(t), corresponding to Pi(t) and 
fi(t), are compared by noting that 

F(t) - F(t) = 6 {Pi(t) log PI~t) - Pi(t) log PI~)} 
i Pi Pi 

" () Pi(t) "{P () - ()} PIU) = 0 Pi flog - (t) + 0 i t -Pi t log -0- , 

i Pi i Pi 

(Bl) 

Now by (21), the second term in the right side of (B1) 
is 

since 

6 Pi(t)Xi = E Pi(t)X~. 
i I 

Thus 

F(t) - F(t) = ~ Pi(t) log ::(~i . (B2) 
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According to Sec. 4.2, this expression is positive and 
decreases with time, so that 

dF dF 
(J= - (if > a= - dt :> 0, (B3) 

conformly to the result obtained by Levine7 by a more 
general but rather complicated method. 
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The purpose of this paper is to investigate the subcriticality and the supercriticality for the neutron 
transport in a slab which is surrounded by two finite reflectors. The mathematical problem is to determine 
when the coupled boundary-value problem has or has no positive solution. It is shown under some explicit 
conditions on the material properties of the transport mediums and the size of the slab length that the 
coupled problem has a unique solution which insures the subcriticality of the system. It is also shown 
under some different conditions on the same physical quantities that the system cannot have a nonnegative 
solution when there is an external source, and it only has the trivial solution when there is no source in 
the system. This conclusion leads to the supercriticality of the system. Both upper and lower bounds for 
the critical length of the slab are explicitly given. 

I. INTRODUCTION 

A physically important and mathematically interesting 
problem in neutron transport in slab geometry is to 
predict the critical length of the slab in terms of the 
materials property of the transport mediumo This 
problem has been discussed by many investigators, and 
various methods are proposedo 1-7 However most of the 
discussions are devoted either to vacuum boundary con­
dition or with given incident neutrons at the slab faces. 
When the slab is surrounded by reflectors, then in­
coming neutrons at the slab faces are no longer known 
and its intensity is intrinsically related to the neutron's 
density in the reflectorso Although the critical size of 
the slab is independent of prescribed incoming fluxes 
at the slab faces, it may be affected by the surrounding 
reflectorso In order to investigate this effect and other 
related problems, we consider a nonhomogeneous mono­
energetic slab of length 2a which is surrounded by two 
finite reflectors with equal length b. Then according to 
the neutrons balance relation, the equations governing 
the neutron densities N 1 (x, iJ-) in the slab and N 2 (x, iJ-), 
N 3 (x, iJ-) in the right and the left reflectors are given, 
respectively, by 

ON j N 1 1. 1 
( I\N ( ')d' iJ--,,-+ j=2C j 0jX,)J.,)J.! jX,)J. J.l 

uX -1 

(1.1) 

where we have taken, for simplicity, the total cross 
sections of the slab and the reflectors as one (so that 
the values of 2a and b should be considered as optical 
thickness). In Eq. (1,1), Cj is the average number of 
secondary neutrons per collision, qj is the external 
source, OJ is the scattering cross section satisfying the 
condition 

and the intervals Ii are given, respectively, by 

11 = [- a, a], 12 = [a, a+b], 13= [- a- b, - a]. 

Suppose no neutron enters the reflectors from outside. 
Then the equations in (1.1) are coupled through the fol­
lowing boundary conditions: 

(- 1 <S J.l <S 1), 

(-1 <SiJ-<O), 
(1. 2) 

The slab problem with finite reflectors has been in­
vestigated by Busoni, Frosali, and Mangiarotti8 in re­
lation to the spectral properties of the corresponding 
transport operator and by Burkart, Ishiguro, and 
Siewert9 for the case of one reflector in a linear aniso­
tropic mediumo The same problem with two finite re­
flectors has recently been discussed by the author10 

concerning the existence of a solution for a nonhomo­
geneous anisotropic medium o It was shown in ReL 10 
that under certain conditions on the physical quantities 
c p oj> a, b, the boundary value problem (1.1), (10 2) 
has a "maximal" solution and a "minimal" solution 
which can be constructed by a straightforward iteration 
process o The existence of these solutions is based on 
the notion of an upper solution and the construction of 
such a functiono A natural question to be answered is 
whether the maximal solution coincides with the minimal 
solution and whether the system has a unique nonnega­
tive solutiono Moreover, it is interesting to know under 
what conditions on the physical parameters the coupled 
system (10 1), (10 2) has no nonnegative solutiono The 
first problem involves the question of subcriticality 
while the second one concerns with supercriticality. 
The purpose of this paper is to investigate these ques­
tions o Specifically, we show, under some conditions 
on Ci' up a, b, that the system (10 1), (L 2) has exactly 
one nonnegative solution for every nonnegative source 
qj' We also show under some different conditions on 
these quantities that this system has no nonnegative 
solution when the sources q1' q2' q3 are not all identi­
cally zero and it only has the trivial solution when qj;: 0 
for every io Hence the existence of a unique solution in 
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the first case implies the subcriticaUty of the system 
while the nonexistence result means that the system is 
supercriticaL An important aspect of these results is 
that it leads to a characterization of the subcriticality 
and supercriticality of the system and thus yields upper 
and lower bounds for the critical value of ci in terms of 
the physical quantities oj> (I, b. These conditions also 
give some interesting interrelating effect between the 
slab and the reflectors, and demonstrate the fact that 
criticality of the system depends only on the various 
cross sections of the transport mediums and the size 
of the transport region but not on the external sources. 
It is to be pointed out that the conclusions of this paper 
include the case of a slab surrounded by vacuum. In 
fact, we shall deduce some results for the no re-entry 
slab problem as those obtained in Refs. 6,7. 

2. UNIQUENESS PROBLEM-SUBCRITICALITY 

Throughout the paper we assume that the functions 
qi and J:1ai(x, Il, jJ.')dll' are continuous nonnegative 
functions on Ii x [- 1, 1]. The aim of this section is to 
establish some conditions on the physical quantities 
ai' C i , (I, !J such that the problem (1.1), (1. 2) has ex­
actly one nonnegative solution for every nonnegative 
source qi' Since the existence of a nonnegative solution 
has already been shown in Ret 10, we only need to show 
the uniqueness problem. Our uniqueness proof is based 
on the intrinsic property of the maximal and the minimal 
solution which are obtained through the construction of 
two monotone sequences from a corresponding integral 
equation by a suitable choice of the initial iterations. 
Specifically, if we set 

+ q i (x, /J-), i = 1, 2, 3, 

then the integral equation corresponding to the boundary­
value problem (10 1), (10 2) is in the form (cL Ref. 10): 

N;(x,/J-)=(Fi(N))(X,Il), xccIi , IlEl-1,1], i=1,2,3, 

(2.2) 

(F2 ( N))(x, jJ.) 

exp[- (x - a)1 jJ.] [exp(- 2(11 1l)(g3(N3)){jJ.) + (gl (N1))(Il)] 

+ t x
-.)/" exp(- T) {f2 (N 2))(x - T/J., /J.) dT (0 < /J. .s 1) 

10 (.+b-x) /" exp(- T)(/2(N
2
))(x - T/J., IJ.) dT (- 1 .s /J. < 0) 
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( .(.,b+x)/I' 
,~ exp(-T)(f3(N3))(x-Tj..L,/J.)dT (0</J..s1), 

"') exp[- «(I +x)//J-][exp(2(1//J.)(g2(N2))(/J.) + (g1(N1 ))(Il)) 

{ + t a
+
x

) / I' exp(- T) {f3(N3))(x - T /J-, j..L)dT (_ 1 ~ j.L < 0), 
o 

(2.3) 

In the above expressions the functions gl(N1 ) and g;(N;), 
i=l, 2, 3, are given, respectively by 

(g2(N2 ))(j.L ) 

= t/(-i» exp(- T)(f2(N2))(a-T j.L, j.L)dT (-I-'S j.L<O), 

From the integral equation (2.2), we can construct a 
sequence {N(k)}= {N

1 
(k), N2 (k), N3 (k)} successively from 

the recursion formula 

N/k)(x, iJ.) = (F;(N(k-l)))(x , iJ.), x cc [-1, 1], i = 1,2,3, 

(2.5) 
by a suitable choice of the initial iteration N(O) 

= (1,\ (0), N2 (0), N3 (O)L Assume there exists an upper 
solution N'" (N!> N2 , Fi3 ) which is defined to be a con­
tinuous nonnegative function satisfying the inequality 

Ni(x, iJ.)~(Fi(N))(x, Ill, X~Ii' /J.cc[-l,l], i=1,2,3. 

(2.61 

Then starting from the initial iteration N(Q) =N and N(O) 

=0, respectively, we obtain two sequences from (2.5) 
which are denoted by {N(k)} and {N(k)}. It can easily be 
shown that the sequence {N(k)} is monotone non-increas­
ing while {N(k)} is monotone non-decreasing and N(k) 
.s N(k) for ~ery Ie = 1, 2, ..• (ef. Ref. 10). Here N(k) 
~ V(k) means that Ni(k)(X, /J.).s FJ/k) (x, /J.) for every 
XCIi' /J.c[-1,1],j=1,2,3. Thus, if an upper solution 
does exist, then {N(k)} converges to a "maximal" solu­
tion Nand {N<k)} converges to a "minimal" solution IJ. 
and N ~ N ~ O. Since every nonnegative solution is also 
an upper-solution, it is clear that upper solution may 
or may not exist depending on the physical quantities 
ai' C i , a, b. In order to give some conditions on these 
quantities so that Eq. (2.2) has a unique or has no non­
negative solution, it is convenient to use the following 
notations: 

o)/J.')=suP{Oj(x, /J., /J.'); x(CIp llr=:l-l, I]}, 
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6,(v.'):;max{a j (fJ.'), aj (- fJ.')}, 

6 j (j.L '):; min{~/j.L '), ~j (- JI 'n. 

(2.7) 

Before proving our uniqueness result, we state the 
following existence theorem from Ref. 10. 

Theorem 20 1: Assume that 
1-

Cl~ 6 1 (j.L){1- exp[- (a + b)/ J.l]}dj.L < 1, (2.8) 

cil~j(iJ. ){1- t(exp[- (2a + b)j iJ.] + exp(- blj.L))}dll < 1, o 
(i=2,3). 

Then for any nonn~ative spurce q;, Eq. (2.2) has a 
maximal solution N and a minimal solution Ii . 
Furthermore, 

N?!rY~O, 

The above theorem has recently been proven through 
the construction of an upper solution f) 0 A novelty of 
this theorem is the nonnegative property of the function 
(N -N) which is crucial in the proof of our uniqueness 
theorem. 

Theorem 2.2: Assume that (2.8) holds and that 

+ U~2(j.L)+ 6 3(j.L )](1 - exp(- 2a/ j.L »}dj.L : ClLl < 1, 

1 - -

c2I {t=2(/J.)(1- exp(- b/2iJ.) + HL: 1 (JI) 
o 

+ 6 3 (J.l) exp(- 2a/ JI)](l- exp(_ b/ iJ.)}diJ. 

1-

C3~ {63 (iJ.)(1-exp(-b/2p.)) 

+ tIL 1 (fJ.) + 6 2 (fJ.) exp(- 2a/ fJ.) ](1 - exp(- bl J.l»}dfJ. 

:; csL3 < 1 0 

Then the maximal solution N'" (Nu Nz, N3 ) coincides 
with the minimal solution N:; (N!> liz, lis), Moreover, 
Eq. (2.2) has exactly one nonnegative solution for 
every nonnegative source qi' 

Proof: Let N j == Nj - !:!I ~ 0 and set 

Since N. satisfies Eq. (2.2) with 4j: 0, we have 

where Fj(N) is given by (2.3) with 4j: 0 and N 
=== (Nl> N z, Nslo 

Let Xj E I, such that 

Then by (2.11) and the definition of Fj(N), 

(h(x1 )= t exp[_ (a + xJ!fJ.161 (fJ.)(g3(Ns»(fJ.)diJ. 
o 
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(2,10) 

(2.11) 

1 -

+ f exp[-(a - xJ/ fJ. 161 (- fJ. ) (gz(N2»)(- iJ. )dfJ. 
o 

(2.12) 

where s,(x1 ), j=l" .• ,4, denote the four integrals in 
(2.12). In obtaining the above expression we have re­
placed j.L by (-fJ.) in the last two integrals. Similar ex­
preSSions for ¢2(XZ)' ¢s(xs) can be obtained from (2.11), 
(2.3), Since Xl E II and 

- a< (Xl - TfJ.) < Xl when 0 < T < (a + xJ/ fJ., 

we see from (2.1) (with qj:;O) and the nonnegative 
property of Nl that 

1-xJ ~l(/-I-')Nl(Xl +TP., jJ.')dJI'< tCl¢>l(Xl ) 
-1 

(2.13) 

for all T in the indicated intervals in (2.13). The above 
inequalities imply that 

S2(Xl ) < t C l <PI (Xl) t~1 (/-I-){1- expl- (a + xJj j.L ]}dfJ. 
o 

(2.14) 

S4(Xl) < t cl tPl (Xl) t 6 1 (J..L){1 - exp[- (a - x l )/ J..L Ddj.L, 
o 

where we have used the fact that 6 1(-/J.) ::=~1 (J..L). Simi­
larly, since (a+TJ..L)E 12 , (-a-TfJ.)EIsfor O~iJI~b, 
we have 

1-

<tc2fo 6 z(fJ.')N2(a+TfJ., j.L')dj.L'<t CZtP2(X2), 

for 0 < ill < b. Hence by the definition of g2(N2), gs(N
3
), 

we obtain 

It follows from (2.12) that 
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X{61 (Il)exp[- (0 +X1)/fL][1-exp(- b/Il)]dfL, 
o (2,15) 

X tI:l (Jl) exp[ - (a - XI)! Il [1 - exp(- b/ Il) ]dJl. 
o 

Application of the estimates given by (2,14), (2.15), in 
(2,12) yields 

+ t C3<P3C"3) t 6 1 (Jl) exp[ - (0 + Xl)/ Il ][1 - exp(-bhL )]dJl. 
o 

(2.16) 

Since for each fixed Jl ec (0, 1] the function 

(2.17) 

is convex, its maximum value occurs at Xl = 0 and thus 
P1 (xJ < 2[1 - exp(- n/ Jll1. 

Hence 

1-

+tC2<P2(X2)jo 6 1 (Jl)[1-exp(- b/Jl)]dJl 

(2.18) 

By an analogous argument for <P2(X2), <P 3(X 3), we obtain 

<P2(X2 ) < C2CP2(X2) 

(2.19) 

1-

<P3(X3 ) < C3¢3(X3)j L 3(Jl)[1- exp(- b/2Jl)]dll 
o 

1-

+icl(h(x1 ) J 6 3(Jl)[1- exp(-2n//l)]dll 
o 

+} C2 ¢2(x2)l63(Jl)exp(- 2a/Jl)[1- exp(- b/ Jl)]dJl. 
o 

(2 020) 

Addition of the inequalities (2.18)-(2.20) leads to the 
relation 

<PI (Xl) + <P2(X2) + <P3(X3) < c1L 1<P1(X1) 
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where L1> L 2 , L3 are the integrals appeared in (2.9). 
It follows from the hypothesis that <PI (xJ + <P2(X2) + <P3(X3) 
=0. But <Pi(Xi )", 0 we must have <PI (X1 ) = <P2(X2) = <P 3 (X3) 
=0, that is, 

In view of (2. 1) with (qi'" 0), we see that {fi (N i ))(x, Jl) 
=Oforxr=Ii , JlE[-l,l] and, in particular, (g1(Nl ))(Il) 
=0 and (gi(Ni))(Jl) =0, i=l, 2, 3. It follows from (2.3) 
that (Fi(N))=O and thu~, by (2.2), Ni(x, Jl) =0 on Ii 
x [- 1,1]. This proves N = N. Now if N* is any nonneg­
ative solution of (2.2)0 Then by definition it is also an 
upper solution. The above-established conclusion shows 
that N* = Ii. Therefore, Eq. (2.2) has only one nonneg­
ative solution. This completes the proof of the theorem. 

If the two reflectors on the sides of the slab are identi­
cal, then C2 =C3 and U 2 =U3• In this case, condition 
(2.9) reduces to 

1- -

cd [61 (Jl)[1 - exp(- a/ Jl)] + 'L:2 (Jl) [1 - exp(- 2a/ Jl )]dJl<1, 
o 

(2.21 ) 

+ t exp(- 2a/ Jl) ]}dJl < 1. 

In particular, if the slab and the reflectors are homo­
genoeus isotropic, then we may take ui = 1 for each i, 
In this situation, (2.9) becomes 

.,1 cd [2 - exp(- a/ Jl) - exp(- 2al Jl)]dll < 1, 
o 

(2.22) 

In conclusion we have the following: 

Corollary: Let the two reflectors be identical and let 
(2.8) hold, Then the system (2.2) is subcritical if 
(2.21) is satisfied. In case the slab and the reflectors 
are homogeneous isotropic, then (2.2) is subcritical if 
(2022) holds. 

Remark 2.1: When there is no reflector at the slab 
faces, that is, when the slab is embedded in vacuum, 
we may set c2 = c3 ==L:2 =6

3 
== 0 in (2.9) to obtain the 

condition 

(2.23) 

Under this condition the requirement (2.8) is also ful­
filled by letting b = O. In this situation, condition (2.23) 
alone is sufficient to insure the subcriticality of the 
system. This result coincides with the one obtained in 
Ref. 6 for the slab problem without reflectors. Notice 
that in the general case with reflectors the second term 
in the first integral in (2.21) gives the effect of the re­
flectors on the subcriticality of the slab problem. 
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3. NONEXISTENCE PROBLEM-SUPERCRITICALITY 

It is seen from Theorem 2.2 that if (2.8), (2.9) hold, 
then the system (1.1), (1.2) is subcritical. A natural 
question about this system is that under what condition 
on the same physical parameters the system has no 
nonnegative solution. The purpose of this section is to 
establish a sufficient condition for insuring the nonex­
istence of nonnegative solutiono Specifically, we show 
under a suitable condition on ai' C p a, b that the integral 
equation (2.2) has no nonnegative solution when the 
sources qj are not all identically zero, and it only has 
the trivial solution when qj are all identically zero. To 
accomplish this, we first prepare the following lemma. 

Lemma 3.1: Let N'" (Nu N 2 , N3 ) be a nontrivial non­
negative solution of (2.2) and let L;1(J.d > 0, where L:; 
is defined by (2.7). Then the function -

(3.1 ) 

is strictly positive on II for each i = 1, 2, 3. 

Proof: Let XI E Ii such that I);j(x i ) = min{l);j(x); X Ell}' 

Then by (2 0 2), (3.1) 

In view of (2.3) the value Qil/!l(Xl ) is given by the right 
side of (2.12) except with ~1(/1) replaced by 6 1(/1). We 
again denote the four integrals in (2012) by 5l (X1),. 0 0, 
54(Xt), that is, <Pt (Xt) = 5t (Xt) + ... + s4 (xt). Similar ex­
preSSions can be obtained for 1/!2(X2), 1/!3(x3)' It is easily 
seen by a suitable change of the integration variable 
T that, 

(3.3) 

(g3 (Na»(/1)= f- WI expl(~+ a)/ /1] 
• •• b 

1 

X t C3 La3(~,/1, /1')N3 (~, /1')d/1' 

Now if N1 (x, /1)" 0 then since .01 (J1. ) > 0 the first two in­
tegrals in (303) imply that S2(~)+S4(Xl»0. Similarly, 
if N 2 (x, /1)~0 or N 3 (x,/1);/0, then by the third and the 
fourth integrals in (3.3), respectively, we have 
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and thence 53(X1) > 0 or 51 (Xl) > o. In any case, we obtain 
S1 (Xl) + 000 + 54(Xl ) > 0, which shows that 1f1 (Xl) > 00 There­
fore, Ifl (x) > 0 for all X E Ii' The proofs for 1/!2(X2) > 0 
and 1f3 (x 3) > 0 are similar, and we omit the details. 

It is interesting to note that the positivity of the func­
tion Ifj holds for every i = 1,2,3 when at least one of the 
solution components in N is not identically zero. More­
over, this property remains valid even if qj '" 0 for all 
i. This fact will be used in the proof of the following: 

Theorem 3.1: Assume that ~ j(/1) > 0 and that one of 
the following conditions hold: ~ 

(0 tCi ;:6 (/1)[1-exp(-2a/J.L)]dJ.L"" 1, 
1 

(3A) 

Then the system (2.2) has no nonnegative solution when 
ql is not identically zero for at least one i, and it only 
has the trivial solution when qj is identically zero for 
all i = 1,2,3. Thus in this case the system is 
supe rc ri ticaL 

Proof: Assume by contradiction that N'" (Nu N 2 , N 3 ) 

is a nontrivial solution of (2.2). Then, by Lemma 3.1, 
1/!j(x»O on Ii and satisfies (3.2) with IfI(x j )=min1/!j(x) 
>0 for some Xi Eli' Consider the case for 1/!1(XI ), 
Since for every ~ Ell' -1 ~ IJ ~ 1, 

(3.5) 

We see from (3.3) and the nonnegative property of qi 
that 

1 

S2(XI ) "" tCI Ifl (Xl) j 6 1 (1J){l - exp[ - (a + x I )/ /1 )}dJ.L, 
0-

S4(XI ) "" tCI 1);1 (Xl) J: .01 (1l){1 - exp[- (a - xI)/}J. )}d}J., 

(3.6) 

Notice that the above inequalities hold for every source 
qj "" 0 including qj '" O. Now from I/!l (Xl) = 51 (Xl) + 000 +54(X1), 
where 5 j (X1) are given in (2.12) (with L; replaced by .0), 
we obtain -

lfi(X1)::;' t ClI);1(xl )1.01(/1){2 -expl- (a+xI)/IJ] 
0-

1 

+ t C2<P2(X2)jo ~ 1 (J.L) [1 - exp(- b/ IJ)] exp[ - (a - Xt)!J..t) dj.1 

+ t C3lf3(X3) t ~1 (11 )[1 - exp(_ b/ IJ)] exp[ - (a + Xt)/ /1) d}J.. 
0-

(3.7) 
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Since, for each Il E (0,1], the minimum value of the 
function Pl (Xl) given by (2017) occurs at Xl =± a, we 
have 

'h (Xl) '" Cl <1'1 (Xl) t 6 1 (1l)[1 - exp(- 2al Il )]dll 
0-

+~C3~3 (X3)/61(Il)exp(- 2al 1l)[1- exp(- bl ll)ldjJo 
0-

(3.8) 

An analogous argument leads to 

1 

+ ~ C3<P3(X3) J~ 62(1l) expl- (2a + b)/ Il) ](1 - exp(- bl Il) ],dll, 

(3.9) 

(3.10) 

It follows from <p;(x;) > 0 that the inequality (3 0 8) is 
impossible if condition (i) in (3.4) holds. Similarly. 
(309) [respectively, (3010)] cannot be fulfilled if condi­
tion (ii) [respectively, (iii)] holds 0 In each case we 
obtain a contradiction, Therefore, Eqo (2.2) has no 
nOlUlegative solution when the sources qj are not all 
identically zero, When q;:; 0 for every i = 1.2,3, the 
above argument shows that Eqo (2,2) cannot have non­
negative solution except the trivial solution N = O. This 
completes the proof of the theorem o 

When the slab is embedded in vacuum without reflec­
tors, the nonexistence problem is insured under the 
first condition (i) in (3.4). This result together with 
the conclusion in Remark 2. 1 implies that the slab 
problem is subcritical if (2.23) holds and is supercriti­
cal if condition (i) in (304) holds. In particular, if 0"1 is 
a constant (say 0"1 =1), these conditions become, 
respectively, 

where E,,(z) is the nth-order exponential integral given 
by (cf. ReL 11) 

1 

E,,(Z) = J fl ,,-2 exp(- z/ fl)dfl, n = 1,2, .... 
o 

(3.11 ) 

The above observation leads to the following conclUSions 
as those obtained in Ref. 6,7. 

Corollary: The slab problem without reflectors is 
subcritical if (2023) holds and is supercritical if condi-
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tion (0 in (3.4) holds. Thus, if the critical value of Cl is 
denoted by ct, then 

(3.12) 

In particular, if 0"1:; 1, then ct is bounded by 

(3.13) 

where E2 (z) is the second order exponential integral. 

Remark 3.1: Since the values of the exponential inte­
grals En(z) have been tabulized in standard handbooks 
(e. g., see Ref. 11), numerical results for the subcriti­
cality can easily be obtained from the integrals in 
(3.12) when the functions ~1(jJ.) and 6 l (ll) are polyno­
mials in jJ.. The same re~rk holdsfor the general 
system (1.1), (1. 2) when 6 1(jJ.) and 6 1(jJ.) are poly­
nomials in jJ.. Some of the numericalresults have been 
given for the special case 0"1:; 1 (cf. Ref. 7)Jt is inter­
esting to note that if the difference between L: 1 (jJ.) and 
~l (fl) is small, then (3.12) yields good estimate for 
the critical value ct for small values of optical thick­
ness 2a. 

The argument given in the proof of Theorem 3.1 indi­
cates that it is possible to obtain a different set of con­
ditions for the nonexistence problem. Indeed, we have 
the following. 

Theorem 3.2: Let ~i(fl»Oo If all the inequalities 

~CJl [1 - exp(- 2al fl )][61 (fl) + ~(fl) exp(- bl jJ.) 
o --

hold and at least one strict inequality holds, then the 
system (202) is supercritical; that is, the conclusions 
in Theorem 3.1 remain true, 

Proof: Let N:; (Nl • N2 • N3 ) be a nontrivial nonnegative 
solution of (2.2). Then by adding the inequalities (3.8)­
(3 010) established in the proof of Theorem 3.1, we obtain 

(3.15) 
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But by the hypothesis (30 14) and the positivity of ljij{X j ) 
the above inequality is impossible. This contradiction 
leads to the conclusion of the theorem. 
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It is shown that finite amplitude ion acoustic solitary waves propagating obliquely to an external magnetic 
field can occur in a plasma. 

I. INTRODUCTION 

Sagdeev1,2 demonstrated that the equations governing 
the dynamics of nonlinear ion acoustic waves can be 
written in the form of the energy integral of a classical 
particle in a potential well. By analyzing the behavior 
of the potential one can show that finite amplitude 
localized density humps with a speed V, for Cs <: V 
-:: 1. 6 c., where c s = (T/mi)1!2 is the ion acoustic speed, 
can occur. When the wave amplitude is small, and the 
dispersion weak, the ion acoustic waves are described 
by a Korteweg-de Vries (KdV) equation,3 whose 
localized solution is the well-known square hyperbolic 
secant. Zakharov and Kuznetsov4 investigated the non­
linear development of small amplitude slow ion acoustic 
waves in a magnetized plasma. Here, the dispersion 
arising from charge separation as well as finite gyro­
radius effects can balance the nonlinearity. It is found 
that these nonlinear waves obey a modified KdV equa­
tion, which admits stationary three-dimensional local­
ized solutions. 

In this paper, we show that exact stationary solutions 
can be found for ion acoustic waves propagating ob­
liquely to a magnetic field. In Sec. II, we present the 
basic equations and briefly review the linear wave 
propagation problem. For obliquely planar propagation, 
we solve the appropriate equations looking for station­
ary nonlinear solutions. An equation analogous to the 
energy integral of a classical particle is obtained. The 
potential is analyzed in Sec. III and the criteria for the 
existence of localized solutions are presented. Section 
IV contains a discussion of the small amplitude limit. 
Our results and their applications are discussed in Sec. 
V. 

II. FORMULATION 

Consider a two-component (electron-ion) 10w-/3 
(/3 = 87TnoT/B5) nonisothermal (Te» T i ) plasma in the 
presence of a constant magnetic field Boz. The wave 
dynamics is governed by 

v 2 ¢ = - 47Te(n - ne), 

ne = no exp(e ¢/Te), 

(1) 

(2) 

(3) 

(4) 

where n and v are the ion density and velocity, OJ 
=eBOz/mic is the ion gyrofrequency, and ¢ is the 
ambipolar field. Since the perturbations are of low fre­
quency (w < [Gi), electron inertia is neglected and the 
usual Boltzmann distribution (4) is assumed. The nota­
tions are standard. 

Linearizing Eqs. (1)- (4), we find for w« [Gi the 
following linear dispersion relation: 

w=!?ecs/(1+k2Ai,+k~~)1!2, (5) 

where Rs =cs/[G;, AD= V Te/Wpe, and k2 =!?~ + h~. When 
the amplitude of the waves is sufficiently large, nonli­
near effects cannot be neglected. Zakharov and 
Kuznetsov showed that when the nonlinearity and dis­
persion are weak, the wave propagation is governed by4 

o tVe + c sa ell + t(R; + Ai,)V'~ + tAi,a~ + v/2c s lVe = O. (6) 

They found that three-dimensional stationary localized 
solutions of Eq. (6) exist. These solutions are stable 
against perturbations. 

In the following, we investigate finite amplitude slow 
ion acoustic waves in a magnetized plasma, taking into 
account exact ion and electron nonlinearities. All varia­
tions are assumed to be in the x-z plane. We shall 
also assume charge neutrality, ni = ne , so that disper­
sion is solely due to gyroradius effects. 

Nondimensionalizing n, t, x, Z, 1', and ¢ by no, L/c., 

R., L, CS) and T/e, respectively, we obtain from Eqs. 
(1)-(4) 

a tn + (L/R.)ox(nvxl + a ,(m'e) = 0, 

l'x= (RiL)oxat¢, 

dtVe+ (L/Rs)vxoxl',+ veoeve=- oe¢, 

ne =exp¢. 

(7) 

(8) 

(9) 

(10) 

(11) 

In obtaining (8) and (10), we have assumed R., AD « L, 
where L is the scale length of the solution. 

Consider as solution a one-dimensional simple wave 
propagating obliquely with respect to the external 
magnetic field. The wave is assumed to be stationary 
in the moving frame defined by 

where kx and he = (1- k;)1!2 are the direction cosines. 
The Mach number lvI = V / c s gives the velocity of the 
wave along the Y) direction. 

(12) 

Weare interested in the localized planar solutions of 
Eqs. (7)- (11). Thus, for Y) - ±oo we require 

n=l, v=O, ¢=O, 

and 

a"n=O, G"¢=O. 

From Eqs. (7) and (9), using (12) and (13), one 
obtains 

(13) 
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FIG. 1. K~I M2 vs N. This diagram shows the region of exis­
tence as weI! as the propagation characteristics of ion acous­
tic solitary waves in a magnetized plasma. See Eq. (21) and 
the paragraph following it. 

(14) 

This surprisingly simple result appears because the 
factor (L/Rs)k~vx + kzvz occurs in both Eqs. (7) and (9), 
leading to a partial cancellation of the ion inertia terms 
in the latter equation. 

Substituting the expression (11) for n into the above 
equa.tion and integrating, we get 

Alvz =kz(n-l). 

Combining (7), (8), and (15), one obtains 

a~(lnn) + ben - 1) + e(n- I - 1) = 0 

where b = (k/NlkY and e = k-~. 

(15) 

(16) 

Multiplying throughout Eq. (16) by a ~(lnn) and integra­
ting, we obtain 

1(oryn)2 + <P(n; 1'vI, k) = 0, (17) 

where 

ljJ(n; M, k) = bn3 - (b- e)n2 - en - (b + e)n2Inn. (18) 

Equation (17) is in the form of the energy integral of a 
classical particle in a potential well. In the next section, 
we shall analyse the Sagdeev potential ljJ(n) to determine 
the existence conditions and the behavior of possible 
localized solutions. 

III. ANALYSIS 
We now discuss the conditions under which localized 

solutions of Eq. (17) exist. From the analogy of the 
motion of a classical particle in a potential well, it 
follows that localized solutions are possible provided 
that <p(n) is negative between the point n= 1 and a point, 
say at n=N, which we choose to be at T} = 0 without loss 
of generality, corresponding to the maximum variation 
of n. In order that the "particle" is reflected at n =N 
and not reflected at n = 1 (T} = ± 00), we also require 
<P(N) = 1jJ(l) = 1jJ' (1) = 0 as the conditions for the existence 
of solitary wave solutions. It is therefore necessary to 
study the behavior of 1/J(n) at n = 1 and N. 

Near the points n'" 1 and n '" N, Taylor expansion of 
Eq. (18) leads to 

2507 

1/J(n)""-He-b)(n-1)2 forn"'l, 

ljJ(n)"'- (N-n)(N-l)(bN-e) for n"'N, 
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(19) 

(20) 

In deriving Eq. (20), we have used a relation which 
emerges from applying the condition at the apex of the 
electric field profile, namely a~n = 0 and n =N at n = 0, 
to Eq. (17). That is, 

b k; I-N+NlnN ( ) 
C;=-;w- = N 2 _ N -NlnN' 21 

Equation (21) relates the Mach number M to Nand k z • 

That Eq. (21) does have solution also proves the exis­
tence of the maximum density lV. Furthermore, Eqs. 
(19) and (20) show that in order for ljJ(n) to be negative, 
one should require WI < (kz/,'VI)2 < 1. It is readily 
verified that these conditions are satisfied for N> 1. 
Figure 1 exhibits a plot of kVl'vI2 vs N. We note that the 
dependence of the parameter kiM on the soliton height 
N is strongest for small amplitude solitons. 

IV. SMALL AMPLITUDE LIMIT 

For N"" 1, it is readily verified that 

IjJ(On) = J (b - e)On2 + (~b + e)On3
, 

where On =n - 1 = O(E), E« 1. We have also assumed 

(22) 

b - e = O(E). The latter condition is equivalent to k" '" NI, 

so that sonic solitons propagates almost parallel to the 
external magnetic field. For this case, one can write 
down an explicit analytical solution 

(23) 

where ON =3(e - b)/2b, which can also be obtained from 
Eq. (21) by letting N=1 + ON, is the maximum for the 
density. The projection of the solition width in the x 
direction is L=kfi.![oN(2b+e)/6]1f2, while that in the z 
direction is k~2/I?fis' 

Equation (23) can be recognized as the expression for 
the KdV soliton. Indeed, one can show that whithin the 
approximation On""b-e, the set of equations (7)-(11) 
can be reduced by means of a suitable perturbation 
technique to a two-dimensional KdV equation, whose 
localized planar solution in the T}-coordinate is given 
by Eq. (23). The corresponding linear dispersion is 

(24) 

which is Simply the dispersion relation (5) in the limit 
of weak dispersion and charge neutrality. 

V. DISCUSSION 
We have considered the problem of nonlinear ion­

acoustic waves in a magnetized plasma. It is found that 
the waves can propagate as a soliton whose motion is 
oblique to the external magnetic field. A relation is 
found between the angle of propagation, the speed, and 
the amplitude of the soliton. We have also presented an 
exact analytical formula for the electric field in the 
small amplitude limit. 

We have assumed that the scale length L of the soliton 
should be larger than the Debye length AD as well as the 
gyroradius Rs. This assumption, which allows us to use 
charge neutrality and neglect some inertia terms in the 
perpendicular ion momentum equation, is valid as long 
as the soliton amplitude remains moderate, since the 
width of the soliton decreases as its amplitude 
increases. 

P.K. Shukla and M.Y. Yu 2507 



                                                                                                                                    

As we have used the ion fluid equations, individual 
particle, as well as collective effects, such as ion 
Landau damping, trapping, acceleration, and reflection 
by the electric field potential are neglected. It is ex­
pected that such effects, which can lead to dissipation 
of wave energy, may cause the solitons to evolve into 
shock waves. 5 On the other hand, g X ~o drift effects can 
cause evolution of the soliton into the y direction. The 
latter effect is precluded in the plane wave solution pre­
sented here, and can be included only in a fully two­
dimensional analysis. 

Although we have considered only localized solutions 
here, our calculations can readily be extended to in­
clude nonlinear periodic solutions, such as conoidal 
waves. For this purpose, one needs only to change the 
boundary conditions. 

Our results are applicable to any low !3 plasma in 
which Te» T;o The large amplitude ion acoustic waves 
may stem from an external source such as a grid within 
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the plasma, a linear instability such as the two stream 
instability, as well as nonlinear instabilities such as 
the parametric decay instability. 
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The statistical properties of the eigenvalues of random unitary matrices may be determined from the joint 
probability density function of the matrix eigenvalues. Earlier theorems have derived the density function 
for the unitary and symplectic circular ensembles from that for the circular orthogonal ensemble. A 
method is presented here for successively eliminating variables from the probability density function for 
the orthogonal circular ensemble; the method generalizes an earlier result. and the resulting function 
appears to represent the behavior of eigenvalues from a new series of matrix ensembles. 

The statistical properties of the eigenvalues of ran­
dom unitary matrices, which have been studied by 
Dyson and Mehta,' may be determined from the joint 
probability density function of the matrix eigenvalues. 
Such functions typically take the form 

where 13= 1, 2, or 4, corresponding to matrices of the 
orthogonal, unitary or symplectic circular ensembles, 

The motivation for this discussion is the knowledge 
that there are simple ways to transform the orthogonal 
circular ensemble eigenvalue density into the circular 
unitary or symplectic densities, These methods involve 
eliminating eigenvalues, according to a particular pro­
cedure, from the orthogonal ensembleo Such procedures 
can in principle be generalized, and this suggests the 
possibility that there is some significance to be attached 
to the density functions their application would deter­
mine o In what follows, we generate a class of functions 
by generalizing one such procedureo 

1. RELATIONS BETWEEN EIGENVALUE 
DENSITY FUNCTIONS 

The transformations referred to are two physically 
meaningful and nontrivial methods of generating the 
unitary and symplectic circular ensembles from the 
orthogonal ensemble. 

That is, one can perform operations D, G on the 
eigenvalues of the orthogonal circular ensemble such 
that 

(2a) 

(2b) 

These two transformations are defined by two theo­
rems, the former due to Mehta and Dyson, 2 the lat­
ter suggested by Dyson3 and proved by Gunson. 4 

The meaning of (2a) is that, given a sequence of 2N 
eigenvalues belonging to the circular orthogonal en­
semble, one may pick N alternate eigenvalues from 
that sequence; the N eigenvalues chosen will have the 
same statistical properties as those of a naturally 
occurring sequence of N eigenvalues belonging to the 

symplectic ensemble. That is, the eigenvalue density 
functions of the former sequence (made by chOOSing 
alternate eigenvalues) and of the latter sequence (be­
longing tothe symplectic ensemble) are of the same 
form. The theorem is stated explicitly below [Eq. (7)]. 

The relationship (2b) means that if one takes two in­
dependent sequences of eigenvalues belonging to the 
orthogonal ensemble, superimposes them (randomly), 
and then picks from that mixed sequence N alternate 
eigenvalues, the chosen eigenvalues will have a density 
function which is the same as that for a unitary ensem­
ble of order No 

There are thus explicit relations between P 2N' 1 and 
PH'" and between PN" and PN'2' Two obvious questions 
may be asked: Can we find a similar relationship be­
tween P N'2 and P N '4' and can either of the two relation­
ships in Eq. (2) be generalized, for 13 not restricted to 
the values 1, 2, 4. 

Both questions are reasonable, the first because we 
would like to know whether the three ensembles are 
symmetrical in their relationships to each other, the 
second on the supposition that generalized eigenvalue 
densities may have some statistical significance o Since 
the functions P N' ~ as given by Dyson are well defined 
and properly normalized for all (complex) values of 
i3-and intuitively appealing generalizations of the 
Mehta-Dyson or Gunson theorems should involve re­
lationships between various P N'8 with positive integral 
i3-the proposed generalizations should have at least 
a mathematical interest. 

In answer to the questions posed above, we may say 
the following, 

First, we have been unable to find a relationship be­
tween P N '2 and P N '4 with either phYSical or mathematical 
interest. This is not to say that such a relationship 
does not exist, but we are inclined to be doubtful. In 
view of the ground fieldS underlying the various ensem­
bles, we note that (2a) implies in a sense a mapping be­
tween the real field and the quaternion field; (2b) is, 
again in a sense, a mapping between the real field and 
the complex field o A relation of the sort desired would 
be a similar kind of mapping between the complex field 
and the field of real quaternions. 

As regards a generalization of (2b), the proper result 
would be a theorem that could predict the properties of 
a sequence of eigenvalues formed by superimposing two 
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or more independent sequences, and picking N eigen­
values, according to a prescribed formula from the 
mixed sequence. If the probability density function for 
the eigenvalues of the resultant sequence were similar 
to P N'~' for some integral i3, that might be a result of 
physical interest, We have no reason to believe that 
some such formula might not exist, but there is not one 
available at the present time, 

A generalization of the theorem indicated by Eq, (2a) 
has been proved, and is given by Eq. (8) below, It depends 
on the possibility of writing certain kinds of products 
as confluent alternant5 determinants. 

With the exception of the above argument based on the 
ground fields underlying the respective ensembles , 
there exists, to our knowledge, no explanation for the 
existence of the theorems implied by Eqs. (2a), (2b). 
However, Porter6 has suggested the possibility of 
restating (2a), (2b) for the GaUSSian ensembles; if such 
restatements are in fact possible, it would seem that 
these theorems must be connected in a very powerful 
way with the foundations of random matrix theory. 

It is possible to state a number of theorems similar 
to (8), Such a theorem must eliminate a particular num­
ber ({3N - N) of arguments (eigenvalues) from P~N' 10 and 
must do so in a particular number of steps (integrations). 
An essential element of the procedure, however, is 
that the arguments-eigenvalues or dummy variables­
be maintained in a certain fixed relationship to each 
other. 

What (8) does is perform a series of integrations 
over the eigenvalues to be eliminated. The limits of in­
tegration may be other eigenvalues (in the last set of 
integrations), or dummy variables (in the preceding 
sets of integrations). 

The limits of integration in the earlier integrations 
may, however, be other eigenvalues, provided that 
they are chosen in a symmetrical way from among only 
those eigenvalues over which the number of integrations 
to be performed is exactly the same as is that for the 
eigenvalues for which they will serve as limits; if any 
other eigenvalues were to be chosen as limits of inte­
gration, the essential fixed relationship between the 
arguments would be disrupted. 

We have chosen the most general possible statement 
of the theorem, USing dummy variables as limits of in­
tegration, rather than choosing one of the many possi­
ble equivalent statements without dummy variables. 

2. GENERALIZATION OF THE MEHTA-DYSON 
THEOREM 

The normalization constant CN'~ appearing in Eq. (1), 
which is correct for aU values of {3, is given by7 

_ 1 [r(l +tJ3)]N 
CN'~- (21T)N r(1 +{Nj3) 

If we order the angles 

we can use the identity 
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(3) 

(4) 

I exp(i8m) - exp(i8n) I = i-1 exp[- ti(8m + 8n)] 

x(exp(i8m]-exp[i8n1)' 8n~ 8m , 

to write 

.j 
- (N -1) 

2 
- (N - 3) 

2 

s=1,2,"',N, 

(5) 

(6) 

+ (N -1) 
2 

Theorem (2a), relating the orthogonal and symplectic 
ensembles, is derived using the determinantal form (6) 
of the orthogonal ensemble eigenvalue density, It is 
given by 

(7) 

where we have neglected constant factors on the right­
hand side of (7) that result from the ordering (4) of the 
eigenvalues, 

Note that in (7), integrals are performed over the odd 
numbered eigenvalues between the neighboring even 
numbered eigenvalues; the results would clearly be 
unchanged if instead we were to integrate over the even 
numbered eigenvalues between the neighboring odd num­
bered eigenvalues. 

As has already been indicated, the meaning of the 
theorem is that N alternate eigenvalues, taken from a 
series of 2N belonging to the orthogonal ensemble, are 
distributed in the same way as N eigenvalues taken from 
the symplectic ensemble of order N. An obvious ques­
tion to ask is, what will happen if instead of choosing 
alternate eigenvalues, we choose instead every third 
eigenvalue, or every fourth. 

The confluent alternant determinant indicates how the 
choices of eigenvalues (the integrations) should be made: 
While the symplectic ensemble generated by (7) corre­
sponds to the simplest sort of confluent alternant, 
generalizations of (7) (for (3 > 2) will generate ensembles 
corresponding to confluent alternants of higher degree. 

We are of course concerned with (eigenvalue density) 
functions that are symmetric in all their arguments, 
In general, a confluent alternant determinant can de­
scribe (symmetric) functions of the form PN' A2 (for 
A positive integral); these are the kinds of functions that 
are produced by the theorem below, 

Theorem: For {3N even, {3, N positive integers, N~ 2, 
{3~ 2, 
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X (i)N6Z (N-l)/Z2 <Il-1)(± 2)(6-1)(6-2) /2 

XP N'a
2 (e6, eZI>"'" eN6 )· 

The constant K is given by 

K=C~ (ijp18-1, 

where 

/2 

(8) 

(9) 

. -«(3N-1) . -((3N-3) . +«(3N-1) 
11= 2' 12= 2' '" ,IN= 2 

(10) 

so that 

K= [«(3N)!/(2)aN ~;) !r <Il-1). (11) 

We can then write the right-hand side of (8) as 

= r21lN 
«(3N/ 2) !] Z <Il-1) CIlNo ~ [r(l) 0 " r«(3) t2a-1 (± 2)(6-11<ll-Z)/2 

l «(3N) ! C N°ll 

(12) 

In (8) and (12) the + sign is for N even, and the - sign 
is for N odd. 

Note that (8) reduces exactly to (7) in the case (3=2: 
the products over a, y, and r all vanish; the remaining 
integrals are over ep, p odd, and have the correct 
limits. The constant, as can be seen in (12), also re­
duces to the proper form. 

Note also the introduction of the «(3 - 2) series of 
dummy variables, cp;, where Y labels each series 
(1 '" Y '" (3 - 2); the subscript p of the dummy variables 
will obey Y'" P'" q(3+y (q=O, 1,,0, ,N -1). 

Proof of Theorem (8): We can write 
P N'Il 2 (81l , 8ZM ' •• , 8NIl ) as a confluent alternant 
determinant 

xdet[exp(ij8p), j exp(ij8p),'" ,jll-1 exp (ij8 p )], (13) 

where the column index p takes the values f3, 2f3,.", Nf3, 
and the row index j takes the values indicated in (10), 

Similarly, we can order the eigenvalues, 0", iii '" ez 
'" 0 •• '" 8NI> '" 21T, and use (5) and (6) to write as a 
determinant 
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PaN,t(el>"" 8aN) = (i)Il~rN!i)JZ det[exp(ij8s )], (14) 

where j is given by (10), and s=1,2"", !ON. 

In the statement of the theorem we neglect constant 
factors on the right-hand side of (8) that result from 
the ordering of the eigenvalues leading to (14), 

In order to transform the determinant in (14) into 
the determinant in (13), divide the (3N variables into 
groups, with (3 variables in each group. Consider the 
first set of f3 variables: 81> ez, , • , , Iia, The first vari­
able-81-will be integrated a total of f3-1 times; 82 

will be integrated a total of f3 - 2 times; the tth variable 
(t = 1, 2, .. , , (3) will be integrated !O - t times. 

Consider again the tth variable. The first jj - 1 - 1 in­
tegrations will transform Bt into a succession of dummy 
variables-cpI,cpz,.,.,cpa-t-l. The final, (3-1, integra­
tion will transform cpa-t-1 into 81l • In general, the first 
f3 variables of (14)-81> 82"", ea-are transformed 
finally into Ga. The next set of (3 variables-
ea+1 , 88+2" .• , B2a-is transformed finally into Bza' The 
final set of (3 variables-8(N_lltl+I>"" 8Si3-is trans­
formed finally into BNIl • 

The integrations in (8), inside the product over y, 
encompass all the integrations that are necessary to 
transform any of the 8's into the dummy variables cp1, 
and to transform any set of the dummy variables cpa into 
the succeeding set of dummy variables cpa+1. 

The other factors in (8) (those outside the product 
over y) do the final integrations, by transforming the 
final sets of dummy variables into el>' 821l , ••• ,eN6 • Of 
course, since there is only one integration to be per­
formed on each of 8a_1> 82a_1 , ••• ,8NB_1> these variables 
are transformed directly into ell' 628 , ••• , eN8 , 
respectively, 

The integrals in (8) are pel'lOrmed from right to 
left. Begin by considering the integrations inside the 
product over y) which act on variables initially labeled 
8.a+,., whe re y' is a given, fixed value of y, and 
q=O, 1"" ,N - 2, That is, consider 

y' ] J ~ (.+1 )8+" d8 
Y' qi3+Y' 

¢ qB+Y' 

acting on det[exp(ij8s )]' 

These integrals do the first f3 - t - 1 integrations on 
the tth variable of each set of (3 variables, The integrals 
in the second line of (15) do these integrations on the 
last set of f3 variables- 8 (N-1)8+1> 8 (N-lla+2' 0 , 0 , 8 Na-while 
the integrals in the first line of (15) do these integra. 
tions on all other sets of f3 variables, Of course, as 
mentioned, the variables 88 , Ii28 , ' • , , e N8 are not inte. 
grated over at all, while the variables 
8a_1 , 82a_1 ,.,., eNa_1 are transformed directly into 
Iia, e26 , ' •• , 8NB by integrals not included in (15) [by inte­
grals in the first line of (8)], 

Michael Handelman 2511 



                                                                                                                                    

Now, write out (15) explicitly for the fixed value 
r = y'. These integrals do not vanish for [3 - 3? 1, and 
are given by 

y'+l xJ <t>y' +2w 

4>",+1 
W-1\3+y' 

(16) 

The integrations in (16) are performed only on the y', 
[3+y',2[3+y'",., (N -1)[3+y' columns of the matrix. 
The integrations over the 8's transform these columns 
as shown: The columns 

{exp(ij8y,), exp(ij8B+ y,), ••• ,exp[ij8 (N-1)B+Y']} 

become 

{ eXP(ij1>r~/') - exp(ij¢;:) exp(ij1>~;'+r') - exp(ij¢'B:r') 
ij , ij , 

(17) 

••• , exp[ij(¢;: + 21T)] -:-.exp[ij1>r~_1)8+r'] } 0 (18) 
1) 

Since j is half-integral for [3N even, exp[ij(¢ + 21T)] 
= - exp(ij1», and we can add columns in (18) so as to 
obtain 

(19) 

where the + sign holds for N even, and the - sign for 
Nodd, 

We can now perform the integrations over the ¢y., s, 
as indicated in (16), and the integrations over the ¢Y'+\ 
¢1"+2, ... , until all of the [3-y'+1 (with t=y') integra­
tions, over the t, [3+t, 2[3+t, .•• , columns have been 
performed, All the integrations proceed in essentially 
the same way as (17)-(19); when the integrations in 
(15) have all been performed, the y', (3 + y: "', (N-1)1l+r' 
columns will have been transformed into 

( 2) 13-r'_1{eXP(ij¢~72) exp(ij ¢~:~,) ... exp [ij ¢~:;J-l)B+r']} 
± (ij)il-y' -1 , (ij)S-Y' -1 , , (ij)S-y, -, (20) 

Since the integrals in (15) commute for different 
values of y', it is clear that once they have been per­
formed, in whatever order, we can perform all the in­
tegrals in (8) inside the product over y, for y = 1, ... , 
[3 - 2. These integrals transform 

{eXp(ij¢!a~1) det[exp(ij8 s)]- (± 2)(8-1)(8-2) /2 det (ij)8-2 , 

( .. A.6-2 ) ( .. A-,8-2 ) exp t)'Vp@+2 ". exp t)'Vps+8-2 ("8 ) 
(ij)S::3 '(ij) , exp 1J P8+8-1 , (21) 

exp[ij 8(p+1)8l}, ,p=O, 1, "0, N - L 
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Now consider the remaining integrals in (8); they are 
outside the product over y [the first two brackets 
(counting from the left)] and can be written 

;
9B (828 1831l 18NIl e d81l_1 Je d821l_1 d836_1 ". d8NIl_1 N8-2< Il e21l e(N_1)1l 

(22) 

They operate on the determinant on the right-hand side 
of (21); the result is evident, and (21) is transformed 
into 

( 2)(13-1) (1l-2) /2d t \ exp(ij88) - exp[ij(8NIl -21T) 1 
± e I (ij)S-1 , 

x exp(ij8 Il) - exp[ij(8NIl - 21T)] 
(ij j$-2 

x ... exp(ij88) - exp[ij(8NIl - 21T)l 
, (ij) , 

xexp(ij88), ••• } • 

(23) 

Here we have written only the first [3 columns of the 
determinant. The effect on the other (groups of !l) 
columns is exactly the same, except that 86 is replaced 
by 828 (columns Il + 1 through 2!l), by 831l (columns 
2[3 + 1 through 3(3), .. 0, 8 N(l. [columns (N- 1)[3 + 1 through 
Nlll, If we let p ={3, 2{3, .. ', N{3, we can add columns, 
and rewrite (23) so as to obtain 

det[exp(ij 8s
l- (± 2)(8-1)(8-2) /2 28-1 det[ew~2~p) , 

(24) 
exp(ij8p ) exp(ij8p ) ")~ 

(i.j)S~2 ,'" , (ij) ,exp(~)e p J . 
Now multiply (24) by K as defined in (9). This in 

effect multiplies the first row on the right-hand side of 
(24) by (ij, )1l-1, the second row by (ij2)8-1, ••• , the {3Nth 
row by (ij8N)8-1, That is, 

K det[ exp(ij8 sll- (± 2)(8-1) (8-2) /2 28-1 det[exp(ij8 p) 

x (ij) exp(ij8p) , ''', (ij)8- 2 exp (ij8p ), (ij)13-1exp(ij8p )l 
(25) 

This concludes the proof. The integrals on the left­
hand side of (8), operating on det [exp(ij8s )], produce 
the confluent alternant in (25), which is identical to the 
form (18) for P N '8 2 • The remaining constant factors in 
(8) come from the definitions (13) and (14) of P8N" and 
of P N' 62 as determinants. 

Alternative forms of the theorem, with different lim­
its of integration, can easily be stated, but as indicated 
above, the form in (8) seems most naturaL The first 
set of integrals in (8) [in the first square brackets in 
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the first line of (8)], in their present form, reduce 
exactly to (7) in the case 13=20 The other integrals 
largely involve dummy variables as limits of integra­
tion, and changes in these may be rather arbitrary. 

Finally, we note that P N'S2 might be interpreted as the 
eigenvalue density for an ensemble of unitary matrices 
with 132 independent components in each off-diagonal 
matrix element. 

The application of (8) can be seen most easily in a 
simple example. Let i3N=6, 13=3, N=2. Then (8) 
becomes 

The integrals in (26) can easily be performed in suc­
cession from right to left. 

The statistical meaning of (26) can be seen in Fig. L 
Two eigenvalues, 81 and 84 , are chosen by the first two 
integrations, and allowed to move within the indicated 
interval; this destroys their ordering with respect to 
the other eigenvalues, but preserves it with respect to 
each other. 

The third and fourth integrations fix ¢~ and ¢~ in the 
intervals [86 , 83 ] and [83 , 86 ], respectively, but without 
saying anything about the relation of ¢~ to 8

4 
or 8s , or 

about the relation of ¢~ to 81 or 82 , 

The last two integrations destroy the orderings of 
82 with respect to 81 and 83 • and of 8s with respect to 
8 4 and 86 : 82 and 8s are integrated out, just as the odd 
variables are in Theorem (7). 

Note that allowing N = 2, 4, 6, "0 (i3N even) would make 
no significant change in (26). This is clear from Fig. 1, 
which for N> 2 would simply be repeated horizontally. 
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FIG. 1. 

From (26), the first integrations are performed over 81 

and 84 , in the intervals [¢L ¢~] and [¢!, ¢~ + 211], res­
pectively; the second set of integrations is over <p~ and 
<pL in the intervals [86 - 211, 83 ] and [83,86 ], respectively. 
The final set of integrations, which may in fact be per­
formed at any time, is over 82 and 85, in the respective 
intervals [86 - 211, 83 ] and [83,86 ]. With the final integra­
tions, the variables 81> Q2' 84 and 85 have been 
eliminated. 

1£ we were to allow N = 4, 6, 8, "', the diagram in Fig. 
1 would appear 2, 3, 4, times. 
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Explicit decomposition of tensor products of certain analytic 
representations of symplectic groups8),b) 

Tuong Ton-That 

Department of M,lthematics. The University of Iowa. Iowa City. Iowa 52242 
(Received 29 August 1977) 

For any integer k> I let E = C2k 
Xl. E' = C 1 x 2k, and G = Sp( k ,C), If Pm (E) denotes the linear space 

of all homogeneous polynomial functions of degree m on E, then the representation Lm of G, obtained by 
left translation on P m(E), is irreducible with signature (m ,0,. .. ,0). Similarly, P,(E') and R, are 
defined by replacing E by E', m by n, and left translation by right translation. In this article, an 
explicit decomposition of the tensor product representation R, ® Lm on P,(E') ® P m(E) is given in terms 
of the solid symplectic Stiefel harmonics. 

I. INTRODUCTION 

Let k be an integer> 1, and let Ik denote the identity 
matrix of order k. In general, the transpose of a matrix m will 
be denoted by m'. Set 

s k = [10
k 

- ~ k ], 

and define the complex symplectic group G by the equation 

G= !gEGL(2k,C): gs kg' =s k J. 
SetE =C2k 

XI, E'=C IX2k ,C*=C- [0J;letP(E)and 
P (E') denote the algebras of all complex valued polynomial 
functions on E and E', respectively. For non-negative inte­
gers m and n define 

P ",(E)= [qEP(E):q(xc)=c "'q (x), 'rJ (x,c)EEXC*j 
and 

P ,JE') = !pEP(E'):p(cs)=c n p (5), 'rJ (C,S)EC* XE'j 

If D n denotes the representation of GL(2k,q obtained by 
right translation on P n (E '), then it is well known that D n is 
irreducible with signature (n,O, ... ,O) (cf., e.g., Ref. 1). Simi­
larly, the left representation T m of GL(2k,q in Pm (E) is 
irreducible with signature (0, ... , - m). If R n (resp. L m) de­
notes the restriction of D n (resp. T m) to G, then R n (resp. 
L It1 remains irreducible with signature 

(11.0.,0) [resp, (m,O, .. "O)]. 

k factors 

(In a more general context, the study of restrictions of ana­
lytic representations of GL(2k,q to G was investigated in 
Ref. 2, The above assertion is a special case of Theorem 2, 1 in 
Ref. 2, but the proof is much simpler by observing that G acts 
transitively on the dense subset [sEE':s*Oj of E',) 

Now, define an action of G L(2k, q on E' X E by 

«5,x),y)-+(5,x ),y = (5y,y- 1x), 

'rJ (5,x)EE' XE, 'rJ YEGL(2k,q; 

aiThis research was partially supported by NSF Grant NO. MCS76-07011, 
hiThe author wishes to thank the referee for several helpful comments, 

especially on the connection between the authors's work and the boson 
calculus [cf. C. Quesne, J. Math. Phys. 14, 366 (1973») and on the discus­
sion of the last equality in Eq. (3.2). 

and consider the tensor product representation D m ® T m of 
GL(2k,q given by 

[(D n ® Tm)(Y)](P ®q)(5,x)=[P ®q]«5,x)·y) 

for all p ® q EP n (E ') ® P '" (E), and yEGL(2k,q. Then, it 
was shown in Ref, 3 (see also Ref. 4) that one has the follow­
ing decomposition, 

Pn(E')®Pm(E)= I ffJP~H':n--Jj' where 
j =O, ... ,r 

r= min(m,n); po is defined by po(5,x) = Li =0 •. ,2 k LiS i X i' 

and each subspace H ':n --Jj consists of elements/in 
P n_/E ') ®P m _/E) which also satisfy the Hermite-La­
place equation 

, ;P/ 
LJ./=O, wIth LJ./(5,x) = I (5,x). 

j=O .... ,2k aSia Xi 
In addition, each sub representation of D n ® T m on 
pj H ':n --.!j (0<J<r) is irreducible with signature 
[n -i,O, .. " -em -i»), 

With the exception of the case k = 1 for which 
G=SL(2,q, the restriction of D n ® T m to G does not de­
compose as simply as in Eq. (Ll) (the case k= 1 was com­
pletely solved by H. Weyl in Ref, 5(a), p. 128), We shall give 
an explicit decompositon of the tensor product representa­
tion R n ® L '" of G on P n (E ') ® P m (E) , The simple sub­
modules that occur in this decomposition consist of sym­
plectic Stiefel harmonics which are equipped with an inner 
product invariant under the unitary symplectic group (cf, 
Ref. 2 for details), This is a natural setting to study the 
Clebsch-Gordan coefficients problem of these tensor prod­
uct representations which we shall discuss in another article, 

In connection with this decomposition, we shall also 
give an explicit description of the restriction of two classes of 
irreducible analytic representations ofGL(2k,q to its sub­
group G (Theorem 2,2 and Theorem 3,2), To obtain these 
results we must further our study on the s-covariant andp­
covariant polynomial functions that we first investigated in 
Refs, 1 and 2, 

There is an extensive literature on Clebsch-Gordan se­
ries, (A detailed and comprehensive bibliography on this 
subject can be found in Louck's article,6) Starting with the 
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work of Brauer,7 Weyl,5(b) Kostant,' and Steinbert on the 
relationship between the inner and outer multiplicity struc­
ture of complex simple Lie groups (or equivalently, their 
compact real forms), Biedenharn established in Ref. 10 an 
important lemma which, in turn, generated a very effective 
method to compute Clebsch-Gordan series (see also Kli­
myk"). The explicit conditions for the validity of Bieden­
ham's lemma for simple classical groups were derived by 
MacFarlane, O'Raifeartaigh, and Rao'2 and Beck. '3 (Inci­
dentally, these conditions are not fulfilled in our problem 
with the exception for the simple cases where k = 1 or 
m = n = 0.) The relationship between inner and branching 
(or restriction) multiplicities were also investigated by De­
laney and Gruber in Ref. 14 and by Stone in Ref. 15. 

II. THE ~- AND p-COVARIANT SYMPLECTIC 
STIEFEL HARMONICS 

Let I denote an arbitrary integer satisfying 2<,I<,k, set 
V =C' XZk, and let m i (1 <,i<,1) be integers satisfying 
m,>ml>"'>m I >0. Let B denote the subgroup oflower tri­
angular matrices ofGL(I,'C) and define a holomorphic char­
acter S = sCm ,,",m I) on B by setting 

S(b)=b7't' ···b';:l, V bEll. 

A polynomial functionfon VwiIl be called S-covariant 
iff(bX)=S(b }(X)forall(b,x)EllX V;furthermore,fwiIlbe 
called symplectic Stiefel harmonic if p ij( D)f =0, 1 <,i <j<,l 
[see Ref. 2, for the definition of the p ij(D )'s]. If H s( V) 
denotes the linear space of aIls-covariant symplectic Stiefel 
harmonics then it was shown in Ref. 2 (Theorem 2.1) that 
the representation R s of G obtained by right translation on 
H s( V) is irreducible and its signature is 
(m"ml, ... ,m ,,0, ... ,0). 

Now, set 

W p= [j:C I x'-C:jpolynomial;f(ba)=s(b }(a), 

V (b,a)EllXC/x/J 

and let p denote the representation of GL(/,q obtained by 
right translation on W p' Then, according to Theorem 1.5 in 
Ref. 1, p is irreducible with signature (m" ... m ). 

Set 

P / V) = [F: V-W p: Fpolynomial; F(aX) 
=p(a)F(X),V (a,x)EGL(/,qx VI 

and call an element FEP p( V) symplectic Stiefel harmonic if 
p ij(D )(AoF)=Ofor alllinearfunctionalsA on W p and for all 
iJ, 1 <,i <j<,l. Let H p(V) denote the subspace of P p(V) con­
sisting of all symplectic Stiefel harmonics, and let R denote 
the right s~ift representation of G on H / V). Then ~e have 
the followmg: 

Theor~m 2.1: The representation R p is equivalent to the 
representation R s' 

The proof of this theorem is similar to that of Corollary 
3.2 in Ref. 1. Thus, in our context we must show only that if 
aECI xl and () a denotes the mapping X-aX (XEV), then 
[p ij( D)(f 0 () a) ](X)=O for all fER s(V) and all iJ 
(i<,i <j<,/). But an easy computation shows that 
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.L. (aVjaUi-aUjaV;) [Puv(D)/](aX), 
I.;u <v<! 

which must vanish for every (a,x)EC I xl X V since 
fER s( V). 

Henceforth, we shall assume that V = CZ 
X Z k with k>2. 

Under this additional condition, our study of the symplectic 
Stiefel harmonics in Ref. 2 can now be symplified and com­
pleted. In particular, to prove that the ideal J+S is prime it 
suffices to observe that it is generated by a single irreducible 
polynomial P12 defined by 

k 

P'2(X)= .L. X 1,( +k X ZI -X II X Z.I +k' 
1=1 

Moreover, we have the following: 

Theorem 2.2: The space P s( m "m ,.0 .... 0)( V) can be ex­
pressed as direct sum 

m, 

P 5( rn 10m ,.0 .. 0)( V) = 2: f!J P ;zH s( m, -i.m ,-I ,0 •• 0)( V), 
i=O 

where eachp ilZH s( m ,-i.m,-i.O ..... O)( V), is a simple G-mod­
ule with signature (m, - i,m2 - i,O, ... ,O). 

Proof From Ref. 2 (Theorem 2.1) we know that each 
H 5( rn ,-i.m,-i .0 ..... 0)( V) is a simple G-module with signa­
ture (m,-i,ml-i,O, ... ,O). Define a mapping from 

H s( m ,-i.m ,-I .0, ... ,0)( V) into P s( m "m ,,0, ... ,0)( V) by 

f-p\z!; VfER s(m,-i,m,-i,O,.,o)( V). 

Obviously this map is well defined since 

(P,!)(bX)=b ~I' b ';z'p ,,(X)f(X), V( boX )Ell XV. 

The fact that it is injective follows from Theorem 1.10 in Ref. 
2. Now since P'2 is G-invariant 

[D s( m "m ",0) (g )(p ;z!) ](X) 

=P;z(X)/(Xg) 

=p i12 (X){R s( m ,-i,m,-i,O.,O)(g )/}, V gEG 

(see Refs. 1 and 2 for notations). Thus the mapping/-p;z! 
is also a G-module homomorphism. Since 
P 5( m "m ,.0 ..... 0) ( V) is a semisimple G-module, and 
pi H . (V),pj H . . ( V) 12 5(m,-I.m,-1,0 .... ,0) , IZ s(m,-j,m,-j.O .... ,O) 

are nonisomorphic simple G-modules for 14=j (0<,iJ<,m 1), it 
follows from a well known fact (cf., e.g., Theory 0/ Lie 
Groups by C. Chevalley, Propositions 1 and 3, pp. 174-175) 
that the sum of the simple G-modules 

p;zH 5(m,-I.m,-i,0 ... .o)( V) (O<,i<,m 2) is direct. Thus, to 
achieve the proof of the theorem, we only need to show that 

m, 
dO(m"mz,O, ... ,O)= .L. d~(m,-i,ml-i,O, ... ,O) 

1=0 

(2.1) 

ifdO(m"mz,O, ... ,O) [resp. d~(m,-i,m2-i,0, ... ,O)] represents 
the degree of the representation ofGL(2k,q (resp. of G) 
with signature (m"m2,O, ... ,O) [resp. (m, -i,m2 -i,O, ... ,O)]. 
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According to Ref. 5(b) (Theorem 7.5.B, p. 201 and Theorem 
7.8.C, p. 218), Formula (2.1) becomes 

(ml-m2+ 1) {(ml +2k-I)!(m2+2k-2)! } 

(m 1+ 1 )!m,!(2k - 1 )!(2k - 2)! 

= f (m l -m 2 + I)(ml+m2+2k-2i-I) 
i=O 

x [(ml +2k-i-2)!)(m2+2k-i-3)!j 

X [(ml + l-i)!(m2-i)!(2k-I)!(2k-3)! ]-1. 

(2.2) 

which can be easily verified by induction on m2, or may be 

deduced from a well-poised J2 series (cf. Ref. 16, p. 57). D 

III. THE MAIN THEOREM 

We shall now return to the main problem of this article. 
Assume k>2 and preserve the notations introduced in Sec. I. 

Theorem 3.1: The semisimple G-module 
P n (E ') ® P m (E) can be represented as a direct sum 

P n(E')®P m(E)= i 'f Eflp~7t"(n +m-2j-i,i), (3.1) 
j=O i=O 

where in (3.1) 

H ':n-=!j = 'f Efl7t"( n +m -2j-i,i). 
i=O 

Morevoer, each sub representation of R n ® L m on 
p~( n +m -2j-i,i) is equivalent to an irreducible analyt­
ic representation of"G with signature (n + m - 2j - i,i,O, ... ,O). 

From Eq. (1.1) we know that each subrepresentation of 

D n ® T m on p ~ H ':n -=!j is irreducible, and since each H ':n -=!j is 
obviously a G-module, to obtain Theorem 3.1 it suffices to 
prove the following: 

Theorem 3.2: Under the restriction GL(2k,C) I G each 
simple GL(2k,C)-module H ':n-=!/O<j <r) is decomposed 
into simple G-modules as 

H':n~j ='f Efl7t"(n+m-2j-i,i). 
i=O 

Without loss of generality we may assume that n>m; 
thus r=m. The proof of this theorem will be achieved via 
several lemmas. 

Fix i, and in Sec. II let 1= 2, S = S(n + m - 2j - i,i). This 
character S corresponds to the representation p of G L(2, C) 
on the linear space W p' Equip W p with the inner product 

(l;J,)= [(.(D )h](O) 

(cf. Ref. 1, p. 31 for justification) for all};J, in W p' 

Lemma 3.3: Let a,f3 be nonnegative integers such that 
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a + f3 = n + m - 2j - 2i and set 

{ (
i)2 }-I12 

C a{3 = U=t:.i U (a+i-u)!{f3+u)!u!(i-u)! 

= [ila![3!(a+ f3 +i + I)!] -1!2. 

(a+f3+ I)! 
(3.2) 

For YEC 2 x 2 let IYI denote the determinant of Y and define 

CfJa{3(Y) = C a{3Y flY f2 IYli. 

Then the system [CfJ a(3) (a{3) is an orthonormal basis for WI" 

Proof We have 

CfJa{3(Y) 

=C a{3():: . (-I)U(~)Yfti-uyf2+uY~IY~2u); 
u --o, ... ,{ 

it follows immediately from relation (2.2) in Ref. 1 that 
[CfJa(3) (a{J) is an orthonormal system. Now, for 

b = [b II 0] 
b 21 b 22 

in B, we verify easily that 

CfJa{3(by)=b;~+-n -2j -ib~2CfJa{3(Y) forallYEC2x2
• 

The last equality in Eq. (3.2) is obtained by observing 
that the normalization factor C a{3 is the square root of the 
measure factor M of the Young tableaux 

i boxes t II-'~' j.~~-I J a+f3+i boxes 

filled in with a + ii's followed by f3 2's in row 1 and i 2's in 
row 2. It can also be derived from the formula defining the 
basis of boson polynomials in the article by Baird and 
Biedenharn, J. Math. Phys. 4, 1459 (1963): 

I (m : ~ 22) ) =M - 1/2 (a : ) m "m " 

X(aDm" m"(a:a~-a~a~)m"IO). 

The relations between notations are 

mI2=a+f3+i, m 22 =i, mIl =a+i, 

aj=Yij,l<i,j<2. 

But from Ref. 5(b) (Theorem 7.5.B, p. 201), we known that 
W p has dimension m + n - 2j - 2i + 1; so that [CfJ a{31 (a{3) is 
indeed an orthonormal basis for W p' 0 

To this Hilbert space WI' we associate as in Sec. II the 
representation R p on the linear space H / V). Let Go denote 
the unitary symplectic group corresponding to G. Set 
U = U (2), and let po and R ~ denote the restrictions of p and 
R p to U and Go respectively. It follows from the "unitarian 
trick" that po and R ~ remain irreducible. If W; denotes the 
dual of W p we define the linear space K by 

K=[A OF:AEW;,FEH/V»). 
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Define a representation of Go on K by the equation 

[1T"(g)(,1 0 F)](X)=(,1 0 F)(Xg) = [A oR ~(g)F](X) 

for all A 0 FEK, gEGo, and X E V. 

If [A aBJ (a{3) denotes the dual basis for [fP aB J (a{3) we set 
K aB = ! A aB of :FElI / V) J. As in Ref. 1 (p. 31) we equip 
H / V) and K aB with appropriate inner products which 
render R ~ and 1T" unitary. Invoking Theorem 3.8 in Ref. 1 
we obtain the following: 

Lemma 3.4: The Hilbert space K is decomposed into 
primary irreducible components under the representation 1T" 
as 

where the summation is taken over all nonnegative integers 
a,f3 satisfying a+f3=m +n -2j-2i. Moreover, each sub­
representation 1T~B of 1T" on K aB is equivalent to the repre­
sentation R ~ . 

Lemma 3.5: For fixed iJ (O<)<,m,O<,i<,m -j) if we let 
a=n-j-iandf3=m -j-i, then the spaceK (n-j-i,m-j-i) 
consists of symplectic Stiefel harmonicsfwhich also satisfy 
the condition 

f(aX)=a 7-ja ;:-jf(X) 

for all 

(3.3) 

a =(~ I ~) 

in U, and all X in V. 

Proof For F in H / V) write 
F(X)=~(a{3)FaB(x) fPaB' whereFaP =,1 ap 0 FEK ap, and 
XEV. Thus, for all aEU and allYEC2x2 we have 

F(aX)(y) = I FaP(aX)fP ap(y)· 
(ap) 

Since F is p-covariant, we must also have 
F (aX)(y) = (p(a)F (X »(y) = [F (X) ](ya) 

= I FaB(X)fPap(ya), 
(a{3) 

N () a+i P+i () I I' ow, fPap ya =a 1 a 2 fPaB Y , n cone uSion, 

I FaB(aX)fP ap(y) = I a f+i a ~+i FUP(X)fP ap(y) 
(ap) (ap) 
for all y EC2 x 2 , It follows that 

for all (a,x)EU(2) X V. In particular, when a=n -j-i, 
f3=m -j-i we obtain 

F(n-j-i,m-j-i) (aX)=a 7-j a ;:-j F(n-j-i,m-j-I) (X), 

o 
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By an easy argument involving analytic continuation, 
one can strengthen Relation (3,3) to 

(3.4) 

for all b1,b2EC·, Also, it follows from the "unitarian trick" 
that if we denote by 1T~'::=~=~~ the representation of G which 
is obtained by right translation on K n-j-i,m-j-I) then it is 
irreducible with signature (m + n - 2j - i,i,O,,,,,O), 

Let fl ':n ~j denote the representation of G on H ':n ~j' Fix 
i andj, and consider the linear spaceK (n-j-i,m-j-i) as given 
in Lemma 3,5, 

Let <I> denote the linear map defined by 

[<I>f](t,x) = f( {!,J ) 
for allfinK (n-j-i,m-j-i) and all [!J in V. For all bh b2EC· 

Eq, (3.4) implies 

=b 7-j b ;:-j [<I> f](5,x). 

Also, by a simple computation we see that 

[.:1 (<I>F)](t,x) = [P12(D )f]( {!,J); 
sincefEK (n-j-i,m-j-I) it follows that .:1(<1>1)=0, Hence <l>f 
belongs to H ':n-}p 

By definition, gEG implies (g-I)'S=sg; it follows that 

[fl ':n-=:ij(g)<I>f] (5,x) 

Thus, <I> is an intertwining operator, Since <I> is obviously 
injecive, if we denote by ?t"(n + m - 2j - i,i) the image of 
K (n-j-i,m-j-i) under <1>, then ?t"(n +m -2j-i,i)] is a sim­
ple G-submodule of H ':n ~j' Since for different i (O<,i <,m - j) 
the ?t"(n +m -2j-i,i)] are nonisomorphic simple G-mod­
ules, by the same argument used at the end of the proof of 
Theorem 2.2, we see that it suffices to verify that the dimen­
sion of H ':n __ !j is equal to the sum of the dimensions of the 
?t"(n + m - 2j - i,irs to achieve the proof of Theorem 3,2. 
According to Ref. 5(b), 
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dim(Hn-j) = (2k+(n -J)+(m-J)-I) [(2k+(n-j)-2)!(2k+(m-j)-2)! ] 
m-) (2k-l)!(2k-2)!(n-j)!(m-j)! 

and 

dimCW'(n+m -2j-i,i» 
(n+m-2j-2i+ 1)(n+m-2j+2k-l) [(n+m-2j-i+2k-2)!(i+2k-3)! ] 

(2k-l)!(2k-3)!(n+m-2j-i+ 1)!i! 

Thus, if we set U =n -j, v=m -j, then u)v)i)O, and we must establish the following relation: 

(2k+u+v-l) [(2k+u-2)!(2k+v-2)! ] 

(2k - 1 )!(2k - 2)!u!v! 

i (u+v-2i+ 1)(u+v+2k-l) [(u+v-i+2k-2)!(i+2k-3)! ] 

i =0 (2k-l)!(2k-3)!(u+v-i+ 1)!i! 
(3.5) 

Remark 3.6: Explicit decompositions of the restriction of representations of several classical groups to their various 
subgroups, similar to our result in Theorems 2.2 and 3.2, were investigated in Refs. 14, 15, 5(b), and 17. In Ref. 5(b), Weyl gave a 
general formula which, in principle, would allow us to compute the multiplicity of each equivalence class of irreducible analytic 
representations of G that occurs in the restriction to G of an analytic representation of G L(2k, C). In the appendix we perform 
such a computation for a simple case (k=2); however, this technique doesn't seem tractable for more complex cases. 

APPENDIX 

In this appendix we will utilize the notations and results 
in Ref. 5(b) Sec. 8 (pp. 216-222), especially Theorem 7.8.G. 
Let 17"(e l,. .. ,e2k) [resp. 17" dml,. .. ,mk») denote the representa­
tion of GL(2k,C) (resp. of G) of signature (e l , ... ,e2k) [resp. 
(mh ... ,mk »). Our objective is to investigate the decomposi­
tion of the representation 17"(n,O, ... ,O, -m) when restricted to 
G. Since G is a subgroup of SL(2k,C), this is equivalent to 
studying the restriction of 17"(n + m,m, ... ,m,O) to G. 

If Zh ... ,z2k are 2k complex variables, let I Z a" ... ,z a,; I 
denote the determinant of the matrix of order 2k having 

[z;' , ... ,z;"], (1 <j<2k), as thejth row. Set 

=iz n+m-I +2 k -I,z i+2k-2 Z 2k-3 , ,'0', 

xz k-I,Z k-2 +Z k,Z k-3 +Z k+ 1, ... ,1 +z 2k- 2 i, 

then by virtue of Theorem 7.8.G in Ref. 5 one has the follow­
ing formula: 

L n+m- i.i.O ..... O(ZI' ... 'Z2k)/ IT (l-zjz{) 
1 <oj < 1<2k 

(
II'''' 12k ) 

= L J1 .. 
(/,> ... > {,-"o n+m-l,I,O, ... ,O 

X Iz {' +(2k-l) z!'; I 
1 ,.0." 

where 

( 
II .··/ 2k ) 

J1 n+m-i,i,O, ... ,O 

(AI) 

represents the multiplicity with which the irreducible repre­
sentation 17" G(n +m -i,i,O, ... ,O) occurs in 17"( II,"" 12k ) • 
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Clearly, we have 

L n + m -i.i.O ..... O(zl, ... ,z 2k) 

=(IZ"t m + 2k-i I,Zi+2k -2,Z2k -3, ... ,z,11 

+ Iz ll+m+2k.-i-l, 

i+2k-22k-3 2k- 2 D(II (1 ) z ,z ... ,z,z 1 <j<i<2k -Zjz/ 

Suppose n)m and k=2. A moment's consideration will 
show that, for this particular case, 

( 
n+m,m, ... ,m,O ) 

J1 n +m -i,i,O, ... ,O,O 

represents precisely the coefficient of the polynomial 
z'[ + m + 3 Z ;' + 2Z 3' + 1 in the expression of the left side of For­
mula (AI). A simple argument shows that this coefficient 
represents the number of solutions of the equation 

for all nonnegative integers u,v,w. This leads to the unique 
solution u = 0, v = i, and w = m - i. Further systematic use of 
Formula (AI) for more complex cases leads to unmanage­
able calculations. 
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The point form of quantum dynamics and a 4-vector 
coordinate operator for a spinless particle 

A. J. Bracken 
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(Received 20 December 1977) 

We construct the analog in the quantum mechanics of a free spinless particle, of Dirac's formula for the 
generators of space-time translations in his point form of classical dynamics, where one takes as 
fundamental variables the generators of homogeneous Lorentz transformations and the coordinate 4-vector 
of the point where the world line of the particle meets one sheet of a two-sheeted hYperboloid in 
space--time. A 4-vector coordinate operator is determined for such a particle, with commuting Hermitian 
components. The corresponding observable is the analog of the coordinate 4-vector of the point on the 
hyperboloid. This operator bears the same relation to such a surface as the Newton-Wigner operator 
does to an instant. 

1. INTRODUCTION 

Dirac! has shown that in classical mechanics there 
are many ways to set up a dynamical discription of a 
free point particle with nonzero rest mass, consistent 
with the requirements of the special theory of relativity. 
An observer in any inertial frame of reference need 
make use only of variables specifying the condition of 
the particle at the point in space-time where its world 
line crosses an arbitrarily chosen spacelike surface. 
(Even a surface on which every two points are separated 
by either a spacelike or a null interval may be chosen. ) 
These dynamical variables will include the energy-mo­
mentum 4-vector for the particle, P~; the relativistic 
angular- momentum tensor J~", (= - J", ~); and three co­
ordinates specifying the location of the particle on the 
surface. 

A Poisson bracket (A,B) must be introduced for every 
pair of dynamical variables A, B in such a way that 

(P~,P",)=O, (P~,J",")=g~",p"-g~~"" (1) 

(J~"" J"p) =g",~~p +g~pJ "'" - g",pJ~" - g~~ ",p' 

in order that the ten variables P~ and J~", will generate 
a group of transformations isomorphic to p, the inhomo­
geneous Lorentz group. 

If the observer adopts a system of space-time coor­
dinates x~, an obvious choice for the spacelike surface 
is an instant, say Xo = 0, The three coordinates qr for 
the particle may then be taken to form a 3-vector. Fol­
lowing Dirac, one may choose to regard this as the 3-
vector part of a 4-vector q~ associated with the particle, 
and subject to the constraint qo = 0; and one may further 
suppose the existence of a 4-vector P~ conjugate to q~, 
so that one has the Poisson bracket relations 

(2) 

However, the constraint q 0 = 0 is required to be in­
variant under canonical transformations generated by all 
dynamical variables of physical importance- called phy.­
sical variables by Dirac-and it follows that these can 
be functions only of the qr and Pr' In particular, Dirac 
argued that P~ and J~", are given by 

Pr=Pn Jrs=qrPs-qsPn 

Po = (PrPr + m2c2 )! /2 

(3a) 

(3b) 

(3c) 

where m is the rest mass of the particle, and c the 
speed of light. It is well known that these definitions 
lead, in consequence of (2), to the required relations (1), 
as well as to the relations 

P~P~=m2c2, 

PO~IIIC, 

E~"p J"'"PP = 0, 

(4a) 

(4b) 

(4c) 

which characterize a system with rest mass rn, positive 
energy, and no internal angular momentum. As Dirac 
pointed out, the choice of the surface x 0 = 0 singles out 
the Euclidean subgroup of p, because coordinate trans­
formations in that subgroup leave this surface invariant. 
Some consequences of this are the relatively simple ex­
preSSions for the associated generators P r and J rs in (3) 
as compared with those for Po and J ro , and a complicat­
ed transformation law for qr with respect to Lorentz 
boosts. 2 

Dirac called this the "instant" form of dynamiCS, and 
presented corresponding results for two other forms of 
classical dynamics: 

(I) The "point" form, in which the selected surface is 
taken to be one sheet of a two- sheeted hyperboloid or 
cone, such as x)..X~=k2, xo~k~O, 

(II) The "front" form, in which the selected surface is 
a plane light wave front, such as xO=X3' 

We are concerned with the point form of relatiVistic 
quantum dynamics (in the case k> 0) for a free, spinless 
particle with nonzero rest mass and positive energy, in 
particular as it bears upon the much-discussed question 
of the definition of position operators for such a particle. 
We do not consider the special limiting case k=O, which 
has been discussed from a slightly different viewpoint 
by Peres,3 and when we speak of the point form below, 
we shall generally be referring to the case k > O. 

In order to establish the line of our argument, we de­
scribe briefly in Sec, 2 the familiar instant form of 
quantum dynamics for such a particle. The operator 
analog of the classical coordinate 3-vector qr is easily 
seen to be the Newton-Wigner operator4, which there­
fore corresponds to the measurement of the position of 
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the particle on an instant. The complicated transforma­
tion properties of this operator in respect of Lorentz 
boosts are from this point of view not to be regarded as 
a defect when this operator is used to define the concept 
of localization of the particle (on an instant). On the con­
trary, they are a necessary consequence of the fact 
that an instant is not a Lorentz-invariant surface, and 
they are quite analogous to the transformation proper­
ties of the classical 3-vector qr. (See however the rele­
vant discussion in Ref. 2.) When the papers of Dirac1 

and Newton and Wigner4 are studied side by side, one's 
initial reaction may be that the question of localization 
of an elementary particle (or system) on an instant has 
been resolved, at least in the spinless case, in a per­
fectly satisfactory way with due regard for the corre­
spondence principle. One may feel less sure when one 
remembers that "manifestly covariant" descriptions of 
particles apparently need to be used if a (field) theory 
of local interactions is to be developed. Associated with 
such descriptions one has conserved current densities, 
which seem to point the way to other concepts of locali­
zation. (See for example Barut and Malin5, ) 

In Sec. 3 we review Dirac's formula for the genera­
tors of space-time translation in the point form of clas­
sical mechanics and formulate the problem of finding the 
analog of this formula in quantum mechanics. We find 
that a mathematically equivalent problem can also be 
formulated-that of finding in terms of the group gener­
ators an expression for a 4-vector operator which is the 
analog in quantum mechanics of the coordinate 4-vector 
of the point where the world line of the classical parti­
cle meets the hyperboloid sheet described in (I) above. 

Some of the properties of this 4-vector coordinate 
operator have been summarized by us elsewhere6 with­
out proof. It has commuting, Hermitian components, 
and bears the same relation to the surface described in 
(1) as does the Newton-Wigner operator to the instant; 
and just as the latter transforms simply under the Eu­
clidean group, but not under Lorentz boosts, so the for­
mer transforms simply under the homogeneous Lorentz 
group (as a 4-vector) but not simply under translations 
in space or time. No doubt this explains why it does not 
seem to have been mentioned in the extensive literature 
on the localization of elementary particles. (See for 
example Refs. 4, 5, 7-11 and references therein.) 

In Sec. 4, we solve the problem formulated in Sec. 3, 
relegating some proofs to two Appendices. Our conclu­
sions are summarized in Sec. 5. 

Notation: In what follows, we use the same symbol to 
denote a classical variable and its operator counterpart 
in quantum mechanics, relying on context to distinguish 
the two. Greek indices run over 0, 1, 2, 3 and Latin over 
1, 2, 3. The metric tensor is diagonal with goo = - gll 

= - g22 = - g33 = 1, and the alternating tensor is defined 
with EOi23 = 1. 

2. THE INSTANT FORM OF RELATIVISTIC QUANTUM 
DYNAMICS 

We proceed by analogy with the development of the 
classical case in Eqs. (2)- (4) now taking P~ and q~ to be 
operators in a suitable vector space, and replacing the 
Poisson bracket relations (2) by commutation relations 
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(5) 

The constraints qo = ° must now be interpreted as an 
operator equation valid in the physically relevant por­
tion of the vector space, and it again restricts the phy­
sical variables to be functions only of the Pr and qr. In 
quantum mechanics one also requires that physical 
variables be Hermitian operators in Hilbert space. 
Thus qr should be taken to be Hermitian, and the as­
sumption that Pr also is Hermitian guarantees the her­
miticity of P rand Jrs if we take over the classical for­
mulas (3a) to define these variables. Moreover, Po as 
defined in (3b) will then also be Hermitian provided the 
operator square root is suitably interpreted. However, 
the formula (3c) for J rO is then not consistent with the 
hermiticity requirement, and in order to obtain Her­
mitian J rO without violating the correspondence princi­
ple, we are naturally led to adopt instead the symme­
trized expression 

1 ( 2 2)1/2 1(P + 2 2)1/2 J rO =2qrPsPs+ mc +2sPs mC qr· (6) 

It is then readily checked that with these definitions, P~ 
and J~IJ. satisfy the required relations 

[p~,P," 1=0, [p~,J,"vl=iIi(g~,"Pv-gwP,"), 
(7) 

as well as the "representation relations" (4), now inter­
preted as operator equations. 

As qr and Pr are by assumption Hermitian operators 
satisfying the canonical commutation relations, one may 
take the Hilbert space to be that of square-integrable 
functions .p(p!> P2, P3) with scalar product 

(<I> ,\{I)= J J r: .p * (Pi> P2, P3)\{I (Pi> P2, !J3)d3p, (8) 

and take qr = iii a/apr. It is well-known (see, for exam­
ple, Foldy12) that in this space the operators P A and J~IJ. 
defined above generate the unitary representation (m 2c2, 

0, +) of p, apprpriate to the description in the Heisen­
berg picture of a positive-energy spinless particle with 
rest mass iJI. The operators qr are seen to form the 
Newton-Wigner 3-vector position operator (at .'lJ = 0), 
which is thus revealed as the analogue in quantum me­
chanics of the position vector of the classical particle 
where its world line meets an instant. 

Since the operators P~ and JA/J. do generate an irredu­
cible representation of P one may hope that any given 
operator on the Hilbert space can be expressed in terms 
of those generators. This is true for the operator qr: It 
can be seen from (3a), (3b), and (6) that 

(9 ) 

Moreover it is not hard to see that if one takes (9) as a 
definition of q" assuming the commutation relations (7) 
and representation relations (4), then one can drducc 
the relations 

[q"qsl=o, [q"psJ= inors, Jrs=q~s-qsPn 
and (10) 

J rO = ~qr(psps + m 2c2 )1 /2+ HpJ; + 1Il2C 2)1!2qr 

From this point of View, it is the group generators 
which play the more fundamental role, the variables qr 
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being derived quantities. In such a formulation one does 
not need to introduce the unphysical variables Po and qo. 

3. THE POINT FORM OF RELATIVISTIC DYNAMICS 

The preceding discussion should have its counterpart 
for each of the other forms of classical dynamics de­
scribed by Dirac- and in principle, for the form cor­
responding to an arbitrary choice of spacelike surface. 
Fleming11 has found the counterpart for the case of a 
general spacelike hyperplane, in which case the con­
straint qo = 0 is replaced by 

where T and 1)IL are real constants, with 1),,1)" = 1. In the 
case of a nonplanar surface, such as that defining the 
point form, the counterpart is more difficult to discover. 

In the point form, the three coordinates specifying the 
point at which the world line of the classical particle 
meets the surface X~X~=k2, xo?'k~O, may be written as 
a 4-vector q~ subject to the constraints 

(11) 

Again introducing variables p~ conjugate to q~ as in (2), 
and noting these constraints, we expect that in this case 
physical variables can be functions only of qx and lXIL' 
where 

IxIJ. =qJYIJ. - qIJ.p~. 

Dirac argued that P x and J XIL in particular have the forms 

JXIJ. :=lxIJ. 

k2p~=k2px +qx{[(p"qIL)2_ k2(p"p" _ m 2c2)]1/2 _ p"qIJ.} 
(12) 

which one readily checks imply the required relations 
(1) and (4). 

One then sees that 

qxPIL - qjLP~=J)o." (13) 

and that the Poisson bracket (qu P ,,) [= - oP IJ./iW\] has 
the form 

(qx,P,,) =-g)o.IJ. +q)o.PIJ.(q"Pvtt, 

so that 

(q)o.,P') =- 3. 

(14) 

(15) 

There is a remarkable symmetry between the roles of 
the timelike 4-vectors P)o. and q~ in this form of dyna­
mics. Apart from Eqs. (13- 15), ones sees that as a 
result of Eqs. (4a), (11), (12), and (13) 

k2p)o. = - JXIJ.qIJ. +q)o.(m2c2k2 - tJ IJ.vJIJ.v)1!2 

m 2c2q)o. = JXIJ.PIJ. +Px(m2c2k2 _ ~J ,,~IJ.v)1I2 

(16) 

(17) 

All equations in the point form of dynamiCS, such as 
(13)- (17) above, can be expressed in a manifestly co­
variant way using four-dimensional tensor notation. As 
Dirac stressed, this reflects the special role chosen for 
the homogeneous Lorentz subgroup of P by the observ­
er's choice of a special surface Which is invariant under 
Lorentz transformations of his coordinate system. It is 
this feature of the point form, and the associated fact 
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that this subgroup is simple in the mathematical sense, 
which makes it attractive and will be responsible for any 
advantages it may have over the other forms. 

Turning now to the point form of quantumdynamics 
for a spinless particle, we proceed initially as in the 
case of the instant form (Sec. 2), introduce a set of 
operators qx, p~ satisfying the commutation relations 
(5), and impose the operator constraints 

(18) 

now to be satisfied by Hermitean operators qx on a Hil­
bert space fl. 

We also take l~IJ. (= q,p IJ. - q IJ.Px) to be Hermitian opera­
tors in fI, and identify J x" = l~I/o' Then we wish to find the 
analog in the quantum theory of the formula (16), defin­
ing Hermitean P, in terms of q). and J'IL in such a way 
that the P x and J,,, satisfy the relations (4) and (7). 

A suitable realization of the space fI is that of func­
tions <I>(qo, ql> q2' q3) defined on the sheet qo ~ k > 0 of the 
hyperboloid q).q~ := k 2, with scalar produc t 

(<1>, w) = f <1>*('70' qj, q2' q3) w (qo, qt, q2, q3)dn, 

where the integral is over the whole sheet, and dn( = dq t 
dq2dqJqO) is the Lorentz-invariant volume element on 
the sheet. Then qx and also lx,,' which is now given by 

I~" =in(qx%q" - q"%q~), (19) 

are Hermitian as requiredo In these terms, the problem 
is to exhibit the unitary representation (m2c2 , 0, +) of P 
in this function space, with generators 

(20) 

and P x, defined in such a way that the classical formula 
(13), and consequently (16), can be recovered in the 
classical limit. 

Peres3 has solved the corresponding problem in the 
limiting case k = 0 (for particles with spin 0 or ~. ) How­
ever, his solution is not expressed in a manifestly co­
variant way, so that the peculiar advantage of the point 
form is to some extent lost in his treatment. While 
Fubini, Hanson, and Jackiw, 13 Sommerfield, 14 and 
Gromes, Rothe, and Stecht5 have considered the initial­
value problem for quantum or classical fields with the 
surface x,X'=k2, xo~k>O as Cauchy surface, no one 
to our knowledge has tackled the specific problem posed 
above, although Fubini et al. make passing reference to 
its difficulty. 

Supposing that a solution P, exists, it is clear that 
q~P" - q "Pl and P "qx - Pxq I/o can differ from J~" only by 
terms which in some sense vanish in the classical limit, 
We shall see that it is possible to find a solution P A with 

J~" =t(qxPI/o - qIJ.P~) +t(Pl/oq).. - P~q,,), 

but not with JXIJ. equal to either of the asymmetrical 
forms o The solution is uniquely determined if we require 
in addition the analogue of (15), viz. 

[qx, p~] = - 3m, 

In the representation space fI the P~ and JXI/o must sat­
isfy the representation relations (4) as well as the com­
mutation relations (7). We note that in fI we shall have 
the relations (18), and also 
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E)J.wpJ""qP =0 (21) 

by virtue of (2). Furthermore, it is clear that in H 

[q~,q,,] ==0 

[q~,J".1=i1f(g~"q"-g~"qjJ. (22) 

Comparing (18) and (21) with (4a)- (4c), and (22) with 
(7), we see that the Hermitian operators q~ and J~" may 
be regarded as generators in H of a unitary irreducible 
representation (k2, 0, +) of a group isomorphic to P. 

Just as in the case of the instant form of dynamics, 
one can look at the problem posed above for the point 
form from a different point of view, supposing the gen­
erators p~, J~" of the representation (m2c2

, 0, +) to be 
given, and arguing that other operators in the Hilbert 
space, such as q~, might be expressible in terms of 
those generators. From this point of view, one has Her­
mitian operators p~, J~" satisfying (4,7), and wishes to 
express in terms of them, Hermitian operators q~ via 
a formula reducing to (17) in the classical limit. 

One sees that mathematically, this problem is essen­
tially the same as the former one. In its most abstract 
form, each problem can be formulated as follows: 

One has a set of Hermitian operators a~, J~" which 
generate in a Hilbert space H a unitary irreducible re­
presentation (1,0, +) of a group isomorphic to p, and 
hence satisfy 

[a~, a,,] == 0, [a~, J,,"] = in(g~"a" - g~ua,,), 

[J~", J up ] ==in(g,,~~p +g~pJ"u - g~~"p - g"pJ~u), 

as well as 

(23a, b) 

(23c) 

(24a, b, c) 

and one wishes to find, in terms of a~ and J~u' Hermit­
ian operators b~ satisfying the same relations as a~ in 
(23) and (24). In addition, one wants to obtain in the 
classical limit 

a~bu -a"b~==aJ~" 

and (consequently) 

b~ == - aJ~"a" + a~(l _ ta2J "~,,u)1 12, 

(25) 

(26) 

where a is a nonzero constant with the dimensions of 
111. In the first problem posed, a = l/mck, a~ ==qJk, 
b~ = P/mc; in the second a == -l/mck, ~ = P/mc, 
b~=q/k. 

As indicated above, in order to specify a solution 
uniquely, we shall find it necessary to require 

(a~, b~] =- 3i1fa, (27) 

the analog of the classical relation (a~, b~) = - 3a 0 

4. SOLUTION OF THE PROBLEM 

It is knownl6 that the operator tJ~uJ~u has in H a con­
tinuous spectrum of points - (1 + (32)n2, 0 ~ {3 < ""; we in­
troduce an Hermitian Lorentz-scalar operator B satis­
fying 

[B, J ~] = 0, ~J ~J~u == - (1 + B2)n2 (28a, b) 

(Here and below, a numerical multiple of the identity 
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operator on H is denoted by the corresponding complex 
number. ) The specification of B is completed by the 
requirement that its spectrum be of points {3, 0 ~ {3 < 00, 
corresponding to that of ~J~J~ in the obvious way. 
Then nB is an analog in quantum theory of the positive 
square root of the positive classical quantity (- tJ ~ J~"). 

The identity 

J~r~ - 2iM).va u + (~JpaJPa) a~ = 0 (29) 

holds as a consequence of (23c) and (24c), as can be 
checked by substitution of index values. This is a spe­
cial case of a more general type of identity, discussed 
in detail elsewhere. 6,17 

Combining (28b) and (29) we have 

(J~ - (i - B) ng~) (r - (i + B) ng"") au = O. (30) 

We define 

vet) ~ = (2nB)-I(J~ _ (i Of B) ng~ )a" 

so that 

a~ = v(+) ~ - v(-)~. 

Then it follows from (30) that 

J~ v(t)" = n(i ± B)v(t)~. 

(31) 

(32) 

(33) 

Now according to (31), vW~ is a 4-vector operator, so 
that 

[v(t)~, J
Ilv

] = in(g~ v(') u - g~uv(t),,) 

and hence 

[v (') l.J J""]-2t·nJ v(')1-' +3n2v(±) 
A' 2 Ilv - W ~. 

Combining (28b), (33), and (35) we have 

[v(±) A' (1 + B2) 1 = (- 1 'f 2iE)v(±)~, 

that is 
(B T .)2 (t) _ (±) B2 

Tt V ~-v ~ . 

(34) 

(35) 

(36) 

In Appendix A we show the validity of the (apparently) 
stronger result 

(37) 

and in Appendix B that (37) implies with (32), the her­
miticity of vet) A' It must be emphasized that (37) is con­
sistent with the hermiticity of v(±) ~ and E, although for­
mally it seems to imply that v(') ~ shifts an eigenvector 
of E corresponding to a real eigenvalue {3, to one cor­
responding to the complex eigenvalue ({3 ± i). The point 
is that E has no eigenvectors in Ii, and a fortiori, none 
in the domain of v(t)~. [A similar situation occurs in 
those unitary representations of the conformal group 
corresponding to massless particles, where the Her­
mitian dilatation generator D and translation generators 
p~ satisfy DP~ =P~(D - 0. J 

The operators v(') ~ have several remarkable proper­
ties which we now list, putting derivations in Appendix 
B, and they playa central role in what follows. One has 

1)(±\ t = 11('\ (Hermiticity) (38a) 

v(±\v(±)~ = 0 (38b) 
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(38e) 

We now tackle the problem posed in Sec. 3, seeking 
an expression for the operator b~ in the form 

(39) 

where F(±l(B) is a Lorentz-scalar operator-valued func­
tion of B. We shall think of F(±l as an "analytic" function 
with, for example on suitable vectors in 1/, 

~ 

F(+l(B) = L an(B - b)n 
n=O 

for some complex numbers an and b. The Hermitian 
conjugate of F(+ 1 is then 

Lan*(B - b*)n, 
n=Q 

which we write as F(+l*(B). Thus 

In what follows, we repeatedly make use of relations 
like 

F(±l(B),'(+\ = ,,(+\F(±l(B + il, 

which are taken to follow from (37) and (40), 

Taking the Hermitian conjugate of (39), we have 

b~t = 1'(+\F(+l*(B) + 11(-\F(-l*(B) 

= F(+H(B - il11(+\ + F(-)*(B + ill'(-\ 

so that b~ is Hermitian if and only if 

F(±)(B) = F(±l*(B Of il. 

Next we note from (39) that 

b~b" = F' ·)(B)F(+l(B - i)7'(+\I'(+)" 

+ F(+)(B)F1-)(B - il,,(·) ",(-)" 

+ F(- )(B)F(+)(B + i)1,I-\"(+),, 

+F(-l(B)F(-)(B + i)!'(-\I'(-) ,,' 

Then as a consequence of (38b, c) we have 

b~b~ = - (B - OF(+ l(B)F(-l(B - il/2B 

- (B + i)F(-l(B)F(+)(B + il/2B, 

so that b~ll = 1 if and only if 

(40) 

(41) 

(42) 

(43) 

(B - ilF(+l(B)F'-)(B - 0 + (B + ilF(+l(B + i)F(-l(E) 
(44) 

=- 2B. 

Furthermore, (43) also implies, with (38d, e), that 

[b;"b"l 
= (_F(+l(B)F(-l(B - i) + F( .1(B + i)F(-l (B)) J~....I2IfB, 

so that [b~, Ii" 1 = 0 if and only if 

F(+l(B)F(-l(B - 0 =F(+l(B + OF(-l(B). 

Combining (44) and (45) we have at once 

F(+l(B)F(-l(B - n = - L 

(45) 

(46) 

Thus a four-vector operator of the form (39) is Hermi­
tian, with commuting components and unit length, if and 
only if (42) and (46) hold. [In particular this is so for a~ 
itself, for which F(+l(E)= _F(-l(B)= 1. 1 
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Turning now to the analog of the classical formula 
(25), we might try to impose any of 

a~h" -a"b~=CiJ~", 

b"a~ - b~a" = CiJ~", 

(47a) 

(47b) 

(a~b" - ajJ.bJ + (b"a~ - b~a,J = 2f'lJ~jJ.' (47c) 

Considering firstly (47a), we note that 

a~hjJ. = (,.(+\ -11(-1 x!(F(+1(B)1I(+)" + F(-)(B)1I(-) ,,) 

= F(+ l(B - i)V(+\I'(+)" + F(-l (B - 0" (+1 ~1I(-) " 

- F(+)(B + ih'(-)~1I(+l" - F(-l(B + n"(-\,,(-),,, 

so that in view of (38d, e) 

a)J" - a "b~ = (-F(-)(B - i) - F(+)(B + i))J~,,/2nBo (48) 

Thus (47a) holds if and only if 

(49) 

Multiplying both sides of this equation by F(+ )(E), and 
noting (46) we have 

F(+)(E)F(+)(B + il+ 2 a nBF(+)(B) = 1. (50) 

Taking the Hermitian conjugate of (50), we get 

F(+)*(B) F(·l*(B - 0 +2anBF(+)*(B) = 1. 

which, in view of (42), is equivalent to 

F(+)(B + i)F(+)(B) + 2afiBF(+1(B + i) = 1. 

Then (50) and (51) imply 

F( +)(B) = F( +)(B + n. 
But then (50) and (52) imply 

F(+)(B)F(+)(B) + 2anBF(+)(B) = 1 

and 

F(+)(B + i)F(+)(B +0+ 2anBF(+)(B + i)= 1; 

and (53) implies 

F(+)(B + i)F( +)(B + 0 + 2 Cin(B + i)p(+l(B + i) = 1, 

(51) 

(52) 

(53) 

(54) 

which is inconsistent with (54). Thus (47a) is inconsis­
tent with (42) and (46). 

The attempt to impose (47b) rather than (47a) leads to 
similar conclusions, and we turn now to the symmetric 
case (47c). Just as we derived (48), we find also that 

{J"aA - b~a" = - (F(+l(B) + F(- )(E))J~,,/2ffB, 

so that (47c) holds if and only if 

[F(-l(B - i) + F(·l(B + i) + F(')(B) + F(- )(B) 1 = - 4 CinB. 

(55) 

or equivalently, 

G(B) + G(B + n= - 2 a nB, (56) 

where 

(57) 

Taking the Hermitian conjugate of (57) and using (42), 
we get 

G*(B)= G(B + n. (58) 

Multiplying by F(+l(B) in (57) and using (46) we get 

A.J. Bracken 2524 



                                                                                                                                    

so that 

F( +)(B) = G(E) + [1 + G2(E) p/2, (59) 

where [1 + G2(B)]1 12 denotes some Lorentz-scalar square 
root of [1 + G2(B)]. 

Then (46) implies that 

F(-)(B - i) = G(E) - [1 + G2 (E) ]1/2, 

that is 

F(-)(B) = G(B + i) - [1 + G2(B + i) ]11 2. (60) 

Conversely, if G(B) satisfies (56) and (58), then F(' )(B) 
and F(-)(B), defined as in (59), (60), can be seen to sat­
isfy (42), (46), and (55), and so to define via (39) a 4-
vector operator b~ with the required properties of her­
miticity, unit length, commuting components, and sat­
isfaction of (47c). Since (56) and (58) evidently do not 
uniquely determine G(B), the solution to the problem at 
hand is not yet specified completely. 

In order to remove this ambiguity, we now impose 
(27). From (32) and (39), we get with the help of (38b, c), 

a~b~ = [(B + i)F(+ )(B + il - (B - OF(-)(B - i) l!2B 

and 

b~a~ = [(B - i)F(+)(B) - (B + OF(-)(E) l!2B, 

so that (27) implies 

(B + OG(B + i) - (B - nG(B) = - 3iarfB. 

Then (56) and (61) imply 

G(B) = - afi(B - h), 
which is seen to be consistent with (58). 

(61) 

Substituting in (59), (60), we arrive at the expressions 

F(±)(B)= - oIf(B=t=h)±H(±)(B), (62) 

where 

H(±)(B)= [1 + a 2fi2(B 'fh)2j1/2. (63) 

Substituting from (62) in (39), and recalling the definition 
(31) of 1/±\, we have finally 

b~ = [- a + (H(+)(B) -H(-)(B) )/2fiB]J~"a" 

+ [(3iafiB + (B - i)If+)(B) + (B + i}H(- (B»/2B]a~. (64) 

There is a remaining ambiguity concerning the defini­
tion of the operator square roots If±)(B) in (63) and (64). 
This reflects the fact that we have yet to impose the 
condition bo.::?:.1. An Hermitian 4-vector operator with 
unit length, commuting components, and satisfying (47c) 
can have either bo ~ 1 or bo~ -1. The second possibility 
corresponds to a classical formula like (26) with a mi­
nus sign preceding the a~ therein 

We can guarantee bo~ 1 by choOSing the square roots 
H(±)(B) so that (64) will yield (26) in the classical limit. 
In that limit, it is clear that in some sense which we 
need not make precise, 

fi-O, B-+oo, fi2B2 __ ~J"v. 

Then 

H(+)(B) -If-)(B) - [1 _ta 2J"v?]1/2 
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and (26) is recovered from (64), provided the point 
H(%)«(3) in the spectrum of H<±)(B), corresponding to the 
point (3 in the spectrum of B, has positive real part 
( - I a I Ii (3) when (3)> 00 This is achieved by taking H(±)(f3) 
to be the principal square root of 1 + Q'21f2«(3 =Fti)2 0 

In other words, in the representation described in Ap­
pendix A, where B is realized as multiplication by the 
nonnegative quantity (3, H(±)(B) will be realized as mul­
tiplication by the principal square root [1 + Q'21f«(3 
=Fti)2]1/2. In this connection, it is worth mentioning 
that for Q'2fi2 ~ 4, the two curves z(±)«(3) = [1 + a2~ «(3 
'f ti)2], i3 ~ 0, in the complex z plane meet the branch 
cut of the prinCipal square root ZI/2 at (3 = O. It may be 
that this means that b.". as defined in (64) is not self-ad­
joint in such cases, but with our algebraic approach we 
cannot determine this. Note that a 21f2 <4 can be written 
in the very suggestive form 

(rnc)k >~fi. 

5. CONCLUSION 

We have derived for a spinless particle with nonzero 
rest mass 111 and positive energy, the analog in quantum 
mechanics of Dirac's formula (16) defining the point 
form of classical dynamics. Substituting a = 1/mck, 
a,=q~/k, b~=P~/rnc in (64) we have 

k2p~= [-1 + I11ck(H(+)(B) -H(-)(B» /21fBjJ~"q" 

+[(3i1lB + mck(B - OH(+ )(E) 

+111 ck(B + OH(-) (B»/2B ]q~, 

where 

H(±)(B) = [1 + fi2(B 'f tif /m 2 c2 k 2 VI 2, 

(65) 

(66) 

By the same means, we have derived a formula for 
the 4 -vector coordinate operator q~ in terms of the 
generators of the inhomogeneous Lorentz group p. 
Substituting a= -1/rnck, a,=Pjmc, b,=q,/k in (64) 
we have 

m 2 c2q, = [1 + mck(H(+)(B) -H(-)(B»/2nB]J,/"P" 

+ [( - 3iliB + In ck(B - nH(+ )(B) 

+mck(B+i)H(-) (B»/2B]P~, 

with H(±)(E) as in (66) 

(67) 

This 4 -vector operator satisfies q,q' = k 2
, qo ~ k > 0, 

and has commuting components which are Hermitian. 
We have made implicity in the text certain reasonable 
but unproven assumptions about domains of definition of 
operators, and we certainly cannot claim to have proved 
the stronger condition of self -adjointness of q,o In par­
ticular, we have suggested that there is some question 
as to the self -adjointness of q, when one does not have 

(mc)k >tn. 

The operator q.". is the analogue in quantum mechanics 
of the coordinate 4-vector of the point where the world 
line of the classical particle meets the positive sheet of 
a two-sheeted hyperboloid, and as such certainly quali­
fies to be called a coordinate operator. It bears the 
same relation to this surface as the Newton-Wigner 3-
vector operator does to an instant. Only transformations 
in the Euclidean subgroup of P leave an instant invari-
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ant, and accordingly the Newton-Wigner operator trans­
forms simply under this subgroup but not simply under 
Lorentz boosts. Similarly, the sheet of the hyperboloid 
is Lorentz invariant, and q~ transforms simply under 
the homogeneous Lorentz group (as a 4-vector) but not 
simply under translations in space and time. In partic­
ular, the canonical relations 

[q r' Ps ] = in Or s 

do no! hold. We have so far been unable to evaluate the 
commutator [q~, PI' 1 in terms of simpler expressions, 
in order to find the analog of the classical equation (14). 

It could reasonably be argued that the formula (67) is 
so complicated that one cannot hope to manipulate readi­
ly or usefully with the operator qA' Our main purpose 
has been to indicate the existence of this 4-vector oper­
ator, which we have seen is defined by the conditions 
that it has Hermitian, commuting components, and sat­
isfies 

). 2 > 
q~q =k, (jo=k >0, 

«(j~P" - (j "p~) + (P,,(jA - PA(j /1» = 2JA", 

[QA' pI. 1= - 3in. 
(68) 

Given that, we hope it will prove possible to investigate 
its properties further (for example, to find the common 
generalized eigenvectors of its components in, say, the 
momentum representation) by other means. 
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APPENDIX A 

Chakrabarti, Levy-Nahas, and Seneor l8 have de­
scribed the matrix elements of the operators aA in a 
"Lorentz basis" for the representation (1,0,+) of P. 
This basis, in which B, ~JrsJrs and J 12 are diagonalized 
is not a true basis, as it consists of nonnormalizeable 
vectors, but it can be used to define a realization of the 
underlying abstract structure. Then the Hilbert space 
is realized as the space of vectors 

t/J = (t/Joo({3), ,b l1{(3), rPlO({3), t/J1-l({3), (b22({3)"'), 

O~{3<oo, 

where 

6 Uo~ I t/J Im({3) 1
2d{3) < 00, 

I,m 

the sum being over m = l, 1 - 1, ... , - I for 1 = 0, 1, 2 0 0 •• 

The scalar product of two such vectors is 

(t/J, </J) = :LUo~ rfJim(f3)</J Im({3)d{3). 
I,m 

The results of Chakrabarti el al. [see in particular Eqs. 
(2.3), (2.18), (2.19), and (2.29) in Ref. 18] show that 
in this realization, the action of the operators ao and 
B is 

(a
O

t/J),m({3) = [(t - i{3)(t + i{3 + 1)/4{3({3 - i) ]1/2t/J lm ({3 + i) 

+ [(t + i{3)(t - i{3+ 1)/4{3({3 + i) 11/2rplm({3 - i) 

(Bt/J) Im(f3} = {3t/J'm({3). (A1) 

Here the action of Go evidently presupposes certain an-

2526 J. Math Phys., Vol. 19, No. 12, December 1978 

alyticity properties of the functions t/J'm({3) for vectors 
t/J in its domain. Although it is difficult to exhibit expli­
citly a common invariant dense domain of Hermiticity 
for ao and B, it is nevertheless clear from (A1) that 

(A2) 

where, on suitable vectors rP 

(II (±) ot/J) Im(f3} = ± [(1 ± i {3)(Z 'f i{3 + 1)/ 4{3({3 ± i} ]1/2 rP,m({3 'f i) 

and, consequently 

Bu(±)o= 1/±)o(B± f). 

It follows from (A2) and (A3) that 

Defining the 4-vector operator 

so that 
(.) (-) 

aA =1I A -u A' 

we see from (A3) by covariance that 

Bu(±\ = 1/±\(B ± i), 

Since it then follows trivially that 

(B 'f i}21/±) 1.= U(±) AB2 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

Ne see from (A6), (A8), (32), and (36) that 1/±\=II(±\, 

and (37) is thus justified. 

APPENDIX B 

Once (37) is established, it follows using (32) that 

Since a A and B are Hermitian, it follows at once that 
11(±\ is also Hermitian; that is (38a) holds. 

Now note from (B1) and (37) that 

But from (31) 

v(±\aA = (2nB)-I(J~"a" aA - (i 'f B)naAaA) 

= -(i'fB)/2B, 

(El) 

(B2) 

(B3) 

since the components of aA commute, and aAaA = 1. Com­
bining (B2) and (B3) we have 

establishing (38b). In a similar way, (38c) is deduced. 

Again using (B1) and (37) we have 

1I(±\0 (±)" = ± ~1'(±\a" + ~ i17(±) ~a"B - ~i(B ± 011 (±\a". 

But from (31) 

11(±) Aa" = (2nB)-I(JAva
Va" - (i 'f B}n aAaJ, 

so that 

1I(±\a" - v( ±) "a A = (2nB)-I(J~vaV a" - J/Jovav aA). 

Now (24c) is equivalent to 

JAva", +J"Aav+Jv"aA=O. 

(B4) 

(B5) 

(B6) 

Contracting with aV from the right in this equation, and 
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noting that avav = 1, we obtain 

(B7) 

Combining (B6) and (B7) we have 

II
U \a" -11(±) "ax = (2fiB)-lJ,/> , 

and thus from (B4) that 

establishing (38d). In a similar way, (38e) is deduced. 
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The Yang equations for all self dual solutions of SU(r,s) gauge theory are exhibited in simple form. 
Algebraic and Backlund transformations of the solutions of these equations are derived. The Backlund 
transformations change an SU( r, s) solution into an SU( r - 1, s + I) solution. 

Recently considerable progress has been made in 
understanding the classical structure of self-dual solu­
tions to the SU(2) gauge theory. 1-5 Not only has an ex­
plicit solution been given for the Ward Atiyah Ith 
ansatz in terms of 21 + 1 free fields, but also Backlund 
transformations and algebraic transformations have 
been found which change one ansatz into another. These 
transformations were discovered as transformations 
leaving invariant the three equations obtained by yang 
which characterize the solutions of self-dual gauge 
theory. 

In the present note, by extending yang's treatment 
to the case of SU(r, s), r+ s = II, gauge theory, which 
includes SU(n), we show that the equations of self-dual 
gauge theory may be expressed in a very simple and 
transparent form, which follow from a Lagrangian. 
The algebraic transformations of the solutions then 
follow almost automatically. There exist Backlund 
transformations p, which have the property of changing 
an SUr Y, s) solution into an SUr v-I, s + 1) solution. 
The kth power (I, = 1, ... ,12 - 1) of I) is also a Backlund 
transformation while f3 is also a Backlund transforma­
tion while f:J" is essentially the identity. These 11 - 1 
independent transformations are associated with the 
n - 1 (nonidentical) cyclic permutations of order 11, and 
have the appearance of an extended form of gauge 
transformation, but they are not gauge transforma­
tions. They are represented by nonlinear differential 
equations of first order. 

In Sec. I we present yang's equation and use the 
local isomorphism between SOl 4), the Euclidean ver­
sion of space-time rotations in four dimensions, and 
SU(2)xSU(2) to give the simplest form of the self-dual 
equations and the best choice of variables for the prob­
lem. 

In Sec. II we present the equations in a manifestly 
gauge invariant way by introducing suitable variables. 
The topological quantum number is directly expressible 
in terms of this form. 

In Sec. III we discuss in a complete manner aU pos­
sible algebraic transformations of the solutions. These 
transformations are shown to correspond to equivalent 
classes of SL(n, C) matrices. 

In Sec. IV we present the Backlund transformations 
we have found. 

In Sec. V the formulas for the Backlund transforma­
tions are written explicitly for the case of SUr 3). 

An appendix fixes our notations and the connections 
between the different bases which are introduced. 

I. YANG'S EQUATIONS AND SU(2) 0 SU(2) 

The basic simplicity of yang's derivation' of the 
equations of motion describing self-dual gauge fields 
in four-dimensional Euclidean space lies in the trans­
formation of coordinates x~ (I-l = 1, 2,3,0) to va = (y,:y, 
2., z) defined by 

Y = /2 [I' - ~J = XO - ixia j" 

2. :v 
(1. 1) 

This notation exhibits clearly the local isomorphism 
between SO(4) and SU(2)!? SU(2) since the Euclidean 
transformations are represented by 

Y' =AYB, (1. 2) 

where A and B are two independent two by two unitary 
unimodular matrices. In other words, an sot 4) vector 
xl" transforms as a (~, ~) representation of SU(2)7 SU(2). 
Introducing also .va = (y, .v, z, z) the invariant length of 
xl" is 

xl" x~ = detY = ~.Va.va = t.v.v + zz). 

As shown in the appendix, in this frame the self­
duality relations become 

(1. 3) 

(1. 4) 

where F"" v is the antisymmetric gauge field tensor whose 
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components take values in the (complexified) Lie 
algebra of SU(n) here written in the new variables. 
Introducing the further change of variables pa = (P, p, 
q, if) 

z = !2 fp -if] = [v + z y - zl , 
Gl P Z -y z+.d 

(1. 5) 

where Z transforms in exactly the same way as Y (1. 2), 
the equations (1. 4) can be expressed in the more sym­
metrical form 

Fyz=Fyz=Fpq=Fpq= 0, (1. 6) 

where only three of the above set of four equations are 
linearly independent. Under SU(2)6<O SU(2) an antisym­
metrical tensor transforms as a (1, 0) + (0, 1) represen­
tation and (1. 6) expresses the self-duality as the ab­
sence of the (0, 1) components. 

The first two sets of equations (1. 6) imply 

A y= - iD-1D,, ' A.= - iD-1D,., 

A,,=-iE-1E,'9' A,=-iE-1E,z, 

(1. 7) 

where D a represents the a derivative of the matrix D, 
of deter~inant one to guarantee that A be of zero trace. 
A gauge transformation on the theory corresponds to 
a transformation 

D'=VDU, E'=VlET. (1. 8) 

For a SU(n) theory, U = T is an arbitrary .'\,a dependent 
unitary unimodular II by II matrix. The matrix V(W) is 
a member of SL(IZ, C) which may depend upon\' and z 
(y and z). Also 

(1. 9) 

can be chosen to ensure that A~ be the Hermitian con­
jugate of Ay and hence that A," be real fields. 

The third set of equations, Fy,+Fzz:=O, are the n2 _1 
dynamical equations which remain to be solved to give 
the most general dual field. 

The distinction we have made between E and D allows 
us to treat the more general case of a SU(r,s) (r+s:=n) 
gauge theory. Indeed with the metric M diagonal with 
r plus ones' and s minus ones' the connection between D 
and E is 

(1. 10) 

since in that case 

(1. 11) 

Gauge transformations take then the form (1. 8) with 

U:=T, 

U+MU=M, 
(1. 12) 

II. GAUGE INVARIANT EQUATIONS 

We now show that Yang's equations can be cast in a 
gauge independent formulation. Introduce the matrix 

(2.1) 

The last equations of (1. 4) become upon multiplication 
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by E on the right and by £-1 on the left 

(PP-l) + (pP-l) =0 
.' ,Y ,! ,z 

(2.2) 

(2.3) 

These equations can be derived from a Lagrangian 
which we are unable to express in terms of P however. 
We leave the discussion of the Lagrangian until the 
appendix. 

It is obvious that (2.2) is invariant under the trans­
formation 

(2.4) 

where V and Ware constant SL(2, C) matrices. There 
is another obvious invariance under 

P' = (P-l)T. 

There are only n~ - 1 linear independent equations 
among (2.2) since it follows from det P = 1 that the 
trace of equation (2.2) is identically zero. 

(2.5) 

We conclude this section by giving an expression in 
terms of P for the topological invariant in the case of 
self-dual F,," 

T= 16~2 f Tr(F"j"v)d
4
x 

= 1:1T2 f Tr(F,yF z~+F,~yz)dv dz dvaz 

+ (P,~P-l))P"P-l))}d,' dz dy dz, 

where F "v is defined as usual by 

F <LV = tE"VO!BF "a' 

III. ALGEBRAIC TRANSFORMATIONS IN THE 
TRIANGULAR GAUGE 

(2.6) 

(2.7) 

In what we will call the triangular gauge (Yang's R 
gauge) the matrix D is chosen as lower triangular with 
real diagonal elements. We will now show that in this 
gauge there are algebraic transformations on the ele­
ments of D which keep the new D triangular and are 
gauge transformations. Indeed given any SL(n, C) ma­
trix V there is a unique SU(n) matrix U such that 

D'=VDU (3. 1) 

remains triangular. 

Proof: Let 

(3.2) 

This equation can be solved sequentially for the com­
ponents of D' assumed to be lower triangular. The 
n2 

- 1 independent nonzero components of D' (n - 1 
diagonal and n(n -1) off diagonal complex elements) are 
determined by the n2 

- 1 independent equations (3.2). 
Then U =D-1V-1D' is unitary by (3.2). 

The algebraic transformations from D to D' can be 
claSSified by classifying all the SL(n, C) transforma­
tions. Introduce the "translations" defined by lower 
triangular matrices with ones along the diagonal T and 
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the "dilations" C defined by diagonal matrices of deter­
minant one. Then any SL(n, C) matrix can be written as 

(3.3) 

where S j is uniquely defined by V and is one of the 
(up to a sign) permutation matrices. We recall that a 
permutation is represented by matrix with a one in 
every line and every column. One of the signs of S j is 
adjusted in such a way as to make S j of determinant 
one. 

To every triangular matrix V, a translation or a 
dilation, corresponds the SU(n) unit matrix. To the 
(n)! - 1 nontrivial regular permutations (excluding the 
identity) correspond (n)! - 1 nontrivial matrices U j' 
The (Il)! - 1 special transformation obtained by 

(3.4) 

are the special algebraic transformations which playa 
crucial role. 

In the special case of SU(2) with 

D~ ~ [: ~J (3,5) 

E' ~ ~ [: -; ] (3,6) 

the Hermiticity implies (L 9) 

g=:c-e (3.7) 

and the algebraic transformation «n)! - 1 = 1) is 

l' =:cFI, 

e' =:cg(f - get!, 

g' =:c elf _ ge)-l. 
(3.8) 

In this case the three remaining equations of motion are 

rV(f,,'Y + I,d) -f,,!,> -!,z!,. 

- e,$,y-e,.g,zt=:cO, 

r{J(g,iY + g,i') - 2g;yf" - 2g,zf,.}=:c 0, 

F 2 {J(e", + e ,z') - 2e "f,> - 2e ,.f,z}=:c 0. 

IV. BACKLUND TRANSFORMATIONS 

(3.9) 

With the notation of the preceding sections and of the 
appendix we will now try to define Backlund transforma­
tions, i. e., transformations which enable us to define 
D' and E' as solutions of our set of equations in terms 
of another set D and E which satisfies our equations. 
One set of matrices is defined from the other by a 
system of first-order differential equations, the in­
tegration conditions being a consequence of the self­
duality conditions. 

Set 

A~=WIAtfi, A~=WIAjt, 

A~=S-lApS, A~=S-IAQS, 

where Rand S are constant matrices. 
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(4.1) 

Now, if AA satisfies the equations of motion (1. 6) 
then automatically AA" as defined above, will satisfy 
the two equations 

(4.2) 

We now try to choose Rand s so that the third inde­
pendent equation is solved, so that AA, are expressed in 
terms of D' and E' matrices and so that the defining 
equations are integrable. 

Let R be the cyclic permuation matrix with nonzero 
elements 

(4.3) 

where the indices are defined modulo n. Let D be writ­
ten 

D=LF, (4.4) 

where L is lower triangular with one along the diagonal 
and F is purely diagonal real with elements a

J 
and has 

determinant one, and let 

E-1=:cFi, (4.5) 

where L is upper diagonal [for SU(n) i =L', for 
Su(r,s) L=ML'M, see (1.10)] with ones on the diagonal. 

Using (4.4) to define the B~cklund transformation 
the D' and E' defined impliCitly by (4.1) satisfy 

F~.=:cFw=:cO. (4.6) 

Indeed (4.1) implies 

aj=a j ' l (jmodn) 

L~j=LiH,j'l (Il>i>j) (4.8) 

(F'-IL ' -
1L ' V') .=-(F'L _L-lP-l). (Il> j) (4.9) .YL nJ ,i! 1, )+1 

From this then follows 

(L'-I)ij =:c(L-l)i+l,j'l (Il > i > j), (4.10) 

and 

(4.11) 

In order to find (L' -l )nJ from (4. 11) and from the (up to 
a sign analogous) expression which gives its z deriva­
tive in terms of the :v derivative of i, the right-hand 
side of (4. 11) has to satisfy conditions of integrability. 
These conditions read 

«(F2LA _L-IF-2L-l) . ) + ((F2t _Lo1F-2L-I) ) =0. 
tZ I,J+1 ,z ,y I,} .. } ,Y 

(4.12) 

Compare with 

(FZE+Fy~\,j+1 =0, (4.13) 

then (4.12) is just (4, 13) premultiplied by F and post­
multiplied by F-l L -1 0 The matrix S is then found to be 
a matrix with nonzero elements 

Si,i'I=1, Sn,l=-1 (n>i). (4.14) 

It is not difficult to show that the transformation B 
between D, E and D', E', just defined, changes the 
reality condition (L 10) from a su(r,s) theory to a 
Su(r- 1, s+ 1) theory. 

Further transformations may be found by iteration of 
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the {3 transformation. They will close on the cyclic 
group of order n. More precisely the nth power of (3 is 
essentially a translation as defined before. 

By combining, in arbitrary order, the (n)! - 1 special 
algebraic transformations of Sec. III the translations 
and dilation with the n - 1 Bllcklund transformations 
defined by {3k (k < n), one generates starting from any 
solution of the equations of motion an infinite set of 
independent solutions. 

We have however not been able to prove that we have 
found all possible Backlund transformations6 nor that 
we can exhaust all possible solutions of the equations 
starting from some simple set and applying our two 
types of transformations. 

We emphasize that defined by (4.1) the Backlund 
transformations may look like gauge transformations, 
but in fact are not. This is due to the fact that under a 
permutation a triangular matrix does not retain its 
form. In the decomposition of Ap 12 =Ay + A. upper and 
lower triangular matrices appear so that A; depends on 
both Ail and Az in a nontrivial first-order nonlinear dif­
ferential way. 

V. EXPLICIT FORM OF THE EQUATIONS FOR THE 
CASE OF SU(3) 

For the case of SU(2) the general results are given 
in Refs. 3 and 4. We here give the explicit formulae 
for the equations of motion and for the Backlund trans­
formations in the case of SU(r,s) (r+s =3). The al 
gebraic transformations can be obtained by using the 
general results of Sec. III. 

Take for D 

[

a 0 OJ 
D= d b ° . 

e f c 

Then Land i as defined by (4.4) and (4.5) are 

kG ~ ~J. 
L~[H n 

where h=d/a, etc. 

In terms of these variables the Lagrangian 

L =2~+2b,yb,~ +2~ 
a? ~ c2 

+ (~)\ h + (~)2 1 l 
b ')I'~ c 'Y'Y 

+ (~J (k,y -lh,)(k,y -Zh,) 

(5.1) 

(5.2) 

+terms with y - z and 31- z (5.3) 

provides the nine equations of motion [the last term of 
(1. 4)] where the symmetrization (y - z) and (y - z) is 
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understood, 

[ a (a)2 ~ (a)2 ~ ~fiJ 2 ~ - - h h - - (k - lh )(k - l) = 0, a b ry c .y ty .y 

[2~ + (~)\ fi- (~)2l l b b 'y c ,y 

(a)2 ~~J - c (k,y-Ih)lh 'il =0 

[(%Yf'il+ (~y(k,,-lh'il)hJ ,y =0, 

[(~)\k,y-lJl)J ,,=0 

[(~)\y+(~y(k,y-lh,Y)[l =0, 

[(%)\y+ (~y (k,y-lh)h lil = O. 

(5.4b) 

(5.4b) 

(5.4c) 

(5.4d) 

(5.4e) 

(5.4f) 

(5.4g) 

(5" 4h) 

(5. 4i) 

Note that equations (5. 4a, b, c) are not linearly indepen­
dent. 

There are two types of Backlund transformations: 

(A) a'=b, b'=c, c'=a, 

h'=l, l~=f, 

(a)2 ~ ~ A (a)2 A AA 

1',,=- - (k~-lh~), 1'.= - (!'!~-llz-y), 
,-" C ' , , C ,.Y , 

. ? ( )" 
, a ,. ~, a " 

l<.=(-)(k.-lh.), l:e=- - (k,,-lhJ. 
I.Y c . , , c'-" , ... 

(B)a'=c, b'=a, c'=b, 

l'=lz, t'=l~, 

k: y _ l'lz: y = _ (% ) 2 i,E' , " (b)2 A 

l!.-llz.= -, l~, , , C ,.>" 

A AA (b)2 A AA (1;)2 
l<'~- Z'll'~= - I" k'~-I'I1'l= - - I ", 

,..>' ,-" C' I , C·-" 

( )
2 ( )' 

, a ~ ~ ~ , a C A AA 

/1,,=- - (k:e-lhi), h.= - (k ,,-Ih "), 
1-" c ' , , C • .Y ,Y 

~ (a)2 A (a)2 h'~= - (k.-Ih.), h':e=- - (f'y-lh..). 
,-'" C ' I , C I r-" 

(5.5) 

(5.6) 

Evidently (5.6) is the iteration of (5.5) if no integration 
parameters are introduced and the cube of each trans-
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formation is the identity. It is seen that the integration 
parameters are equivalent to translations. 
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APPENDIX 

In this appendix, for completeness, we list the pre­
cise formulae connecting the x" basis to the ya basis 
and to the pa basis. 

v'2"A Y =Ao-iA 3 =A yf2, Ilv=xo-ix3, 

~Aj) =A u + iA3 =A/2, v'2y =xo + ix3
, 

,I2'Az =A2 -iA1=Al f2, v'2z=x2 -ix\ 

nAi" =A2 + iAl =-AJ2, v'2z =x2 + ixl, 

Fab =Ab,a - Aa,b + i[A a, Ab J. 

(AI) 

(A2) 

Indeed for the derivatives one has the dual transforma­
tions 

ax x 
2~=-:;-a= ,a, 

n\' , 

associated with the nondiagonal metric (1. 3). 

Analogously [see (1. 511 
,I2'Ab =AY +Az = A/J2 , 

\I2'AP =AY +Al =Apf2, 

,f2'AQ =A; -AY=Aq f2, 

VTA ii =Az -Aii=AJ2. 

(A3) 

(A4) 

There are formulas analogous to (A2) and (A3) in this 
basis. 

The connection between the gauge fields in the two 
bases F"" and Fab is as follows: 

Fjiy = iF03, 

F 1iz =- iF2 \ 

F". = t(F02 + F31 + iFol_ ip32), 

F _ = ~(F02 + F31_ iFo1 + iF32 ) 
ytt 2 , 
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(A5) 

Self-duality implies 

i. e. , 

and in the other bases 

F yz = F)iE = F yy + F z! = O. 

Finally 

Fpq = t(F yZ + FYE + Fyy+ F zl ), 

Fpil = t(F yz + F-yE - Fy)i - Fa). 

(A6) 

(A7) 

(A8) 

(A 9) 

This proves (1. 6) and shows that the four equations are 
not linearly independent. 

The Lagrangian 

In terms of the decomposition of D and E given by 
(4.4) and (4.5), the self-dual equations can be derived 
from the Lagrangian 

L =-2tr(F r. p-2)+tr(L-1L r.2ii-lp-2) ,r ,Y ,r ,y-'-" 

+ terms with y-z, .v - Z 
(AlO) 

by varying with respect to F, L, i. This Lagrangian can 
be written in the alternative form 

(All) 

where AT denotes the transpose of A. In this form the 
gauge dependence of the Lagrangian is manifest. This 
equivalence is highly nontrivial and depends upon the 
fact that L is lower triangular and i is upper triangular. 

Note added in proof; There has subsequently appeared 
a paper by M. F. Atiyah, No J. Hitchin, V. G. Drinfeld, 
and Y.I. Manin, Phys. Lett. A 65, 185 (1978), giving 
an algebraic method of solution for self dual fields. 

lR.S. Ward, Phys. Lett. A 61, :n (1977). 
2M. F. Atiyah and R. S. Ward, Commun. Math. Phys. 55, 117 
(1977). 

3E. Corrigan, D.B. Fairlie, P. Goddard, and R.G. Yates, 
to be published in Phys. Lett. 

4E. Corrigan, D.B. Fairlie, p. Goddard, and R.G. Yates, 
"The construction of self-dual solutions to SU (2) Gauge Theo­
ry," DAMPT Preprint 77/31. 

5C.N. Yang, Phys. Rev. Lett. 38, 1377 (1977). 
liE. Corrigan has found an independent proof of the Backlund 
transformations (private communication). 
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Beam propagation in focusing media with random-axis 
misalignments: Second- and higher-order momentsa

) 

\oannis M. Besieris 
Virginia Polytechnic Institute and State University. Blacksburg. Virginia 24061 
(Received 16 January 1978) 

A novel statistical technique which allows the asymptotic evaluation of second· and higher-order averaged 
observables related to the stochastic complex parabolic equation is applied to the problem of beam 
propagation in a focusing medium characterized by random-axis misalignments. Analytical and numerical 
results concerning on- and ofT-axis statistics (e.g .• the variance of intensity fluctuations. modal power 
transfer, the probability distribution density of the log-irradiance, etc.) are presented. and comparisons 
are made with previously reported findings. 

1. INTRODUCTION 

In the quasioptical regime, the propagation of beamed 
signals along the z direction in focusing media with 
random-axis misalignments is described exceedingly 
well by the stochastic complex parabolic equation1

,2 

i G 1 Ii GZ <J!(x, z;O') = - 2k2 'Y';<J!(x, z;O') 

+V(x,z;a)<J!(x,z;a), z >0, 

V(x, z;a) =~,f[x - a6H(z;a) J2, X E R2, 

<J!(x,O;a) = <J!o(x). 

(1.1 a) 

(l.lb) 

(1.1 c) 

Here, k is a reference wavenumber, f[ is a spatial fre­
quency (units: radians/meter), and a is a fixed vector 
quantity, The potential field given in (l.lb) corresponds 
to a parabolically focusing medium whose equilibrium 
axis is perturbed via the zero-mean, z-dependent, real 
random function 6H(z;a). The latter, as well as the 
slowly varying, complex, random, amplitude function 
<J!(x, z;a), depends on a parameter a E A, (A, F, p) being 
an underlying probability measure space. 

It is our goal in this exposition to examine the bound­
ary-value problem (1.1) in an unbounded (with respect 
to x) domain. It should be pointed out, however, that 
this idealized problem provides a good approximation to 
the forward propagation of low-order modes in a fiber 
lightguide having a parabolically graded refraction index, 
with random-axis misalignment of microbending. 3,4 It 
can also give some insight into the problem of forward 
propagation of low-order acoustic modes near an ideal­
ized, randomly perturbed, underwater sound channel 
axis, provided that transverse (with respect to z) satis­
tical fluctuations due to internal waves can be ignored. 

There exist physical situations which require that 
the initial condition (1. 1c) be random (e. g., aberra­
tions in a lens through which a laser beam passes before 
it enters into the random medium). However, a general­
ization of the discussion in this paper to account for such 
an initially partially coherent bpam presents no funda­
mental difficulties. It is, also, relatively straightfor-

a)Research supported in part by the Office of Naval Research 
under contract No. N00014-76-C-0056. 

ward to account for random deformations along the 
channel axis of the more general form 6H(z;a), where 
6H(z;'Y) is a zero-mean, vector-valued, real random 
function. 

The problem (1.1) has already been investigated by 
Besieris et al. 5 from the point of view of a quantum 
mechanical harmonic oscillator whose equilibrium posi­
tion is randomly perturbed. 6 This was done using a 
kinetic approach at the level of second-order satistical 
moments. Marcuse (cf. Ref. 3) has also studied an 
initial-boundary-value problem closely resembling (1.1). 
His problem (related to fiber-optical propagation) is 
more realistic than (1.1). As a result, his approach 
(a modal analysis) is more difficult to justify with esti­
mates of accuracy. The only carefully derived results to 
date dealing with higher-order statistics of the problem 
(1.1) are those reported by McLaughlin. 7 Using the dif­
fusion approximation (cf. Refs. 8-10), he has studied 
the average intensity and the intensity fluctuations on 
the beam axis, as well as the decay of mean power from 
the fundamental mode of the unperturbed focusing medi­
um, and mean power transitions to higher modes. 

It is our intent to study (1.1) by means of a new satis­
tical technique which allows the asymptotic evaluation 
of second- and higher-order statistical observables 
without having to derive first equations for second- or 
higher-order coherence functions. It will be shown that 
in the special case where 6H(z;a) in (1.1) is a wide­
sense stationary, 6-correlated, Gaussian random pro­
cess, a certain class of even moments of the wavefunc­
tion if; (x ,z;a) can be computed exactly. More importantly, 
it will be shown that these quantities can be computed 
asymptotically (e.g., in the long-range regime), even 
under realistic assumptions about the satistical fluctua­
tions of the medium. Our main findings will be compared 
to those of previous workers, especially McLaughlin's 
(cf. Ref. 7). We shall obtain, in addition, several new 
results, such as off-axis statistics, the variance con­
nected with beam wandering, the probability distribution 
density function of the log irradiance, etc. 

The structure of the paper can be outlined as follows: 
A basic conservation law pertaining to the stochastic 
parabolic equation (1.1) is developed in Sec. 2. A funda­
mental ansatz on which the proposed technique is based 
is then introduced in Sec. 3 for the general case of two-
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dimensional beam propagation in a parabolically focus­
ing medium with random-axis misalignments. The one­
dimensional version of this problem is discussed in 
Sec. 4. Finally, following an analysis of the basic satis­
tical problem (cL Sec. 5), several new results linked to 
second- and higher-order observables are computed in 
Secs. 6 and 7. 

2. BASIC CONSERVATION LAW 

Corresponding to the stochastic parabolic equation 
(1. 1), let 

(2.1) 

and 

j (x, z;O') = ;l? (4(x, z;O')V' x11* (x, z;~) - J*(X,z;a)V' xd'(x, z;a)1 

(2.2) 

denote the intel1sity (or irradiance) and intensity flux 
densities, respectively. By vidue of the self-adjoint­
ness of the operator - (1/21<2)V'; + (1 i2l,.!; 2[X - aI5H(z;IY»)2 
in (1.1), we have the following conservation law: 

a 
;-i(x,z;O')+V'x'j(x,z;(]I)=O ,,(]IE:r" 
C'Z 

(2.3) 

As a consequence, the total intensity l(z;a), defined by 

1(z'a) = r dx i(x Z'(y) 
, 'R2 '" 

is conserved for every realization a E: A, viz., 

or 

d 
- l(z;O') = 0, 
dz 

(2.4) 

(2.5) 

l(z;a)=I(O;a-)= r 2dxJ,*(x,0;1l')iJ;(x,0;(]I). (2.6) 
'R 

In the sequel, we shall assume that I(O;u) is normalized 
to unity for every realization Ct EA. 

We define, next, a vector s(x,z;a) by the relationship 

s(x,z;Ct)=i(x,z;O')z+j(x,z;Ct), zO'z/lzl. (2,7) 

The conservation law (2.3) can be rewritten in terms of 
s(x,z;Ct) as follows: 

(2.8) 

From physical considerations, s(x,z;a) may be inter­
preted as a power fluX density. On the strength of the 
divergence theorem, one has the identity 

IIIV'os(x,Z;IY)dV=Is Is(x,z;O')'ndA=O, (2.9) 
v c 

where V is the volume bounded by a regular closed sur­
face Sc and Ti is a unit outwardly directed normal vector. 
From a more practical point of view, the power inter­
cepted by a detector (indicated by an open So) can be 
written as follows: 

IsJ s(x,z;cr)o TidA. (2.10) 

3. THE FUNDAMENTAL ANSATZ 

In the stochastic parabolic equation (1.1) we make a 
change of the transverse (with respect to z) spatial vari­
able corresponding to a "moving" coordinate system, 
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y(Z;O') =X -u(z;cr), (3.1) 

and represent the wavefunction ijJ(x, z;a) in the form 

<p(x, z;cr) = </l[y(z;O'), z 1 exp{ik[u(z;cr)' y(Z;O') + y(z;<'1)~, 
(3.2) 

where u(z;~) and Y(z;cr) are as yet unspecified random 
functions. The dot over u(z;cr) in (3.2) designates a 
derivative with respect to z. To avoid unnecessary com­
plexity in notation, we shall not write the arguments of 
y, u, and y out explicitly, unless there is ambiguity. 

Our next step is to substitute (3.2) into (1.1) and 
carry out the indicated operations. This procedure leads 
to the following expression: 

i~ 12122 
k ~z </l =- 2l?2 V'y</l + 2j; Y ¢ 

+ (ii + ,£fu - g 2a oH) • y</l (3.3) 

+ (~- ~it2 + ~!fu2 _ tru' a oH + ~j;2 a2oH2)</l. 

We require that the terms within the parentheses on the 
right-hand side of (3.3) vanish. This condition gives 
rise to the following relationships: 

(3.4) 

(ii) ii(z;cr) + j; 2u(z;0') =j;2a6H(z;0'), (3.5) 

(iii) Y (z;cr) = ~li2 - ~j;2U2 + g2U' al5H - '2!fa20H2. (3.6) 

It is seen that within the framework of this formulation, 
the new wavefunction </l(y, z) satisfies the parabolic 
equation characterizing the unperturbed focusing medi­
um. It should be noted, however, that </l is a random 
function by virtue of its implicit dependence on u(z;O'), 
viz., </l=</l[x-u(z;O'),z], which, in turn, satisfies the 
Langevin-type equation (3.5). 

To proceed with our analysis, we shall need apprQ­
priate initial conditions for u and U. Toward this enJ, 
we set z = 0 on both sides of (3.2): 

"lo(X) = <b(x-uo,O)exp{il?[liu' (x-uo)+YoJ}, (3.7) 

where uo' ilo, and Yo are respectively the values of u(z;O'), 
u(z;a), and )'(z;O') at z = O. From (3.6), one has 

,(z;cr) = rz d!;(~112 - ~g2u2 + )i2 U 0 aoH - iKa26SZ) + c, (3.8) 
o 

where c is a constant of integration. Choosing the initial 
conditions U o = Uo = 0, it follows, then, from (3.7) and 
(3.8) that 

<Po (x) = CPo (x) exp (il? c) , (3.9) 

where </lo(x) = </l(x, 0). The phase term exp(i"k) plays an 
unimportant role in the evaluation of a large class of 
"even" moments of the wavefunction ~; it will, there­
fore, be omitted by taking c = O. We have, then, finally, 

(3.10) 

Thus, given the initial value I/!o(x) for the stochastic 
parabolic equation (1.1), the correct initial condition 
for the "deterministic" parabolic equation (3.4) is 

Our procedure in the sequel can be outlined as 
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follows: The parabolic equation (3.4) for the unperturbed 
medium, with the boundary condition (3.10, will be 
solved first for the wavebnction r/>. The latter is a 
functional of the random function ll(Z ;a) via the relation­
ship r/> = r/>(x - u (z;1)I ), z J. This solution for r/> will, be 
used in the expression (3.2) for the original wavefunc­
tion </lex, z;O'). This wavefunction is, in turn, a functional 
of u(z;a), u(z;tr), and oH(z;o:) because of its dependence 
on r/> and the presence of the exponential factor in (3.2). 
Our ultimate goal will be to obtain statistical moments 
of the random wavefield </l(x,z;a) which are linked with 
physical observables. 

Before we proceed any further, we wish to point out 
that the statistical technique outlined in this section has 
been motivated by the work of Papanicolaou et al. 11 

and McLaughlin (cf. Ref. 7). Using "key representa­
tions" which are similar to- but distinct from- our 
basic ansatz (3.2), they have studied the propagation of 
a Gaussian beam in a randomly perturbed strongly 
focusing medium, and have derived detailed information, 
especially in connection with beam-axis statistics, 
which would have been difficult to obtain by other meth­
ods. In the special case of a deterministic perturbation, 
viz., I5H(z;O') - OH(z), our "key representation" (3.2) is 
an extension of a well-known method in quantum mechan­
ics. Ter Haar, 12 for example, has used it to determine 
the motion of an one-dimensional harmonic oscillator 
under the action of an externally applied force. Along 
the same vein, Svin'inl3 has recently applied this tech­
nique to the study of the Brownian motion of an one-di­
mensional, damped, quantum mechanical harmonic 
oscillator in an external field. Conceptually, we feel 
that our technique is also close to recently formulated 
methods based on the operator Langevin equation (cf. 
Ref. 14; see, also, remarks in Ref. 13) and Feynman 
path integration (cf. Refs. 15,16). This is an important 
conj ecture which we hope to substantiate in the future .. 

4. SPECIALIZATION TO THE ONE-DIMENSIONAL 
CASE 

To avoid unnecessary complexity which may obscure 
our main contributions, we shall limit our subsequent 
work to the one-dimensional version of the stochastic 
parabolic equation (1.1), viz., 

i 0 1 02 

Ii oz </l(x,z ;a) = --W ax2 </l(x, Z;tl') 

+tff(x-aI5H(z;cdF</l(x,z;a), z>O, 

</l(x,O;G)=</lo(x)' 

(4.1a) 

(4.1b) 

Corresponding to (3.0, (3.2), (3.4)- (3.6), (3.8), and 
(3.11), we have, then, the relations 

y =X -u(z;a), (4.2) 

</l(x, z;a) = r/>(Y (z;G), z )exp{ik(u(z;a)y (z;a) + y(z;a)]}, 
(4.3) 

i 0 (y) 1 a
2 

(y ) 1..2 2 (y ) ( 4) liozr/> ,z =-2k2ayZr/> ,z +25yr/> ,z, z>O, 4. a 

r/>(Y,O) = r/>o(Y) = </lo(y) , 

u(z;a) + !lu(z;a) = ffal5H(z ;a), z > 0, 
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(4.4b) 

(4.5a) 

ll(O;a) =u(o;o') =0, (4.5b) 

z 

y(z;a) = J d?:(tu2 - tffu2 + !lual5H - tffa2I5~). (4.6) 
a 

Consider, next, the parabolic equation (4.4) for the un­
perturbed medium. This problem is isomorphic to the 
Schrodinger equation for an one-dimensional quantum 
mechanical harmonic oscillator whose solution is well 
known.17 Let G(y,y',z) be the Green's function associ­
ated with (4.4). In this case, it is given explicitly as 
follows: 

G(y ,y' ,z) = {gk/2rri singz)I/2 

Xexp( - (gk/2i singz)(y2 cosgz - 2yy' + y'2cosgZ»). (4.7) 

This expression provides a link between the wavefunc­
tion r/>(y,z),z >0, and the boundary condition r/>o(y): 

r/>(Y,z) = I dy' G(y,y' ,z)r/>o(Y'). (4.8) 

In order to evaluate the wavefunction r/>(Y, z) explicitly, 
we shall have to decide on a specific boundary condition 
I[!o(x) and, hence, r/>o(y). For simplicity, let us choose 
the fundamental mode corresponding to the parabolic 
equation for the background focusing medium, viz., 

(4.9) 

This initial configuration is normalized to unity [cf. Eq. 
(2.6»). In light of the identity r/>o(y)=¢o(Y), expressions 
(4.7)- (4.9) lead to the wavefunction 

r/>(y, z) = {gk/rr)I/4 exp[ - (l/2)gky2)exp[ - tigz). (4.10) 

This, of course, is the "ground state" wavefunction 
("stationary state") of the parabolic equation (4.4). 

We introduce, next, (4.10) into our fundamental rela­
tion (4.3)' 

I[! (x ,z ;a) = (gk/rr )1/ 4exp[ - tgky2)exp[ - tigz ]exp[ik(uy + y»). 
(4.11) 

This constitutes a solution to the original stochastic 
complex parabolic equation (4. 1) for every realization 
0' EO A. In general, the computation of the ensemble 
average of an arbitrary functional of zjJ(x, z;O') requires 
the joint probability density function of the random 
functions u(z;O'), u(z;a), and y(z;a). The latter can be 
found from the analysis of the following set of coupled 
first-order, nonlinear, stochastic, ordinary differential 
equations: 

u(z;O')=v(z;O'), 

v(z;O') + ffu(z;O') = ffaI5H(z;()I), z > 0, 

u(O;()I)=v(O;G)=O, 

l' (z ;a) = tv2 (z;()I) - tffu2 (z;()I) + !lau(z;()I )I5H(z;()I) 

-tffa262H(z;()I), z>O, 

y(O;ry) =0. 

(4. 12a) 

(4.12b) 

(4.12c) 

(4.13a) 

(4.13b) 

It is important, however, to note that expressions of the 
form {</l* (xl' Z;()I )</l* (x2' z ;()I ) ••• </l* (xm' Z;()I (1/J (x; ,z;O') 
xI[! (x~,z;",) .. 'l[!(x~,z;()I)}, linked to a large class of im­
portant averaged phYSical observables (cf. Sec. 6 et 
seq.), are functionals only of u(z;o:) and u(z;o:). Since 
the latter are governed solely by the LangeVin-type, 
linear, stochastic, ordinary differential equation (4.5) 
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[cf., also, Eq. (4.12)], our task of computing a large 
number of physically important moments of the wave­
function ljJ(x, z;a) can be accomplished provided the joint 
probability density function of the random functions 
u(z;a) and ti(z;a) is available. This problem is consider­
ed in detail in the next .section. 

5. ANALYSIS OF THE BASIC STATISTICAL 
PROBLEM 

The second-order, Langevin-type, stochastic ordin­
ary differential equation (4.5) may be recast into the 
form 

d 
dz dz;o.) + ffu(z;o.) = g2aoH(z;IY), 

d 
-d u(z;a)=v(z;a), z 

u(O;a) == 1'(0;0') = O. 

(5.1a) 

(5.1b) 

(5.1c) 

This problem is closely related to the Brownian mo­
tion of a randomly forced, classical, harmonic oscil­
lator. 

The "fine-grained" density, or classical "phase­
space" distribution function, associated with (5.1) is 
introduced next as follows: 

fe(u, 1', Z;O!) = O[U - U(Z;O! )]O[v - v(z;a)], 

fc(u, 1',0;CX) = 0(11)0(1'). 

(5.2a) 

(5.2b) 

It obeys the continuity, or Liouville equation, which 
reads 18 

a 
:;- fc(U' 1',z;a) = Lfc(u, v, z;a); 
"z 

(5.3a) 

a 
Lfe(u, (I, Z;0') = - v::,- fc(u, 11,z;a) + 8fc(u , v, z;a); (5. 3b) 

uU 

8fc(u, 1', Z ;al= r g2u f -ffaoH(z ;0.) ~J fc(u, 1',Z ;a). 
L v a1' (5.3c) 

We shall embark next on a statistical analysis of (5.3). 
Using only the first-order smoothing approximation 
(cf. Refs. 19,20; see, also, Refs. 21 and 5), we ob­
tain the following kinetic equation for the ensemble 
average of the density function: 

(a: +Va~t -lfUaav)E{fc(U,V,z;O!)} 

=g4a2~[J' d1TW (singS ~ +cos !:~) av 0 K au gal' 

x E {fe (ucosKS - ~ vSinK!:, vcosK~ 
+ f{U- sin,;;!:, z - 1:;0 ) 1]. (S.4) 

In deriving this expression it has been assumed that 
oH(z;Q) is a zero-mean, wide-sense stationary random 
process, with correlation function r W == E{ oH(z;0') 
oH(z - 1:;u)}. The kinetic equation (5.4) is uniformly 
valid in range. The right-hand side of (5.4) contains 
generalized operators (nonlocal, with space "memory") 
in phase space. 

For a random process oH(z ;(1) which is o-correlated 
in range, viz., r(1:) =so(1:), where S is a constant, the 
integration over 1: in (5.4) can be carried out explicitly. 
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The resulting transport equation is 

- +v- - ..2u - E{j (u v Z'(~)} (a a a) 
az au 5 av c'" 

a2 

= D av2 EUe (u, v, a;OI)}, (5.5) 

where D=g4ifS. If, in addition to the above assump­
tions, oH(z;a) is a Gaussian random process, (5.S) is 
the exact statistical equation for E{f(u, v, z ,(t )}. This 
can be established by means of the Donsker-Furutsu­
Novikov functional formalism. 22-24 In the long-range 
Markovian approximation (cf. Ref. 25; see, also, 
Refs. 21b and 5), (S.4) reduces to the simpler trans­
port equation 

(5.6) 
a2 a2 

=D1 -a 2 E{Je(U,V,Z;0I)}+D2 -a a EUc(U,I',Z;O')}. 
v u v 

The diffusion coefficients are given by the expressions 

Dl = g4a2 r ~ dt rU;) cosK!;;, (S. 7a) 
. 0 

(S.7b) 

The quantity E{fc(u,v,z;O')} is nonnegative; as such, 
provided that it is normalized to unity, it can be con­
sidered as the joint probability distribution density of 
u and v. A requirement of our statistical formulation 
(cf. Sec. 4) is that E{jc (u, v, Z;OI)} be known explicitly. 
In general, no exact solution seems to be possible for 
the kinetic equation (5.4) [augmented by the boundary 
condition E{je(u, 1',0;0')} = 0(u)6(v)]; this, however, is 
not the case for the F'okker-Planck equations (5.5) 
and (5. 6), as it will be shown below. 

The Fokker-Planck equation (5.5) has been studied 
extensively (cf., e.g., Refs. 26 and 27). Its exact 
solution is a two-dimensional Gaussian distribution in 
u and v. 

Let 

b = E{ [w(z ;a) - E{w(z;OI)}] [w(z ;0) - E{w{z ;a)} F1 
(S.8) 

be the autocovariance matrix of the two-dimensional 
vector process W(Z;OI)=[U(Z;OI), v{z;a.)J. It is given 
explicitly as follows: 

"B={a~J}' i,j= 1, 2, 

~l =D[(z/ff) - (1/2,f)sin2Kz], 

a~2 =a~1 = (D/~)sin2gz, 

a~2 = D[z + (1/2g)sin2gz]. 

(5.9a) 

(S.9b) 

(S.9cl 

\5.9d) 

In deriving (5.9), use has been made of the fact that 
E{u}=E{v}=O, and hence, E{w}=O. Accounting for 
this property, the general form of the desired normal 
distribution density function is 

E{fc (w, Z;OI)} '" F(w, z) = (27T)-I(detb )-1 / 2 exp(- tWTb-1W), 

(5.10) 

where b- 1 is the inverse of the covariance matrix. 
More explicitly, 
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F(w , z) = (27T )-1 (detL; )-1/2 

X exp [- ~ de~:G (a~2u2 + a~, t1- - 2a~2UV)] , (5.11) 

where the aL, i,j = 1,2, are the entries of the covari­
ance matrix [cf. Eqs. (5. 9b)- (5. 9d)] and 

(5.12) 

Finally, the "marginal" distribution density functions 
of the random functions u(z;O') and v(z;O') can be readily 
found from (5.10): 

F(u,z) = too dvF(l', 1i, z) = (21T)-1/2ai~ 

xexp (-~ a~,112), (5.13) 

F(v, z) = j: duF(u, 1', Z) = (21T)-1/2a;~ 

Xexp (-~ at 1,2). (5.14) 

The more complicated Fokker-Planck equation (5.6) 
based on the long-range Markovian approximation is 
a variant of Kramers' equation (ef. Ref. 28). As such, 
it can be integrated by the method of characteristics. 
Its solution constitutes a two-dimensional normal dis­
tribution of the form (5.11), with covariance matrix 

L;={aL}, i,j=1,2, (5.15a) 

ai, = (D2/ !f)sin2gz + D , [ (z/~) - (l/2g3)sin2gz], 

(5.15b) 

ai2 =a~, = (D2/2g)sin2gz + (DJ~)sin2gz, 

a~2 =D, [z + (1/2g)sin2gz ) - D 2sin2gz. 

(5.15c) 

(5.15d) 

Several general results presented in the following 
two sections hold for both Fokker-Planck equations 
(5.5) and (5.6). This is due to the fact that the solu­
tions to these equations, i. e., the respective joint 
probability distribution density functions, have the 
same functional form [cf. Eq. (5.11)J. For the sake 
of simplicity, however, many specific analytic and 
numerical results are based on the assumption that 
oH(z;(JI) is a wide-sense stationary, 0 -correlated 
random process. 

6. SECOND-ORDER OBSERVABLES 

A. Basic second-order moments 

We set as our first task the computation of the mean 
intensity E{i(x,z;(JI)}, where i(x,z;O') = J'*(x,z;u)ifi(x,z;O') 
is the irradiance function [ef. Eq. (2.1) J. Toward this 
end, we note from (4.11) that 

i(x, z;O') = (gk/7T)1/2 exp{ - gk[x - u(z;O' »)2). (6.1) 

Since the last quantity is a functional only of u(z;O'), 

E{i(x, Z;(JI)} = r: du i(x, lI)F(u, z), (6.2) 

where F(u,z) is the marginal probability density func­
tion given in (5.13). The integration in (6.2) can be 
performed easily, yielding 

E{i{x, z;O')} = 711/ 2[gk/(1 + 2gkaf,) )1/2 

X exp{ -[gk!(1 + 2gkaL»x2}. 
(6.3) 
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On the beam axis (i. e., x = 0), (6.3) specializes to 

E{i(O, z;O')} = 7T- 1/ 2[gk/(1 + 2gka ~J ]'/2. (6.4) 

Since ai,(z»O, "z>O [ef. (5.9b)], it is seen that the 
on-axis mean intensity decreases monotonically as a 
function of the range z. This is due to the transfer of 
mean power from the fundamental mode to higher 
modes, a subject that will be considered in detail later 
on. 

The mean cen froid of the beam, defined by 

X(z) =C dx xE{i(x,z;O')}, (6.5) 

is zero for all Z since the integrand is an odd function 
of x. 

A measure of the spreading of thc bC(f>11 can be found 
by using the definition 

ta;(z)=C dx[x- X(z»)2 E{i(x,z;O')}. (6.6) 

It turns out that 

a;(z) = (1 + 2gkaf,)/gk. (6.7) 

Introducing (6.7) into (6.3), the mean intensity can 
be written more succinctly as follows: 

E{i(x, z;O')} = [7Ta~(z) ]-1/2 exp[ - x 2 /a;(z) J. (6.8) 

Comparing (6.8) with the initial intensity, viz., 

i(x, 0;0') = (f[k/7T)1/2 exp(- gkX2) , (6. g) 

it is seen that the mean intensity remains Gaussian for 
z > O. Since ~'o(x) is taken to be the fundamental mode 
of the unperturbed problem, i(x, z) = (f[k/ 7T )1/2 exp(- gkX2) 
in the absence of random perturbations. In this case, 
the original beam would not spread at all. In the pre­
sence of random fluctuations, however, the variance 
of the transverse coordinate x changes from (f[k)-' to 
the quantity a~(z) given in (6.7). 

If the express ion for a~, given in (5. 9b) is substituted 
in (6.7), one has 

~(z) = [1 + 2gk])(z/.~ - sin2gz/2g.'l)]/gk. (6.10) 

In terms of the dimensionless quantities 

I:=gz, c=kD/.~. (6.11) 

Eq. (6.10) can be brought into a form convenient for 
numerical investigation. Specifically, 

a;(C;c)gk = 1 + r(2!; - sin2!;). (6.12) 

A plot of this expression' sus?;, with c (a dimen­
sionless measure of the strength of the fluctuations) 
as a parameter, is shown in Fig. 1. The monotonic 
increase of the beam spreading is clearly evident. 

The intensity flux density defined in (2.2) can be 
writtpn more compactly as 

]~x,z;a)=Re[-(i/k)~*(x,z;(lI)(il/Ox)~'(x,z;O')J. (6.13) 

Using (4.11) and performing the operations indicated 
in (6.13), we obtain 

j(x, z;O') = (gk/ 7T )1/20(Z;0') exp{ - gk[x -1I(z;0' )]2}, (6.14) 

a functional of both u(z;a) and 17(Z;O'). The mean inten­
sity flux density is, therefore, given by 
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FIG. 1. Variance of transverse beam displacements. (a) 
c=O.05; (b) c=O.l. 

E{j(x,z;O')}=:: r du r dvj(x,u,v)F(u,v,z), 
• '=00' .. 00 

(6.15) 

where F(u, v, z) is the j oint probability density function 
in (5.11). In this case, the integration in (6.15) can be 
performed without difficulty. The final result is 

E{j(x,z;O')} == 27T- l
/
2ai2[gk/(1 + 2gkai)P/2 

xexp{- [gk/(1 + 2gkai,)]x2}. 
(6.16) 

As a consequence of the conservation law (2,3) which 
holds for every realization 0< E A, one has by inspection 
the relation 

-!- E{i(x, z;o)} + -aD E{j(x, z;o)} == O. 
uZ X . 

The latter means that the total mean intensity is 
conserved, i. e. , 

d
d [ r dx E{i(x, z;O')} J = O. 
Z .00 

(6.17) 

(6.18) 

The conservation law (6.17) can be found by taking the 
ensemble average of the one-dimensional version of 
(2.7). Alternatively, it can be obtained by combining 
our results for E{i(x,z;a)} and E{j(x,z;o)} given in 
(6.3) and (6.16), respectively. 

Having established both E{i(x,z;O')} and E{j(x,z;o)}, 
we are in a position to compute one more observable: 
the mean power flux density [cf. Eq. (2.7)]. Specifically 

E{s(x, z;o)} = E{i(x, z;o )}z + E{j(x, Z;O' )}x. (6.19) 

On the basis of a statement made earlier (cf. Sec. 2), 
the quantity 

J I E{s(x,z;a)}' ndA (6.20) 
So 

can be interpreted as the total mean power intercepted 
by a detector characterized by the open surface So. 

We shall undertake next the computation of the 
spatial mutual coherence junction E{~'* (x2 , Z;O') 
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ljJ(xpz;ol}}. We form first the quantity 1jJ*(x2 ,z;0) 
ljJ(xl'z;O') using the expression for ljJ(x,z;o) in (4.11): 

1jJ* (x2, Z;£1 )1jJ(x
" 

Z;£1 ) == (gk/ 7T)' / 2 exp(- ~gk{[X2 - u(z;o ) 12 

+ [x, - u(z;o )]2}) X exp[ - i kv(z ;0')(x2 - x)] 

= m [x2, x" u(z;O'), v(z;o)]. 

Its ensemble average is given by 

E{ 1j!*(x2, z;o )1jJ(x" z;o)} 

(6.21) 

(6.22) 

The integration can be performed exactly, yielding 
the following expression for the spatial mutual co­
herence function: 

E{ 1j!*(x2, z;O' )1jJ(x" z;o)} 

= 1I'/2[gk/(1 + 2gka~,)]'/2 exp[ - ~gk(x~ + ~)] 

x exp{M (gkau )2 /(1 + 2gkaiJ ](x2 + X,)2} 

x exp[ - ~k2(a12/ai,)(1 + 2gkai,)-' (x2 - x,)21 

x exp[ - ~k2(detZ;/ai,)(x2 - X,)2] 

x exp[ - ikgka~l (1 + 2gkail)-' (x~ - xi) J. 
In the special case that x2 and x, coalesce, i. e. , 

(6.23) 

X2 =xl =x, the spatial mutual coherence must coincide 
with the mean intensity found earlier [cf. Eq. (6.3)]. 
A simple calculation shows that this is, indeed, the 
case. 

B. Modal power transfer 

The unperturbed [6H(z;0) - 0] parabolic equation (4.1) 
is characterized by a set of modes hp(x), p=0,1,2,"', 
satisfying the eigenvalue problem 

-2~2 d~2 hp(x)+~Kx2hp(x)=Ephp(x). (6.24) 

It is well known (cf. e.g., Ref. 29) that 

Ep =g(p + ~)/k (6.25) 

and 

hp (x) == 2-P / 2 (p! )-l / 2 (gk/ 7T)' / 4 exp( - ~gkx2)Hp[ (gk)' / 2X]. 

(6.26) 

Here, Hp (~) denotes the pth Hermite polynomial, viz., 

(6.27) 

The eigenfunctions given in (6.26) are orthonormal, 
i. e. , 

(6.28) 

The boundary condition Ij!o(x) specified in (4.9) is the 
fundamental mode ho(x). This follows easily from (6.26). 

We shall determine next the portion of the beam which 
remains in the fundamental mode. The complex ampli­
tude of the fundamental mode is defined by 

qo(z;o)=rdxlj!(x,z;a)ho(x). (6.29) 

The quantity of interest is the ensemble average of the 

loannis M. Besieris 2538 



                                                                                                                                    

LO 

0.9 

08 

0.7 

0.6 

U 
J...../I 0.5 

N 0 
0 

0.4 

o 5 10 15 20 25 30 35 

FIG. 2. Decay of mean power in the fundamental mode. 
(a) c=O.l; (h) c=O.05. 

absolute square of qo (z;Q), viz., 

Qg(z) = E{ 1 qo(z;O') I~. 

We note, first, that 

1 qo(Z;O') 12 = exp(- tgku2)exp[ - t(kl g)v2]. 

(6.30) 

(6.31) 

Integrating this quantity over u and v, with the joint 
probability density F(u,v,z) as a weight, we find 

(6.32) 

In the absence of random fluctuations, a~1 - 0, a~2 - 0, 
and det~ - 0; hence, Qg(z) - 1, V z. In other words, the 
power remains entirely in the fundamental mode. On the 
other hand, the general expression (6.32) shows how 
power (in a mean sense) leaks out of the excited funda­
mental mode into higher modes. 

Using the expressions for a~1' a~2' and det~ [cf. Eqs. 
(5.9b), (5.9d), and (5.12), respectively] into (6.32), 
Qg(z) can be written as 

Q~(1,";c) = [1 + 2c1," + C2(1,"2 - sin2!:)]-1 (6.33) 

in terms of the dimensionless quantities 1," and c [cf. Eq. 
(6.11)]. A plot of Q~(1,";c) versus 1,", with c as a param­
eter, is shown in Fig. 2. 

Analogously to (6.30), we define the expected modal 
power transfered from the fundamental mode at z = 0 to 
the pth mode at distance z as follows: 

(6.34) 

where qp(z;O') is the pth-order complex amplitude func­
tion, viz., 

qp (z;O') = r dx?jJ(x, z;O' )h/x). (6.35) 
-~ 

The square modulus Iqp(z;0')1 2 required in (6.34) is 
found to be 
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I qp(z;0')1 2=2-P(p! )-1[(klg)v2 + gku2]P 

X exp[ - Hkl g)v2]exp(- tgku2). (6.36) 

Finally, 

Q~(z) = 2-P(P! )-1 (gk )P(27T )-1 (det~ )-1/2(7T I a)1/2(7T I a' )1/2 

P S (P) 
x~oB s g"2.!(2s)!(b'la)2·[z!(2s-2l)1]-1 

X (aI4b'2)/[2(P -l) -I]!! 1(2a')p-/, (6.37a) 

where 

a=H(klg) + (a~jdet~)], (6.37b) 

d =Hgk + (gka
ll

)2 + (ka22 )2 + gk3det~](gka~1 +k2det~)-1 
(6.37c) 

b'=Ha~2/det~). (6.37d) 

Particular values of modal power transfer functions 
can be obtained from the general expression (6.37) by 
restricting the values of the index p. Setting p = 0, for 
example, specializes (6.37) to the quantity Qg(z) found 
earlier. For p = 1, on the other hand, one has 

Q~ (z) = Hgka~1 + (kl g)a~2 + 2k2det~] (6.38) 
X [1 + gka~1 + (kl g) (a~2 + gk det~) ]-3/2, 

a relationship exhibiting how mean power is transfered 
from the fundamental mode to the first one. Since, a~1' 
a~2' and det~ become zero at the boundary z = 0, it 
follows that Q~(O) = O. This, of course, is expected since 
at z = 0 all the mean power is stored in the fundamental 
mode. 

In the special case that oH(z;O') is o-correlated, Q~(z) 
can be written in the dimensionless form 

Q~(1,";c) = [c1," + C2(1,"2 - sin21,")][1 + 2c1," + C2(1,"2 - sin21,")]-3/2. 
(6.39) 

A plot of Q~(1,";c) versus 1," for two values of the param­
eter c is shown in Fig. 3. The average power contained 
in the first mode rises from zero to a maximum, and, 
then, decays monotonically to zero as 1," - 00. It is, also, 
seen that the position of the maximum, as well as the 
rate of decay, depends on the strength of the random 
fluctuations. 

Qualitatively, one would expect the same general be­
havior for the average modal power transfer from the 
fundamental mode of z = 0 to the pth mode at distance z. 
The rate of transfer, however, would depend on the 
order of the mode. 

C. Degree of coherence 

Given the random wavefunction <Ji(x, z;O'), the degree 
of coherence, D(z), is defined as follows: 

(6.40) 

It can be calculated by using the expression for the spa­
tial mutual coherence [cf. Eq. (6.23)]. The final result 
is 

D2(z) = [1 + 2gka~1 + 2 (kl g)(a~2 + 2gkdet~ )]-1/2. (6.41) 

For a random process oH(z;lY) which is o-correlated, 
(6.41) assumes the following dimensionless form: 
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(6.42) 

The latter is shown graphically in Fig. 4. 

The degree of coherence is a measure of the irrevers­
ible loss of coherence due to the presence of random 
fluctuations in the medium. At z = 0, D(z) = 1, i. e., the 
beam is coherent. As the range z is increased, there is 
a loss of coherence, i. e., D(z) < 1, and finally, 
D(z) - 0 as z - 00, i. e., the beam is rendered complete­
ly incoherent. 

In the absence of random fluctuations in the medium, 
D 2 (z) and, hence, D(z) would be conserved, i. e. , 
D(z)=D(O)=l, 'fIz. If the beam were partially coherent 
at z =0 due, for example, to aberrations in a focusing 
optical system, then D(O) < 1. In this case, D(z) ~ D(O), 

'1;/ z ~ 0, the equality holding for a nonrandom medium. 

The degree of coherence defined in (6.40) is by no 
means the only quantity exhibiting the irreversibility due 
to the random fluctuations in the medium. Another quan­
tity which describes this irreversible loss of coherence 
(or information) is the H -function used in statistical 
mechanics. 30 This function is intimately related to the 
thermodynamic (or information-theoretic) concept of 
entropy. To construct an appropriate definition for the 
H -function, we shall require a few preliminary results. 

which the volume in phase space is at least equal to 
(7T/k). Hence, j(x, 8,z;0') can never be sharply localized 
in z and e. This situation is reminiscent of the quantum 
mechanical uncertainty principle. It is also analogous 
to the ambiguity arising in Fourier optics, 33,34 and the 
radar ambiguity discussed originally by Woodward. 35 

The mean Wigner distribution density function can be 
determined by ensemble-averaging both sides of (6.44): 

E{j(x, e,z;O!)} = 2~ L dy eik8Y E{p(x + b, x - ty, z;u)}. (6.45) 

The quantity E{p(x + h, x - }y, 2;0!)} in the integrand is 
simply the spatial mutual coherence function [cf. Eq. 
(6.23) 1 expressed in terms of "center of mass" and dif­
ference coordinates. Taking this into consideration, we 
find that 

E{j(x, 8,2 ;f)ll} 

= (k/1r )[1 + 2gka~1 + 2 (k/g)(a~2 + 2gkdetL;) )-1 / 2 

x exp{ - (k/ g)(l + 2gka~1)[1 + 2gkai1 + 2(k/ g) 

X (O~2 + 2gkdetL;) 1-1 

(6.46) 

x [e - 2gkoi1 (1 + 2g!?ai1)-1x J~exp{ - L~'k/(l + 2g!?oi1) )x~. 

The H-function is defined next in terms of the mean 
Wigner distribution density function as follows; 

H(z)= (dxrdlfE{j'(x, e,z;CI)}lnE{j'(x, e,z;Q')}. (6.47) 

Here, f'(x, e,2;0')=/(x, lJ,z;a)/k. It has already been 
pointed out that the Wigner distribution density function 
(and, hence, its ensemble average), although real, may 
not necessarily be positive everywhere. Consequently, 
the definition of the H -function in (6.47) cannot possibly 
be valid in general, by virtue of the logarithmic term 
which is not defined for negative values of E{t(x, e, Z;CI)}. 
[It is this specific difficulty which is surmounted by the 

A two (transverse)-point field density function is in- J.....f\ 

troduced first as follows in terms of the wavefunction NO 

J(x,z;a). 

(6.43) 

The "phase-space" analog of the density function is 
provided by the Wigner distribution density function 
which is defined as follows 31

• 

At:, 8, Z ;0) = ~?7T.r dy ei k8yp(x + b, x - ty, z;O'). (6.44) 
_00 

This quantity is real, but not necessarily positive every­
where. It can be shown (cf. Appendix A of Ref. 5; also, 
Ref. 32), in general, that I/(x, 8,z;0')1 ~ (l?/7T) for any 
realization CI c: A. Provided that /(x, e, z;cr) is normal­
ized to unity, this means that the Wigner distribution 
density function is different from zero in a region of 
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FIG. 4. Variation of the square of the degree of coherence. 
(a) c=O.l; (b) c=0.05. 

loannis M. Besieris 2540 



                                                                                                                                    

o 200 400 600 800 

(b) 

(a) 

-10 

-15 

FIG. 5. Axial variation of the H-function. (a) c = 0.1; 
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1000 

definition of the degree of coherence given in (6.40)]. 
However, for the particular problem under considera­
tion here, f(x, e,z;a) (and, hence, its ensemble average) 
is nonnegative. This can be easily seen by inspecting the 
explicit solution for E{f(x, e,z;a)} given in (6.46). We 
are, therefore, fully justified in uSing the definition 
(6.47). Carrying out the operations indicated on the 
right-hand side of (6.47) results in the following expres­
sion for the H-function: 

H(z) = In(LJ2(z )!IT] -1. (6.48) 

Interestingly, it is a functional of the square of the de­
gree of coherence determined earlier (cf. Eq. (6.41)]. 

An important property characterizing H(z) is sub­
sumed in the H-theorem, viz., 

(d! dz)H(z) ~ 0, (6.49) 

which is widely used in statistical mechanics (see, e.g., 
Ref. 30). The validity of this theorem follows readily 
forom the result (6.48) for H(z), in conj unction with the 
expression for the degree of coherence, D(z), given in 
(6.41) and the specific forms of O'~l' 0':2' and den; de­
rived in Sec. 5. 

The entropy, S(z), is defined as the negative H-func­
tion. Corresponding to the H-theorem (6.49), we have, 
then, 

(d! dz )S (z) "" O. (6.50) 

This relation is a manifestation of the second law of 
thermodynamics, and states that the total entropy of the 
system (resp. beam) cannot decrease. 

The H-function in (6.48) can be written in terms of the 
dimens ionless quantities t and c as follows: 

(6.51) 

The latter is depicted in Fig. 5. The non- increasing 
property of the H-function incorporated into the H-theo­
rem is clearly evident in this plot. 

D. Effective coherence distance 

We shall close this section by defining and computing 
a characteristic scale called the effective coherence 
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distance. (In the case of a two-dimensional problem 
(circular beam), this characteristic scale is referred 
to as the "effective coherence radius" of the beam (cf. 
Ref. 36)]. This quantity is intimately related to the 
angular width of the beam. 

Let us begin by integrating E{ dJ* (x + b ,z ;0' )}1/J (x - b, 
z;a)} over x. The result is 

y(y,z) '" f'dx E{1/J*(x + b,z;a )1/J(x - b,z;O')} 

(6.52) 

The effective coherence distance, Ye , is defined as that 
value of Y at which Y(y,z) has become e times smaller 
than y(O,z), viz., 

Y(Ye ' z) = e~ly(O,z). 

It is clear from (6.52) that y(z,z)=1. Hence, 

Y(Ye' z) = e~l . 

(6.53) 

(6.54) 

The desired quantity Ye can be easily determined by 
taking the natural logarithm of (6.54): 

(6.55) 

The corresponding dimensionless quantity ye (1;;c) is 
plotted in Fig. 6 for two values of the parameter C. It 
has the value of unity at the initial boundary, and de­
creases monotonically to zero as /;- 00. 

7. HIGHER-ORDER MOMENTS 

A. Fourth-order moments 

We consider first the correlation of the field intensity 
at two tranverse points, viz., E{i(x2, z;a)i(xt, z;a)}. 
Using the expression found earlier for i(x,z;O') [cf. Eq. 
(6.0], we have 

0.6 

U 
J....j) 

'" >-

04 

02 

FIG. 6. Effective coherence distance of the beam (a) c = O. 1; 
(b) c= O. 05. 
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FIG. 7. Variance of on-axis intensity fluctuations. (a) c = 0.1; 
(b) c = O. 05. 

i(x2' z;O' }i(x1, z;O') = (gk/1T )exp{ - gk[x2 - u(z;O') ]2} 

xexp{-gk[x1-u(z;a)]2}, 
(7.1) 

from which, upon averaging over the probability density 
function F(u,v,z), we obtain 

E{i(x2, Z;O! )i(xl' z;O!)} = (gk/1I)(1 + 4gko~1)-I/ 2 

x exp{ - gk[ (1 + 2gko~y (1 + 4gko~l) ](x~ + x~)} (7.2) 

x exp{ 40U (gk)2 /(1 + 4gko~1) ]X1X2}. 

As an illustration of a physical situation which re­
quires the special fourth-order moment given in (7.2), 
consider the problem of ''beam wandering." Associated 
with the stochastic parabolic equation (4.1), we define 
the "centroid" of the beam by 

x(z;o:)=.!"'dxxi(x,Z;CI), VClEA. (7,3) 

(As explained earlier, we assume that the total intensi­
ty is normalized to unity for each realization O! E A. ) The 
mean centroid, X(z ), of the beam has already been de­
fined [cf, Eqo (605)] and found to be equal to zeroo It is 
interesting, however, to consider also the variance of 
the random function x(z;O!), viz 0 , 

var{x(z;O!)} = E{[x(z;CI) - X(z)]2} 

= r dx2I"' dX1 X2X1 E{i(x2,z;(Y )i(xpz ;cd}. (7.4) 

Introducing (7.2) into the last equation and carrying out 
the integration we find 

var{x(z ;Q!)} = a~l> (7.5) 

an expression which vanishes at z = 0 and becomes un­
bounded as z ~ 00. This behavior is a manifestation of 
the instability of the beam due to the presence of ran­
dom-axis misalignments. 

Setting x2 = Xl = x, (702) reduces to the intensity auto­
correlation junction 

E{ i 2 (x, z ;cd} = (gk/1T)(1 + 4gka;)-1 /2 (7.6) 

x exp{ - 2 [gk/ (1 + 4gkail) ]x2}. 
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This result can be used in conjunction with the expres­
sion for the mean intensity [cf. Eq. (6.3)] in order to 
compute the variance (or fluctuation) oj the intensity: 

E{ [i(x, Z;tl) - E{i(x, z ;tl)} ]2} = v2(x, z) 

= (P;k/1T) (1 + 4gkail)-1/2 exp{ - 2[gk/(1 + 4gkail)]x2} 

- (1 + 2gka~1)-1 exp{ - 2[gk/(1 + 2gkail)1x2}). (7.7) 

Figure 7 shows the behavior of the on-axis fluctuations 
of intensity v2 (0, ~;c) for two values of the parameter c. 
As expected from physical considerations, v2 (0, ~,c) 
vanishes at the plane of the source (~= 0). It is also 
seen, however, that IJ2 (0, ~,(") decays monototically 
to zero as ~ ~ 00, after it rises to a maximum at an 
intermediate range, On- and off-axis intensity fluctua­
tions are shown graphically in Fig. 8. Here, v2(~;c;d) 

is plotted versus ~ for one value of c and five values 
of the new dimensionless parameter d= (gk)1/2 X • In 
general, one might expect that for fixed values of the 
range ~ and the strength of the random fluctuations 
(incorporated into the parameter c), v2 (t;c;d) would 
decrease monotonically as d was increased, This is 
definitely not the case, as it is clearly shown in Fig. 8. 
Specifically, for t=10 and c=0.1, v2 (t;c;d) increases 
for values of d up to about 0.75, and decreases for 
higher values of this parameter. A plausible explana­
tion of this "anomalous" behavior could be the "elastic" 
influence of the background deterministic focusing 
medium. 

B. Higher-order moments 

Statistical moments beyond the fourth order level can 
be calculated without too much difficulty. For example, 

E{in(x, z;O!)} = (P;1d 1T )n/2(1 + 2ngk(]i)~lf2 

where n is a positive integer. Furthermore, 

E{in(x2, Z;CI )in (Xl' Z;CI)} = (l?"k/1I)n(1 + 4ngkaiJ-I / 2 

(7.8) 

xexp{ - IZ;;kl(1 + 2n;.;kait)/(1 + 4n;;ka~1)](X~ + xi>) (7.9) 

Xexp{4a~tf(n;;k)2/(1 + 4ngkail)]XIX2}. 
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FIG. 8. Variance of on-and off-axis intensity fluctuations. 
(a) d=2.25; (b) d=2; (c) d=O (on-axis); (d) d=0.5; (e) d=0.75. 

All curves are computed for c= 0.1. 
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Finally, analogously to (7.7), we find that 

E{[in(x, Z;QI) - E{ in (x , Z;lY)} ]2} = V2n (X, Z) 

= (!:"~/rr)n[(l + 4nR"kafJ-1/2 exp{ - 2n[gk/(1 + 4nR"kail)x2} 

- (1 + 2Jgka~1)-1 exp{ - 2n[R"k/(1 + 2nR"kail)]r} J. (7.10) 

C. Probability density function of the log irradiance 

The probability density function p(i) of the intensity 
(or irradiance) i = 1jJ*1jJ can be expressed in terms of the 
moments E{i"(x,z;a)} as follows: 

p(i) = (2rril- l f JOO_, dv i-vol (x, Z;O' )E{iv(x, z ;od}, (7.11) 
, .. po .. E 

where E is an infinitesimal positive number. The con­
ditions for the applicability of (7. 11), viz., that 
E{iv(x,z;cy)}~exp(llE), ll-oo, Ec being a real constant, 
and E{i"(x, z;O')} be analytic on the right half-plane of v 
[satisfied by our expression given in (7.8)], are fully 
discussed in Refs. 37 and 38. 

We introduce, next, the definitions E = In[i(x, z;a)/ io], 
io = (!:"k/ rr)1/2, Eo = gkx2, and a E = 2R"kafl' (We have kept 
here unaltered the notation introduced by Furutsu in 
Ref. 37.) We have, then, 

prE) = p(i)(d/ dE)i 

= (2rri)-1 t~-' dv (1 + vaE)-l/Z 
< -1"'0- E 

xexp{ - V[O + va E)-lEo - E~. (7.12) 

The contour integration can be carried out, with the 
result 

1

0' E>O, (7.13a) 

p(E)= 
(- rrEa E)-1 / 2 exp[ (E - Eo); aE ]cosh2[ (- EEo)1/2/a E], 

E<O, (7.13b) 

(7 .13a) being a direct consequence of the analyticity of 
the integrand in (7.12) on the right half-plane of 1!. 

The probability density function pre) of the log irradi­
ance is nonnegative; furthermore, it satisfies the 
normalization property 

t dEp(E)=1. (7.14) 
_00 

On the beam axis (x = ° or, et/uivalently, 
(7.13) reduces to the simpler form 

)

0, E>O, 

p(E)= 
(- rrEa E)-liZ exp(E/a E)' E< 0. 

(7.15a) 

(7 15b) 

Having established an analytical expression for 
pre), various moments of the log irradiance can be 
found by direct integration. For example, 

f
'o 

M1='E{E}=. _oodEEp(E)=- (~aE+Eo) (7.16) 

and 

MZ =' E{ (E - E{E}F} 

= f_o"" dE (E - E{ E} )2p(E) = ~a~ + 2Eoa E (7.17) 

for the general case, i. e., r;< 0. Higher-order moments 
of the log irradiance can be computed in the same 
manner. 
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Furutsu and Furuhama (cf. Ref. 38) have suggested 
an alternative method for calculating log-irradiance 
moments. Their technique can be briefly outlined as 
follows. The nth moment of E is given by 

E{En} = t dE E"p(E) = - n/(2rri}-1 t'''-' dvv-n-lj(v), 
00 .. 1:>0_6 

(7.18) 

where 

(7.19) 

The last expression, however, is analytic for Re(v) >-E 
and tends to zero as I pi - 00. Therefore, the second 
integral on the right-hand side of (7.18) can be carried 
out by a clockwise contour integration around the pole 
v = O. Moreover, in the vicinity of this pole, 

(7,20) 

and the log-irradiance moments E{En}, 11=1,2, ... , 
can be obtained by matching (7.20) with the Taylor 
series expansion of j(ll) around 1! = 0, 

D. Saturation phenomena 

Consider the express ion 

a~n) = ( In(E{ i2n (x. ?;o: )}/ [E{ in (x, z;n)} ]2)]1/2. (7.21) 

where n is a positive integer. Using a result obtained 
earlier in this section [cf. Eq. (7.8)1, as well as the 
notation introduced in the previous subsection, we may 
write in the place of (7.21) 

ab') = [1n«1 + na E)(1 +2na E)-1/2 

x exp{[2n2 Eoa E/(1 + 2na E)(1 + ria E) l})Y 12. (7.22) 

For the special cases 11 = 1 and 11 = 2, we have, re­
spectively, 

ag) = (In{(1 +uE)(1 +2aE)~1/2 

(7.23) 

and 

ab2 ) = (In{{1 + 2u
E

)(1 + 4a
E

)-1/2 
(7.24) 

x exp[8Eoa E/ (1 + 4aE)(I + 2a E) ]})1/2. 

3.5 

3.0 

2.5 

til 
0; 

20 (I) 

FIG. 9. a2) as a function of aE , with Eo as a parameter. 
(a) Eo=O; (b) E o=2; (c) Eo=4; (d) Eo=6; (e) Eo=8; (f) Eo=10. 
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The quantity a~l) given in (7. 23)-the square of which 
would be the variance of the log irradiance provided 
that the probability density function p(E) were assumed 
to be log-normal-is plotted in Fig. 9 against a

E 
for 

various values of the dimensionless parameter Eo. 
It is clear from this graph that ag) saturates for values 
of aE close to 0.8. 

Saturation phenomena associated with the scintil­
lation of waves propagating in turbulent media have 
been known experimentally. Various theoretical pre­
dictions (based for the most part on numerical solu­
tions of the equation for the second moment of ir­
radiance) have, also, been made (cf., e. g., Refs. 
39 and 40). Theoretical results very similar to those 
reported in this paper have been published by Furutsu 
and Furuhama (cf. Ref. 38) for the special case of a 
beam propagating in a deterministically flat (homo­
geneous) medium, with additively superimposed ran­
dom fluctuations. The latter are characterized by a 
simplified (quadratic) Kolmogorov spectrum. 

In contradistinction to a~l), the variance of log ir­
radiance M2 [cf. Eq. (7017)1 does not exhibit any 
saturation. This quantity is shown graphically in Fig. 
10. An explanation for this behavior of M2 has been 
provided by Furutsu and Furuhama (cf. Ref. 38; also, 
remarks made in the previous paragraph). The variance 
of log irradiance M2 does not saturate since it con-
tains many higher-order moments of the irradiance 
E{i"(x,z;Q)}, and the higher the order v is, the earlier 
the saturation starts. This situation is partially de­
picted in Fig. 11, where ag) [cf. Eq. (7.24)] is plotted 
versus aE for various values of the parameter Eo' A 
direct comparison of this graph with the analogous one 
for a~ll (cf. Fig. 9) shows that the range of values of a E 

for which a~2) saturates is approximately centered 
a round 0.4, Qualitatively, one would expect that this 
"shifting to the left" of the values of a E at saturation 
would continue as the superscript index in ac assumes 
larger and la rger values, i. e. , ab3

), ah4
), etc. 

(f)---­

(e)-

(d) 

---"--- -------~ 
I 10 

FIG. 10. Variance of the log irradiance. (a) Eo~O; (b) Eo~2; 
(c) Eo~4; (d) Eo~6; (e) Eo~8; (f) Eo~10. 
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FIG. 11. a~2) as a function of (TE' with Eo as a parameter. 
(a) Eo~O; (b) Eo~2; (c) Eo~4; (d) Eo~6; (e) Eo~8; (f) Eo~10. 

8. CONCLUDING REMARKS 

The statistical technique expounded in this paper is 
based on the fundamental ansatz introduced in Sec. 3. 
This ansatz constitutes essentially an embedding pro­
cess: Through the transformations (301) and (3.2), 
the stochastic parabolic equation (1.1) is brought into 
an one-to-one correspondence with the parabolic equa­
tion (3.4) characterizing the unperturbed focusing 
medium. together with a set of stochastic nonlinear 
ordinary differential equations [cf. Eqs. (3.5) and 
(3.6) 1 which account for the statistical fluctuations in 
the medium. The basic statistical analysis of the ori­
ginal stochastic partial differential equation is thus 
simplified Significantly since it can now be performed 
at the level of a set of stochastic ordinary differential 
equations the mathematical theory of which is already 
highly developed (cf.. e. g., Refs. 8 - 10) . 

Conceptually, we feel that the proposed statistical 
technique, although distinct, is closely related to 
recently formulated methods based on functional path 
integration (cf. Refs. 14-16). Similarly to the func­
tional path integration methods, our technique has the 
distinct advantage that it works on a fiilobal rather than 
a loeallevel making, thus, easier the algorithmic 
derivation of asymptotic solutions to higher-order 
statistical moments. 

There seems to exist another important connection 
between our statistical approach and the path integral 
technique: The latter can be used to derive systemati­
cally !I11satzc (analogous to the one postulated in Sec. 3 
of the paper) which can account for more realistic 
randomly perturbed channels. We are presently in­
vestigating along these lines the problem of beam 
proDagation in a focusing medium whose unperturbed 
frequency is randomly modulated (cf., also, Ref. 11). 
Proceeding along the same vein, we also hope to 
make some progress with the more difficult problem 
of beam propagation in a medium whose parabolically 
graded deterministic profile is additively perturbed 
by x- and z -dependent random fluctuations. 
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We study the group of automorphisms Aut( G) of a given group G from the groups of automorphisms 
(supposed known) of some of its subgroups; basic results are applied to topological groups and widely 
developed inside the Borel-Chevalley theory of linear groups; affine algebraic complete groups are 
studied in detail. 

INTRODUCTION 

Our purpose in this paper is to improve and to extend to 
topological groups the basic results about groups of auto­
morphisms obtained in the study of extensions of the con­
nected Poincare group. 10 In mathematical physics, the con­
struction of a symmetry group for a given physical system is 
often formulated in terms of coupling two groups; to solve 
this problem, mathematical tools are supplied by extension 
theory or by unification theory. In this paper, we are essen­
tially concerned with extension theory of groups and, more 
precisely, with splitting extensions also called semidirect 
products; that because this structure arises in many impor­
tant cases, e.g., in physic, the symmetry group of a free parti­
cle in non relativistic, Schrodinger-quantum mechanics, the 
Poincare group, are semidirect products; it is a well-known 
fact that many space groups are splitting extensions of crys­
tallographic point group by a lattice group; these latter as the 
Lorentz group are linear groups; this is, among other, the 
reason why the Borel-Chevalley theory of linear groups is 
the framework of this work. The first part of this paper is 
devoted to the study of Aut( G), the group of automorphisms 
of a group G, when G=KX ell is a semidirect product; the 
most interesting case happens when the normal subgroup K 
is characteristic; the following sections concern the auto­
morphisms of topological groups, particularly affine alge­
braic groups and their completude. 

I. THE AUTOMORPHISMS OF A SEMIDIRECT 
PRODUCT 

Let G be a group; throughout this paper Aut(G) [resp. 
Int( G)] denotes the group of all automorphisms (resp. the 
group of inner automorphisms) of G. If xEG, Fx is the inner 
automorphism Fx(g) =xgx- I

, for every gEG. 

A. The case of abstract groups 
Let G = K X ell be the semidirect product of the ab­

stract groups K and H, where fJ is the homomorphism from 
Hinto Aut(K) defining G. For every FEB, put fJ(F) =F-, 
then the product of two elements (a,F), (b,A ) of Gis 
(a,F)(b,A )=(a·F-(b ),F A). The unite (or l)ofGise=(l, 1) 
where 1 is the unit element of K (resp. H); the inverse of 
(a,F)EG is (a,F)-1 = «PI(a»-I,r l

), then K is a normal sub­
group of G and we have the splitting exact sequence 

l-+K-+G-+H-+l,K(resp.H) will be identified with the 
subgroup KX 11] (resp. 11] XH) of G. 

B. The automorphisms of G = K X eH 
LetFEAut(G), then VaEK, 3!(b,A )EG,H(a,l)=(b,A); 

putting b=f(a) and A =a(a), we define the mapsf: K-+K 
and a: K-+H; on the other hand, V FEB, 3!(C,L1 )EG, 
F (1 ,F) = (C,A ); writing as above C = cp (F) and A = <P(F), 
we define two other maps cp : H-+K and <P : H-+H. 

(a) Properties and relations 

V FEAut(G), V a,bEK, (ab,I)=(a,I)(b,I); then 
F(ab,I)=F«a,I)(b,I». Whence (f(ab ),a(ab» 
=if(a)a(a)-lf(b »,a(a),a(b »and, by identification, we get 

f(ab )=f(a)a(a)-(f(b », V a,bEK, (1) 

a(ab )=a(a)a(b), Va,bEK; (2) 

it follows from (2) that a is a groups morphism. On the other 
hand, we have V FEAut(G), V F ,AEB,(I,FA )=(1,F)(I,A); 
then F(1,FA )=F«I,F)(1,A »; whence 
(cp(FA ),<P(FA »=(cp(F)<P(F)-(cp(A »,<P(F)<P(A »;from 
this, we deduce by identification 

cp(FA) = cp(F)<P(F)-(cp (A », V F ,AEB, (3) 

<P(FA) = <P(F)<P(A), V F ,AEB. (4) 

Then <P is an endomorphism of the group H; since an ele­
ment (a,F)EG has a unique decomposition of the form 
(a,F)=(a, 1)(I,F), wehaveF(a,F)=F«a, 1)(1,F», therefore 
V (a,F)EGbut(f(a)a(a)-(cp (F»,a(a)<P (F»;VaEK, V FEB 
(I,F)(a, 1)=(F(a)- ,F), so that F«I,F)(a, 1» 
=F(F-(f(a»,F), so 

(cp(F).<P(F)-(f(a»,<P (F)a(a» 

= (f(F- (a )a(F- (a» - (cp (F »,a(F-(a »<P (F »), 

then we obtain 

f(F-(a)a(F-(a»-(cp (F») 

=cp(F)<P(F)-(f(a», V (a,F)EG, (5) 

a(F-(a»<P(F)=cp(F)<P(F)-lf(a», V (a,F)EG. (6) 

It follows from these formulas that every automorphism of 
G=KX ell can be identified with a quadruplet if,a,cp,<P) of 
maps defined as above, verifying the six previous relations 
and related by the latter. 

Proposition 1.1 (Nai-Chao Hsu l
): Let G=KXellbe a 

semidirect product of groups, and if,a,cp,<P) a quadruplet of 
maps such thatf: K-+K, a: K-+H, cp : H-+K, <P: H-+H. If 
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the six previous relations are satisfied and if: V (b,A )EG, 3 
(a,F)EG such that 

b=/(a)a(a)-(tp (F», F=a(a)rP (F), (7) 

then, there is an unique automorphism F of G defined by 
F=(j',a,tp,rP). We shall call/undamental relations the seven 
previous relations. We deduce from these results that there is 
a canonical bijection from Aut( G) onto the set of quadru­
plets (j',a,tp,rP) defined as above and satisfying the funda­
mental relations; we shall identify an automorphism of G 
with such a quadruplet when we need it. 

(b) The case 0/ a direct product 

When G =K X eH is a direct product, the morphism e is 
trivial, then for FEll, F- = lK' where l Kis the identity map 
of K it follows from (1) and (3) that/and tp are group mor­
phisms; thus, in this case, the elements of a quadruplet 
(j',a,tp, rP )EAut( G) are all group morphisms; it is convenient 
to use the Nai-Chao Hsu matrixial notation. 

If F=(j',a,tp,rP )EAut(G), put 

F= (~ :), 

then, 

V(a,F)EG, F(a,F)=(~ tp)( a)=(/(a) 
rP \lr a(a) 

tp (F)\ 
rP(FY 

Let FI = (j;,abtphrPl)' F2 =(j2,aZ,tpz,rP2)EAut(G), it is easy to 
establish that 

=(/J; ®tpzal 
aJ; ® rPzal 

htpl ® tp2 rP i ), 

a 2tpl ® rPZrPl 

where/g=/Og is the law composition of maps and/®g is 
defined by (j® g)(u) =/(u)g(u). 

Since G=KXH is a direct product, V (a,F)EG, 
(a,F)=(a, 1)(1,F) = (1,F)(a, 1). Hence, if 
F=(j',a,tp,rP )EAut(G), 

F(a,F)=(j(a)tp (F),a(a)(/> (F» 

=(tp (F)f(a),rP (F)a(a», 

and therefore, V (a,F)EG tp(I)f(a)=/(a)tp (F) and 
a(a)(/>(F)=(/>(F)a(a); denote by Z~Im/) [resp. 
Z~Im(/»] the centralizer of the image of/Crespo of (/» in K 
(resp. in H), Then: 

Proposition 1.2: Let G=KXHbe a direct product of 
groups, F=(j',a,tp,(/> )EAut(G). Then 

Im(a)CZ~Im(/», Im(tp)CZ~Imf). 

We shall investigate now the automorphism group of 
G =KX eH, where the normal subgroup K is also character­
istic (Le., invariant under all automorphisms of G). 

(c) When K is a characteristic subgroup o/G 

Let G=KX eHbe a semidirect product, with K charac­
teristic. If F=(j',a,tp,(/> )EAut(G), a(a) = 1, V aEK, and the 
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fundamental relation (1) implies that/is an endomorphism 
ofK. 

Proposition 1.3: Let G=KX oHbe a semidirect product 
of groups if the subgroup K is characteristic; then an auto­
morphism F of G can be represented by F=(j',tp,rP), where 
/EAut(K), (/>EAut(H). 

Proof Since K is characteristic,fis the restriction of Fto 
K. Then/EAut(K). Put 

F=(/ tp) 
\0 rP ' 

where 0 is the trivial morphism from K into H; then the 
inverse of F is 

tp' ) 
rP' . 

tp' )(/ tp) 
(/>' \0 (/> 

Whence 

(
'JJ'0 /tp' ®tp(/>' )=(fJ' Itp ®tp'(/> ) 

(/>rP' \ 0 rPtP' 

Thereforeff'=/J=IK and rPrP'=rP'rP=IH , then 
rPEAut(H). 

Corollary 1.1: Let G=KXHbe a direct of groups; if K 
and H are characteristic subgroups of G, then Aut( G) 
= Aut(K) X Aut(H) (direct product). 

Co"olary 1.2: Let G=KXHbe a direct product of 
groups; if K is a characteristic subgroup without center, then 
Aut(G)=Aut(K)XAut(H) (direct product). 

Proof Using Corollary 1.1 above, we just have to prove 
that H is also a characteristic subgroup. If 
F=(j',tp,rP )EAut(G), then Im/=K(fromProposition 1.3), so 
Z ~Im/) = ! I} and Im(tp) = ! I} (by Proposition 1.2), hence 
H is a characteristic subgroup of G. 

II. ON THE GROUPS OF AUTOMORPHISMS OF 
AFFINE ALGEBRAIC GROUPS 

The purpose of this section is the study of the group 
Aut(G) when G is a given affine algebraic group via the 
groups of automorphisms (supposed known) of some in­
variants: maximal tori, Borel subgroups, etc. 

A. Notations and recollections 

Let K denote a commutative field; an affine K -algebra is 
a K-algebra of finite type and an affine algebraic K-group or 
affine algebraic group over K is: 
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(i) An algebraic affine variety G, i.e., G is the set 
Spm(A ) of maximal ideals of some reduced affine K-algebra, 
endowed with the Zariski topology. 

(ii) G is a topological group, i.e., G is a group and the 
map (x,y)o-xy-l is a morphism of affine varieties of GX Gin 
G. 

Throughout this section K denotes a commutative alge­
braically closed field and all affine algebraic groups are K­
groups. Let G be an affine algebraic group, then G is isomor­
phic to a closed subgroup ofGLn(K) for some positive inte­
ger n; G" denotes the connected component (of the unit 1) of 
G; put Gu (resp. Gs) for the set of unipotent (resp. semisim­
pIe) elements of G. 

Recall that an abstract group is locally nilpotent (resp. 
locally solvable) if every subgroup of G of finite type is nil­
potent (resp. solvable); an algebraic group is nilpotent (resp. 
solvable) if and only if the underlying abstract group is nil­
potent (resp. solvable) [see Ref. 2, (2.4) or Ref. 3, expose 3, 
theoreme 3). 

B. The case of nilpotent or locally nilpotent 
affine algebraic groups 

Theorem 2.1: Let G be a nilpotent or locally nilpotent 
affine algebraic group, then Aut(G)=Aut(G) X Aut(Gs) 

(direct product). 

Proof It is well known (see BoreF or Chevalleyl for the 
connected case, and Sprunenko and Tyskevic' for the locally 
nilpotent case) that G u and Gs are closed subgroups of G and 
G=Gu X Gs (direct product); then it suffices to prove that Gu 

and Gs are characteristic subgroups of G. Assume 
F=(f,a,rp,cI> )EAut(G), then, from Sec. I B(b),J,a,rp,cI> are 
group morphisms; the conservation theorem for unipotent 
and semisimple elements implies the triviality of a and rp so 
then Gu and Gs are characteristic. Hence from Proposition 
1.3, Corollary 1.1, Aut(G)=Aut(G)X Aut(G,). 

C. The case of connected locally solvable affine 
algebraic groups 

The structure of connected solvable affine algebraic 
groups is well known. Moreover, a theorem due to 
Zassenhaus (see Ref. 5) states that a locally solvable affine 
algebraic group is solvable. Thus if G is a connected locally 
solvable affine algebraic group, G = G u X eT (semidirect 
product). Where Tis a maximal torus, Gu is a normal sub­
group and (J is defined by (J(t )=t- =F1, 'if tET, i.e., 
t - (x) = txr', fo every x of G u' Assuming that 
F= (f,a,rp,cI> )EAut(G), it follows from the conservation theo­
rem of unipotent elements that a is trivial, hence Gu is a 
characteristic subgroup of G and any automorphism F of G 
can be identified with a triplet F= (4) ,rp , cI> ) wherefEAut(Gu) 

and cl>EAut(T). 

Theorem 2.2: If G = G u X eT is a connected locally solv­
able affine algebraic group, then Aut(G)=lnt(G). [Aut(G) 
X Aut(T)]e, where Aut( G J X Aut(T) is a direct product and 
[Aut(Gu) X Aut(T)]e is the subgroup of 
Aut(Gu) X Aut(T) whose elements (f,cI» are related by the 
fundamental relations. 
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Proof Denote by C{; the set of maximal tori of G; from 
the conjugation theorem of maximal tori in G, Aut( G) acts 
transitively (on the left) on C{;; put S (T) for the isotropy 
group of TEC{;, in Aut(G). Since 'if TEC{;, F(T)EC{;. there is 
xEG such that xF(T)x- 1 = T; then FEInt(G )·S (T); since 
G=GuXeT, FES(T)¢=::',.F = (f,cI», wherefEAut(Gu)' 

cl>EAut(T);henceS (T) C [Aut(GJ X Aut(T)]e;theconverse 
inclusion is obvious; therefore S (T) = [Aut( G) X Aug(T)]e 
and 
Aut(G)=Int(G)·[Aut(G)XAut(T)]e. QED 

Remark: Let (f,cI»E[Aut(Gu) X Aut(T)]e· It is easy to 
check that 'if bEG", 'if rET,f(r-(b »)=cI> (T)-V(b ». Then 
for - =cI> -oj, 'if rET; henceif/= IG" (IG ",cI> )EAut(G) if 
cI>(T)- =r-, 'if rET; i.e., if (Jocl>=(J. Doing the same with 
cI>= ITit appears that (f,IT)EAut(G) iffor - =r - j, 'if 
rET; i.e., if/EZ (lm«(J», the centralizer ofIm«(J) in Aug(GJ. 

D. The general case 

Our study of the group Aut(G), where G is a connected 
affine algebraic group proceeds via the groups of automor­
phisms of its Borel subgroups; the key to this method is 
Steinberg's theorem. 

Theorem (Steinberg6
: 7-2): Every epimorphism of an 

affine algebraic group G fixes a Borel subgroup (see also Ref. 
7,2.7). 

Theorem 2.3: Let G be a connected affine algebraic 
group, B (resp. T) a Borel subgroup of G (resp. a maximal 
torus of B), S (B,T) the isotropy group of the pair (B,T) in 
Aut(G); then Aut(G) = Int(G)S (B,T). 

This result was earlier obtained for connected semisim­
pie affine algebraic groups by Chevalley (Ref. 3, Expose 17). 
It stays true for any connected affine algebraic group. 

Proof Let qj (resp. ~) be the set of Borel subgroups 
(resp. maximal tori) of G; it follows from the conservation 
and the conjugation theorems that Aut(G) acts transitively 
(on the left) on .UJJ and ~; denote by S (B) [resp. S (T)] the 
isotropy group of BEqj (resp. TEC{;) in Aut(G); then 
S (B, T) = S (B )nS (T);letFEAut( G )sinceF (B )Eqj ; there is 
xEGsuchthatxF(B )x- 1 =B, thenFxoFES (B )andFxoF(T)is 
a maximal torus of B, hence there is bEE such that 
bFxoF(TW' = T, then FbxoF(T) = T; therefore, 
FbxoFES(B,T) and FElnt(G)S(B,T); then 
Aut( G) = Int( G)o8 (B, T). 

Remark: Replace in the proof above S (B, T) by S (B ) or 
S (T), then we have 

Aut(G) = Int(G)o8 (B) 

=Int(G}S(T). 

The theorem of conjugation for Borel subgroups (resp. 
maximal tori) of G shows that the previous relation does not 
depend on the Borel subgroups [resp. the maximal torus 
resp. the pair (B,T) considered]. 

The limitations of our method appear clearly here. We 
have no criterion oflifting to Aut( G) an automorphism F of a 
Borel subgroup, which fixes a maximal torus. Let us never­
theless show how to use this method. 
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III. APPLICATIONS 
In this section, our aim is to illustrate by means of some 

examples our previous assertions. 

A. The automorphisms of the connected 
Poincare group 

Let R denotes the field of real numbers and GL.(R) the 
general linear group of 4 X 4 matrices over R. Denote by L 
the general Lorentz group, i.e., 

L = {AEGL.(R)I'AJA =J), 

o 
1 
o 
o 

o 
o 
1 
o I) 

is the matrix of the real quadratic form 

Q(x)=x i+x ~+x ~-x~, V X=(Xl,x2,xJ,x¥R\ and 'A is 
the transpose of AEGL.(R); let A = (A.ij)EL; then 

(a) det(A) = + 1, 

(b) A. ~4 +A. ~4 +A. ~4 -A. ~4 = -1 . 

The connected component L ° of the identity of L is 

LO= {A:AEL I det(A) = 1, A..4> 1). 

1. The general Poincare group (or general 
inhomogeneous Lorentz group8) 

The general Poincare group is the semidirect product 
P= TX eL. where T is the group of translations of the affine 
Euclidean space R4 and {} : L-Aut(T) is the canonical injec­
tion. The composition law in P is given by (a,F)(b,A) 
= (a + F (b ),F A ). V (a,F ),(b,A)EP and the identity 1 of Pis 
1= (0, 1). P is a real Lie group whose connected component 
of e is P= TXeL°. 

Our pourpose is to determinate the group of automor­
phisms of the topological group P. Aut(P) and Aut(P) are 
well known (see for instance Ref. 9); in Ref. 10 some slight 
modifications were introduced in this proof; the latter is giv­
en here with some readjustments. 

2. The automorphisms of the topological group P 

Let FEAut(PO), then F=(j,a,<p,(/J); since T is a normal 
subgroup of PO, so is F (T) in PO; then aCT) =F (T)nL ° is an 
Abelian normal subgroup of L 0, but L O is simple (see 
Wigner,' p. 167). Therefore, a(T)= 1 since Tis Abelian. It 
follows from this that T is a characteristic subgroup of P, 
then a characteristic subgroup of P. Hence every automor­
phism F of P has the form F= if,<p;(/J ). 

Properties and relations: 

(1) R linearity off:fis continuous because it is the re­
striction of Fto T; V nEN, V aET,f(na)=nf(a). Then by a 
standard argumentfis Q linear, then R linear (N and Q are 
respectively the monoid of positive integers and the field of 
rational numbers). 
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(2) Characterization of (/J: V aET, V FEL, 
fTc.r(a»=fTf!(a) we deduce from the fundamental rela­
tion (5), V aET, V FEL,fTf!(a)=(/J (F)(a); Hence V FEL, 
(/J (F) = fTf!; the automorphism (/J of L is then induced by 
the inner automorphism FjofGL.(R); on the other hand, for 
every fEff, there is F=if,(/J )EAut(P) defined by F(a,F) 
= </(a),(/J (F», V (a,F)EPand (/J(T)=fTf!, V FEL. 

(3) Characterization of <p: Since - 1 is central, we have 
(/J( - 1) = - 1 and, for the same reason, ( - I)F =F( - 1); the 
fundamental relation (3) implies that 

<pC -1.T)=<p( -I)+(/J( -I)(<p (F» 

=<p (F)+ (/J (F)(<p (-I»; 

then we have 

<PC -1)-<p(T)=<p(T)+(/J(T)(<p( -1»; 

hence 

2<p(T)=<p( -1)-(/J(T)(<p( -I», 

for all FEL; put <pC - I) = 2ao for some aoET; then 
2<p(T) = 2ao - 2(/J (F )(ao), whence for all F of L 
<p(T) = (1-fFf')(ao); therefore the automorphism F de­
pends only onfand ao; 

V (a,F)EP, F(a,F)= (f(a) +ao-fFf!(ao)JTf') 

= (ao, I)<!(a),/Ff!)(ao, It' 
= Fa, oif,Fj)(a,F); 

since the center of P is trivial, every aoET determines an 
unique inner automorphism Fa, of P and every (ao/)ETX ff 
determines clearly an unique automorphism of P verifying 
the relations just above; assume, (ao/),(ao'/)ETxff, then 
the product rule is (ao' I)(ao/) = (ao' + f (ao)./]'); therefore, 
Aut(P) = TX £YV is a semidirect product where {} is the ca­
nonical injection of ff in GL.(R). 

3. The automorphisms of po 

The center of Po is trivial and every FEAut(PO) has the 
form F=if,<p.(/J) (see Sec. III B 2); then we conclude as 
above that 

(i)fis R linear and normalizes L" in GL.(R), 

(ii) (/J(T)=jFr', V FELo, 

We can lift F to an automorphism of P by setting 
(/J( -1)= -I, <pC -1)=2ao, aoET; then we get 
Aut(PO)= TX eN, where N is the normalizer of LO in GL.(R) 
and {} : N-GL4(R) is the canonical injection. 

We have proved that Aut(P) = TxrJi. 

4. The structure of JY 
V AEJV, V FEL,AFA-'EL, then '(AFA-1)J(AFA-1) 

=J, whence IrAJAr='AJA; since I r=JF"IJ ,we have 
I F'AJAF=Jl' J'AJAF, henceJ-' J'AJAF='AJA and 
thereforeJ'AJAr=FJ'AJA, V FEL, V AEff, then 
Jr AJAEZ GL,( R) (L ): the centralizer of L in GL.(K). Since 
the previous representation of Lin GL.(R) is irreducible (see 
Ref. II), we conclude that J' AJA =A.I, where A.ER* and I is 
the unit ofGL.(R, then 'AJA =A.J, V AEff. Conversely, if 
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AEGL4(R) is such that 3 AER, tAJA =AJ, then, V rEL, 

t(ArA-1)J(ArA-1)=tA-1rAJArA-1 

=A tA-1JA-l 

=J. 

Hence ArA-'EL and A6.#', whenceff = (AEGLlR)13AER, 
tAJA =ltJ!; denote by l/J the mapff _R*I defined by 
1{J(A ) =1tI where It is such that tAJA =AJ; clearly l/J is an 
endomorphism of ff and ker(l/J)=L; thenffIL::::;Im(l/J), 
whenceff = Im(l/J) XL (direct product); then V A6.#', 3 
(1t,J.l)ER*2 3 rEL such that A =ltrand tAJA =f.-lJ, from this 
we get ..12 tr Jr=VJ =f.-ll~f.-l =..12 > 0, therefore 
Iml/J= [A241ER: J, where R: is a multiplicative group of 
positive real numbers. Thenff =R:L. 

5. Tis a characteristic subgroup of T X Iff 

Let F = (j,a,q;, <P ) be an automorphism of TX,AI; aCT) 
is a normal Abelian subgroup of ff then central; hence V 
teT, 3 lteR*, a(t) =1tI.1t follows from the fundamental rela­
tion (6) that 

V r6.#', V tET,a(r(t»<p(r)=<p(r)a(t)=A<P(r). 

Then V tET, 3 lteR*, a(r(t »=U, V rEJII~; so 
a(-t)=a(tt1=AI, hence ..1 2 = 1 whencelt=+l. Since 
216//i anda(a+a)=a(a)2, wegeta(2I (a»=lt2=1t; thisim­
plies that It = 1. Then V tET, a(t) = 1, so the morphism a is 
trivial and therefore T is a characteristic subgroup. 

6. P = T Xi L is a characteristic subgroup of T Xi ff 

If we work with Tx,AI in place of TX ,L in the pre­
vious results, we get <P(£) = fIr, V rEJll

r

• Let rEL; there is 
iteR: and AEL such that <p(£)=/rf' =ltA; then 
det(JTf') =..1 4 det(A), so It 4 = 1. Therefore, L is <P stable, and 
this implies that the restriction to TX ,L of an automorphism 
F of TX,AI is an automorphism of TX ,L. ThenP= Int(P) is 
acharacteristicsubgroupofAut(P), then Aut(G)iscomplete 
by a well known result. 

Remark: We have proved in Sec. III 4 thaLY =R~L. 
It is interesting to study Aut(A}. It is easy to show that R: 
is a characteristic subgroup of JY; then every automorphism 
F of c;1/ has the form F= (j,q;,<P), with/eAut(R~), 
<PEAut(L), and q;EHom(L,R~) is known (see Bourbaki,12 
chap. V, p. 34, nOl), £0 is a characteristic subgroup of L, and 
L Ois isomorphic to SL2(C)/( +1), where C is the field of com­
plex numbers. The isomorphism is defined from the spinor­
ial representation ofSL2(C) into LO (see Naimark11). From 
these we can determine Aut(L) (which is known) and then 
Aut(jV). 

B. The group lflI 
K denotes an algebraically closed field of characteristic 

O. K* = K - ( 0 J; the multiplicative group of K putting 
GL2=G~(K) for the general linear group of2X2 matrices 
over K. GL2 is a connected reductive group. Let H be the 
subgroup ofGL2 of matrices 

h=(~ ~), aeK*, beK. 
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1. It is easy to see that lflI is a connected solvable 
subgroup of G14> 

Our aim is to prove that H is algebraically complete, i.e., 
its center is trivial and all its algebraic automorphisms are 
inner. Let B be the subgroup ofGL2 of upper triangular ma­
trices and Bu= U2 its unipotent subgroup (U2 consists ofup­
per triangular matrices whose all eigenvalues are equal to 1). 
U2 is a closed connected Abelian subgroup ofB. 

2. lflI= lJ2X§ (semidirect product, where § is a one­
dimensional torus) 

Indeed, V hEH, 

Put 

then § is a subgroup of lHI and the map 

from K* onto § is an isomorphism of algebraic groups. Then 
§ is a (one-dimensional) torus. Let lD2 be the diagonal sub­
group of GL2; lD2 is a two-dimensional torus. § is a subtorus 
of lD2' and a maximal torus of H which normalizes U 2; then 
H = U2 X § (semidirect product). 

3. § has no center 

This is easy to verify. H is connected since U 2 and S are 
so. 

4. The algebraic automorphisms of lflI 

We have Aut(H)= Int(HHAut(U2)X Aut(§»1J> by 
Theorem 2.2; every automorphism F of H has the form 
F=Fh(j,<P), heH,jEAut(U2), <PEAut(§);fand <P being relat­
ed by the fundamental relations. The map 

b~(~ ~) 
is an algebraic isomorphism of K (identified with the addi­
tive algebraic group Ga ) onto U2; since every algebraic auto­
morphism of K has the form x..-ItX, with AeK* (see Ref. 3, 
expose 9, Lemma 1, or Ref. 13, chap. V, paragraph 23-D). 
Any automorphism ofU2 has the form 

(~ ~)=u~/(U)=(~ It~). with AeK*. 

On the other hand (from Ref. 3, expose 11, page 4), the 
group of algebraic automorphisms of the torus § can be iden­
tified with the group Aut(X.(§» of the discrete multiplica­
tive group X.(S) of one-parameter subgroup; since S is one­
dimensional, X.(§) is isomorphic to 'I., the ring of rational 
integers. Then Aut(X.(§» is of order 2, whence 
Aut(S) = (Is,iJ, where iis defined by i(s) =S-l, for aIls ofS.1t 
follows from this that 
Aut(U2) X Aut(S) = l (j,ls),(j,i)!EAut(U2)]. Since U2 is 
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Abelian, if if, 4> )E(Aut(1U2) X (Aut(S»e, then 
f<:r (b » = 4>(s)- (f(b » for all bE1U2 and SES. But V bE1U2, V 
SES, () (s)(b )=s-(b )=sbs-I, therefore V bE1U2, V SES, 
f(sbs- I) = 4> (s)f(b)4> (stl. Put 

(T=(~ ~), /3= (~ ~). 
We have 

f(O'/3O'-I) = (~ )'~b), ).E!(*, 4> (s)f(B)4> (stl 

Hence by identification, V SES, 4> (s)=s. Then 4>= Is and 
therefore (Aut(1U2) X Aut(S»e= (f,ls).lfEAut(1U2) J, whence 
Aut(lII) = Int(D) and we have the following. 

Proposition 3.1: 1II is a connected solvable algebraically 
complete group. 

IV. COMPLETUDE OF AFFINE ALGEBRAIC 
GROUPS 

Throughout this section, the ground field is algebraical­
ly closed with characteristic O. 

A. Definitions and generalities 
Definition: We call an affine algebraic group algebra-

ically complete if it has the following two properties: 

(i) Its center is trivial, 

(ii) All its algebraic automorphisms are inner. 

Example: 

(l0) Let n be a positive integer, and 02n + 1 (K ) 
= {AEGL2n + litAA =IJ, the orthogonal group of 
(2n+ I)X(2n+ 1) matrices over K. The subgroup 

S02n+l(K) 
= (AE02n+l(K)ldet(A)= 1 J is algebraically complete. 

(2°) We have proved in Sec. III that 

H= {(~ ~ )pE!(*, bE!( } 

is algebraically complete. 

A nilpotent affine group cannot be algebraically com­
plete since the penultimate group of its descending central 
series is a nontrivial central subgroup. 

Proposition 4.1: Let G = K X H be a direct product of 
affine algebraically complete groups. If K and H are closed in 
G, then G is algebraically complete if and only if K (or H) is a 
characteristic subgroup of G. 

Proof Obvious. 

Proposition 4.2: Let A be an affine algebraically com­
plete group. If A is a closed normal subgroup of an affine 
algebraic group G, then 

(a) A is a direct factor; 
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(b) G is connected and algebraically complete if and 

only if 

(i) A and Zc;(A); its centralizer in G, are connected, 

(ii) A or ZG(A ) is a characteristic subgroup of G, 

(iii) Zc;(A ) is algebraically complete. 

Proof (a) It is a well-known fact for abstract groups; the 
proof is the same for affine groups (see Ref. 14). 

(b) Follows from (a) and the proposition above. 

Corollary 4.1: Any extension E of an affine algebraically 
complete group G by an affine group H is trivial [this can be 
also deduced from the fact that Aut(G )/lnt(G) is trivial (see 
Ref. 15, tome 2, chap. XII)]. 

Corollary 4.2: Let C=AIB be a factor group, where A 
and B are affine algebraically complete groups such that B is 
a closed characteristic subgroup of A. Then C is algebraically 
complete. 

Corollary 4.3; Let G be an affine algebraic group. If GO 
the connected component of the identity is algebraically 
complete, then G=GOXH (direct product), whereH is a 
finite group. 

This follows from the previous proposition and from 
the fact that GO has finite index in G. 

B. Conservative groups 
Let Gbe an affine algebraicK-group, letA =K[G] be the 

Hopf algebra of regular functions on G, and Aut( G) the 
group of algebraic automorphisms of G. Aut( G) acts onA by 
(aJ)---+-foa. Then A is a right Aut(G) module. 

Definition: G is called a conservative group if, for every 
fEA, theK-subspace of A spanned by (foa) aEAut( G) is finite­
dimensional (conservative groups were introduced in Ref. 16 
by Hochschild and Mostow; the following facts are credited 
to them). 

Assume G is an affine algebraic K-group. If the center of 
GO is finite [or equivalently ifthe centralizer ZG( GO) of GO in G 
is finite], then 

(i) Aut( G) is an affine algebraic group; 

(ii) The map X : Aut(G)XG-G, defined by 
X (F,g) =F(g) is a polynomial map; 

(iii) The canonical map G_ Int( G) that sends gEG onto 
Fg is a morphism of affine algebraic groups. 

Proposition 4.3: Assume G is an affine algebraic group, 
A and B are isomorphic subgroups of Aut( G) such that 
Int( G) CAnE, and /1 is an isomorphism of A onto B such that 
/1(1nt(G »= Int(G). If the centralizer Zc;(GO) of GO in G is 
trivial, then the isomorphism /1 is induced by an inner auto­
morphism of Aut(G). 

Proof Denote by Z (G) the center of G; Zc;(GO) = {I J 
implies Z (G) = { 1 J; hence we have the hypothesis of a well 
known result in the case of abstract groups (see Plotkin,17 5-
1-3) but in the affine algebraic case, we need the following 
lemma. 

Lemma (HochschildI8
; Proposition 2.1): Let G be an 
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affine algebraic group, A. :G-.lnt(G) the canonical map that 
sendsfonto Fg; put Go =,1(0"). 

(i) If ZJ:OO) is finite, then Z Aut( a)(OO) is finite and acts 
trivally on 00. 

(ii) If ZJ:oo) is trivial, so is Z Aut( alGo) . 

With these assumptions, Aut( G), Aut( 00), and Aut(Aut( G» 
are affine algebraic groups. Denote by v the restriction of It 
to Int(G); then veAut«(lnt(G». Identifying Int(G) [resp. 
Aut( G)] with G [resp. Int(Aut( G))1, there is lPEAut( G) such 
that v=F", Ilnt(G), restriction of F", to Int(G). Let us show 
now that It = F", 1 A, V aEA, V ¢Elnt( G), atPa-1Elnt( G), 
whence p(atPa-1) = FiatPa-1). Then p(a)p(tP)p(atl 
=F ",(a)lPtPlP-1F",(atl. Hence It(a}fPtPlP-llt(a)-1 
=F",(a)lPtPlP-IFia)-I. From this we have 
lP-IF",(at11t(a)lPEZ Aut(G)(lnt(G»=(lc). Then 
Fia)=It(a), Va CA; whence It =Frp I A which completes 
the proof. 

Corollary: Assume G is an affine algebraic group. If the 
centralizer of 00 in G is trivial and ifInt( G) is a characteristic 
subgroup of Aut(G), then Aut(G) is an affine algebraically 
complete group. 

Proof The center of Aut( G) is then trivial. Let 
¢EAut( G). Since Int( G) is a characteristic subgroup of 
Aut( G), the restriction of 1/1 to Int( G) is an automorphism of 
Int(G). Put A =B=Aut(G),p=1/1 in the previous proposi­
tion. Then tP 1 Int(G)=Frp' whereljJEAut(G), whencetP=Fip' 
This is the analog for affine algebraic groups of a well-known 
fact about abstract groups. 

c. Affine algebraic groups with an algebraically 
complete Borel subgroup 

Our main aim in this part is to give a characterization of 
affine algebraic algebraically complete groups. 

Theorem 4.1: Let G be a connected affine algebraic 
group; then G is algebraically complete if and only if G has a 
algebraically complete Borel subgroup. 

Proof 

Lemma 4.1: Assume G is an affine algebraic group. If a 
Borel subgroup of G is algebraically complete, then every 
Borel subgroup of G is. This is clear since Borel subgroups 
are conjugated (for more details, see Ref. 19). 

Suppose now that a Borel subgroup (hence all Borel 
subgroups( of G is algebraically complete; denote by H the 
h01omorph ofG, i.e., H=GXAut(G) (semidirect product). 

Since G is connected, it has no center. Then the center of 
H is trivial, moreover, it follows from Ref. 16 that H is an 
affine algebraic group and V FEAut(G), 3 hER, F=fhla' 
From a Steinberg's theorem, every automorpohism F of G 
fixes a Borel subgroup B; henceF (B) =hBh-1 =B, the restric­
tion of Fto B is an automorphism of B. Then there is a unique 
bER such that hPh-1 =bPb-l, V pER. Therefore, b-lh is an 
element of Z ~B), the centralizer of Bin H. The restriction to 
G of the inner automorphism Fb-'h of H is an automorphism 
which fixes every element of B. Then Fb·, I a= lG' whence 
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hgh-l = bgb-l, V gEG and Fh 1 G = Fb• Then G is algebraically 
complete. 

For the converse, we need the following lemmas. 

Lemma 4.2: Nisnevic's theorem2o: The free product of 
linear groups having a faithful representation of degree n 
over some field of characteristic p>O has a faithful represen­
tation of degree n + lover some field of characteristic p. 

Lemma 4.3: Higman, B.H. Neumann, H. Neumann's 
theorem,21 see also Kurosh,l' Vol. 2, p. 53): Let G be a (ab­
stract) group, A and B subgroup of G, ~ an isomorphism of A 
onto B. There is a group H and hER such that: 

(i) G is a subgroup of H, 

(ii) ~(a)=hah-t, VaEA. 

Assume now that G is connected and algebraically complete. 
Then we may identify it with a proper subgroup of GLn{K) 
for some positive integer n. Then there is an element u of 
GLn(K) such that u is not in G. We may assume that u is 
unipotent,ifnot,themapp: GLn(K)--GLn+1(K)definedby 

p(g)=(~ ~). V gEG, 

is a closed immersion ofGLn(K) into GLn+1(K). Then we 
can choose a u as desired, since the characteristic of the 
ground field is 0 the group (u) generated by u is infinite. 
Consider now the free product M = G*(u); G has clearly non­
trivial unipotent elements. Let wEG u' with w* 1, and put 
V-I =wu; then vEM and has infinite order. Put L =G*(v), 
U=G*u-1Bu, and V=G*vBv- l, whereB is a Borel subgroup 
containing w. Now let Fbe an automorphism of B; then, 
from Ref. 21, there is an isomorphism tP of U onto V such 
thattP(g)=g, V gEGandtP(u-lbu)=vF(b )v- I

, V bER. Denote 
by H the free product of M and L with an amalgamated 
subgroup, by amalgamating U and Vin accordance with the 
isomorphismtP;thenu-lbu= VF(b )V-\ V bEE, where xis the 
coset ofxEM*L. Hence u-lbu=U-1W-IF(b )wu, V bEE. There­
fore, F(b )=WbO)-I, V bER; then F=F", is an inner automor­
phism of B. Since G and B has the same center, Z (B ) = I e I 
which completes the proof. 

Corollary 4.1: Let rbe an affine algebraic group with an 
algebraically complete Borel subgroup. If r is a closed nor­
mal subgroup of an affine algebraic group G, then P is a 
direct factor in G. Moreover, r=PXs (direct product), 
where S is a finite subgroup. 

Proof This follows from Theorem 4.1, Proposition 4.2 
and the fact that the connected component of the identify of 
algebraic group is a characteristic subgroup. 

Corollary 4.2: Let Gbe an affine algebraic group with an 
algebraically complete Borel subgroup, then: 

(a) Aut(G) is an affine algebraic group, 

(b) Aut(G)o=lnt(G)O is algebraically complete. 

Proof (a) It follows from Theorem 4 that 00 is algebra­
ically complete, then by Corollary 4.1, G = 00 X S where S is 
a finite subgroup of G, but S is precisely the centralizer of 00 
in G. Then G is a conservative group and Aut(G) is an affine 
algebraic group. (Note that, since the characteristic of the 
ground field is zero, S has only semisimple elements.) 
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(b) Since C? is a characteristic algebraically complete 
subgroup, we have Aut(G) = Aut(C?) X Aut(S) (direct prod­
uct, see Sec. I, Proposition l.3 and Corollary l.2), whence 
Aut( G) = Int( G)O X Aut(S );themapx : G---+Aut( G ),defined 
by X(g)=Fg , V gEG, is the morphism of affine algebraic 
groups, then Int( C?) = Int( G)O and Aug( G) = Int( G )0 
X Aut(S). Since S is finite, so is Aut(S); then Aut( G)O 
= Int( G )0, but Int( G )0 = Int( C?) and Int( C?) is isomorphic to 
C? (from Ref. 19), which is algebraically complete. 

D. Examples 
1. The group 02n+ lK) 

Let n > 0 be an integer and 02n + I (K) 
= !AEGL2n +I(K) I tAA=IJ. S02n+ I(K) 
! A E02n + I (K) I det(A ) = 1 J is a connected normal subgroup 
of02n + I(K); it has index two in 02n+ I(K) and is algebraical­
ly complete. Then 02n+I(K)=S02n+I(K) 
Z, whereZis the centralizerofS02n + I(K) in 02n+ I(K). Zis 
then a subgroup of order two which coincides with the center 
of 02n + I(K). Put Z = ! - I,lJ =Z2; we have 02n+ I(K) 
=S02n+ I(K) XZ2 (direct product) (this is known, see for 
instance Dieudonnt!2z or Ref. 23, expose 5). 

2. Two extensions of the group H 

(10) It has been proved in Sec. III that the linear group 

H = { (~ ~ ) I aEK*, bEK } 

is connected, solvable, and algebraically complete. Put 

then lB= Uz X][])z (semi direct product) is a Borel subgroup of 
GLz(K). It is easy to prove that 1HI is a proper normal sub­
group of lB, hence 1HI is a direct factor. Then lB = 1HI X ZIB(lHI), 
but Z (lB)=Z (ZIB(lHI» and, since GLz(K) is connected, 
Z (cf29B)Z (GLz(K» = !AEl,)..EK* J =Zis a torus of dim en­
sion one. Then ZIB(lHI)=Z for dimension reasons, whence 
lB=lHIXZ. 

(2°) Denote by §L2 the special linear group of 2 X 2 ma­
trices over K; put F=ZSL,(UZ)' F consists of elements of the 
form 

(1 /3) (-I 
X= 0 I or X= I ~ J with /3EK. 

F is Abelian and contains Uz; it follows from the structure 
theorem of nilpotent groups that F=Fu XFs, where Fu 
(resp. Fs) is the unipotent subgroup (resp. the subgroup of 
semisimple elements) of r. Then F = U 2 X Fs = { - I,lJ = Zz, 
whenceF=UzxZ2; put 

s={(~ ~)I aEK*}. 

S normalizes F in 1HI and snr = { I J . Consider the semidirect 
product M=FXS=lHI; then UO=PXS; but p= Uz, 
whence uo= U2XS=1HI. Therefore, M=lHIXZ2 (direct 
product) and 1HI is an algebraically complete Borel subgroup 
ofM. 
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v. ALGEBRAICALLY COMPLETE SEMISIMPLE 
AFFINE ALGEBRAIC GROUPS 
A. Generalities 

Proposition 5.1: Let G denote a connected affine alge­
braically complete group. 

(10) The following properties are equivalent: 

(i) G is semisimple, 

(ii) G is reductive. 

(2°) If Gis semisimple, then: 

(a) G is an "adjoint" group (i.e., isomorphic to its 
adjoint G), 

(b) The central universal recovering of Gis semisim­
pIe (see Ref. 24 for these definitions and 
examples). 

Let G be an affine algebraic group; according to Stein­
berg,6 an automorphism F of G is called semisimple if there is 
a algebraic group H containing G and hERs such that 
F=Fh I G; Fis called quasisemisimpie if its fixes a Borel sub­
group (of G) and a maximal torus thereof. 

Proposition 5.2: Let G be an affine algebraically com­
plete group; an automorphism F of G is semisimple if and 
only if there is xEGs such that F = Fx' 

Proof Assume FEAut( G) is semisimple. Then there is 
an algebraic group H containing G and hERs such that 
F=Fh I G. Since G is algebraically complete, there is an 
uniquexEG such that F=Fx' But hGh-1 =G implies that 
hEN II,. G): The normalizer of G in H. N ow NIl,. G) = G X Z 
(direct product), where Z is the centralizer of Gin N II,.G), 
but Z is precisely the centralizer of Gin H. Then h = rs, 
where rEG, sEZ commute. Since h is semisimple, so is rand 
s; but V gEG, hgh- I =xgx-I, whence x-IhEZ and x-IrEZ; 
then x-1rEZnG = (1) implies x = r is semisimple; the con­
verse is obvious. 

Corollary: If G is connected and rEG as above, then r is 
an element of a maximal torus T of some Borel subgroup B. 
Then the isomorphism F=Fy fixes B and T(Le., Fis a quass: 
quasisemisimple ). 

Theorem (Steinberg6
): Every semisimple automor­

phism is quasisemisimple. 

Proposition 5.3: Let G be a connected affine algebraical­
ly complete semisimple group; then every quasisemisimple 
automorphism of G is semisimple. 

The proof is based on the fact that, if G is semisimple 
and connected, then for a Borel subgroup B of G containing a 
maximal torus T, we have BnNG(T) = T. 

B. Connected affine algebraically complete 
groups of semisimple rank 1 

Let GLn+ I(K) [resp. PGLn+ I(K)] be the general linear 
(resp. general projective linear) group over K, for some posi­
tive integer n. Put GLn+I(K)=GLn+ 1 and PGL n+ I(K) 
=PGL n+ l' GLn+ 1 is a connected reductive group of dim en­
sion (n + l)Z, the center Zn+ 1 = {AI AEK* J. Then Zn+ 1 is a 
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one-dimensional torus. A maximal torus of GLn+ 1 is a con­
jugate of Dn+l: the group of diagonal matrices ofGLn + 1 is 
connected and its dimension is n + 1. We have 
PGL n+) =GL n+ /Z n+)' then PGLn+) is connected and 
its dimension is (n+ 1)2- =n(n+2). For n= 1, put Z2=Z; 
then PGL2 = GL21Z. We shall prove that PGL2 is algebra­
ically complete. 

Letj:GL2~PGL2 denote the canonical surjection of 
GL2 onto PGL2. 

is a connected solvable algebraically complete subgroup of 
GL2. Then the restriction ofj to lBI is injective. We can identi" 
fy lBI with its image in PGL2. A Borel subgroup of GL2 is a 
conjugate of B= llJ2 X D2 and then has dimension 3. There­
fore, a Borel subgroup ofPGL2 has dimension 2, hence lBI is a 
Borel subgroup ofPGL2• From Theorem 4, we conclude that 
PGL2 is algebraically complete. 

1. Semisimple groups of rank 1 

Recall that the rank of an affine algebraic group G is the 
dimension of a Cartan subgroup of G. If G is semisimple, 
then its rank is the dimension of a maximal torus. 

Theorem 5.1: Let G denote a connected affine algebraic 
group of semisimple rank 1; if G is algebraically complete, 
then G is isomorphic to PGL2. 

Proof: It is a well-known fact that under these assump­
tions, there is a surjection q; : G~PGL2 with kernel I: the 
intersection of all Borel subgroups of G and 1= Z (G), the 
center of G (see Ref. 2, p. 310); since Z (G) is trivial. q; is 
bijective so then there is an isomorphism from G onto lPGL2• 

Proposition 5.4: Let G be a connected reductive affine 
algebraically complete group of rank 1. If FEAut{ G) fixes a 
maximal torus, then F is semisimple. 

Proof: If F= FxEAut( G) fixes a maximal torus T, denote 
by &J T the set of Borel subgroups containing T. Then 
&J T = I B,B' J, and BnE' = T. Since Fx(T) = T, we have 
xBx-'nxBx-" = T; then F induced a bijection from &J Tonto 
itself whence either xBx-' =B and xBx-' =B' or xBx-' = B' 
and xBx-' =B. 

(a) If xBx-' =B, then Fx is quasisemisimple hence semi­
simple (by Proposition 5.3); 

(b)If XBX-'=B', we havexBx-'=B, whencex2Bx-2 =B, 
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then X 2eBnNB{T) = T; thereforex2 is semisimple. Let 
x =xuXs be the Jordan decomposition of x 
(xuEGu' xsEG s). Thenx2=x~x;;sincex2andx; are 
semisimple and commute, we have x ~ = 1. Then Xu = 1 (be­
cause the characteristic of the ground field is 0); therefore, x 
is semisimple and so is Fx' 
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The general coupled anharmonic oscillators and the 
coherent state representation 

S. K. Bosea), b) 

Fachbereich Physik, Universitiit Kaiserslautern, Kaiserslautern. Germany 

D. N. Tripathy 

Physics Department. Gorakhpur University. Gorakhpur. India 
(Received 23 May 1977) 

We obtain a first order perturbation solution for a system of 2 m, unequal mass, coupled oscillators 
perturbed by anharmonic terms of homogeneous power 4p of the position variables in the coherent state 
representation. 

The problem of anharmonic oscillators is interesting 
both from theoretical and application aspects. On the theo­
retical side, efforts are still continuing to find convergent and 
regular solutions. H Many problems of physics involving ba­
sic interactions of nature, on the other hand, often lead to the 
differential equations for the anharmonic oscillator systems. 

It has been observed recently2-4 that the use of the co­
herent state representation in this problem can cure some of 
the bad features of the conventional perturbation approach. 
The advantage being that the viscious secular terms are ab­
sent in the solution. Also the coherent states are the mini­
mum uncertainty states for which the expectation value of 
the position operator possesses the classical time dependence 
in the limit Ii-o. 

In the present paper we derive a perturbative solution to 
a quantum mechanical system of 2m, unequal mass, coupled 
harmonic oscillators perturbed by anharmonic terms of ho­
mogeneous power 4p(p= 1,2, .. ·) of the position variables in 
the coherent state representation. A simple case of this prob­
lem has been analyzed quantum mechanically by Banks, 
Bender, an,d Wu, and Banks and Bender and in coherent 
state representation by Dutt and Lakshmanan. l The classi­
cal solution is achieved in the appropriate limit (Ii-O). 

Recently, Hioe6 has considered another aspect of the 
problem of coupled anharmonic oscillators, namely, the 
properties of energy levels. He has shown, on the basis of 
exact numerical analysis in conjunction with Titchmarsh's 
analytical formulas, that the number of states N (E) with en­
ergy less than E for a system of coupled anharmonic oscilla­
tors, with anharmonic terms being represented by a polyno­
mial of homogeneous even degree of the coordinates, can be 
approximated by different polynomials in energy E in har­
monic and anharmonic regimes. 

The coherent states,7 which are normalized but over­
complete, for a system of 2m harmonic oscillators, are ob­
tained by a superposition of the "n i(i= 1,2,· .. ,2m) quanta" 
states /n"n2, .. ·,n 2m)' corresponding to the energy eigenvalue 
2m 
L W i(n i+!) as 
i=1 

a)Alexander von Humboldt Stiftung Fellow. 
b)Present address: Physics Department. Gorakhpur University. Gorakh­

pur. India. 

~ I,a 2, .. ·,a 2m> 

x ! 
2m an, n I 

i=1 Y nil 
In I,n 2, .. ·,n 2m)' (1) 

n l.n 2'·'" 

n 2",=O 

where a i (i = 1,2, ... ,2m) are 2m complex numbers. These co­
herent states are the eigenstates of the annihilation operator 
a ;(i= 1,2, .. ·,2m) with the eigenvalue a i(i= 1,2,· .. ,2m), i.e., 

a i~ I,a 2,· .. ,a 2m)=a i~ I,a 2, .. ·,a 2m>' 

One can also verify that 

(a I,a 2, .. ·,a 2m~ i~ I,a 2, .. ·,a 2m> 

= U. i I Ii COSUJ ;t, -V 2m i{J) i 

(2) 

(3) 

whereai=-i'A.iexp(i'{J);t)(i'=Y -1,i=1,2, .. ·,2m). The 
classical limit is achieved when Ii-O, A. i-+oo with 

U. i Y Ii/2m i (J) i -+A i' where a i is the classical amplitUde 
for the ith oscillator. 

The Hamiltonian for the system of 2m harmonic oscil­
lators, with anharmonic terms being a homogeneous power, 
4p, of the position variables, is given by 

2m ( 2 ) {2m _ P, 1 2 2 a 4p 
H- L -- +2m i{J)i x i + - Laixi 

i=1 2m i 4p i=1 

2m 2I1 + 1 " b s.X 2(2p-s) X 2S} 2£.. I] I J' 
iJ=1 s=1 

(4) 

iolo} 

where b ij =b li and b ij =p :r- s (i.e., we take the coefficients 
b ij to be symmetricaP). 

The equation of motion corresponding to the ith oscilla­
tor is given by 
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(5) 

Following the lines of Ref. 4, it can be shown that the expec­
tation value of x i in the coherent state Ia I,a 2,··,a 2m> satis­
fies the classical equation of motion 5 in the limit Ii---+o. 

The eigenvalue and the eigenstate of "n i (i = 1 ,2,··,2m) 
quanta" in the presence of weak perturbation (a small but 
*0), using conventional perturbation theory relations, can 
be obtained as 

2m 
E ~ ,.n 2.n 2m = I ( n i + 1!2)1ioJ i 

i=1 

a 2m 2m 
+ - {Ia i L ~~ + I !b ijL; 'L ~~-s }' 

4p i=1 i.j=1 
i~j 

where 

(c n = n! k= 1,2, .. ,2m ) 
r (n-r)!r! ' 

(6) 

and 

a {2m ~ (a. ) - -- I L -'- M~~.qln I,n 2,··,n i +2q,··,n 2m> 
8pli ,= Iq= -Zp W iq 

+ 
zIm zII IS zP.I-s b

S
. __ ~'''--~ __ MnjMnj , 

2( + ') s.q 2p-s.q 
iJ=1 s=1 q=-sq'=-(Zp-s) w iq W jq 
i~j ~o ~o 

Zm Z'IIZP.-S I [s b S. +a '" '" '" - lj C Z(Zp-s) .A 2s-1A Z(Zp-s) 
~ ~ ~ 24p Z Zp--s+q' } 
j=ls=1 q=la=-I P miw i 
j~i 

xln I,n z,··,n i +2q,··,n j +2q', .. ·,n Zm), 

where 

M nk = I ( Ii )a __ (~2a--.:.)~!(_---=-I:..-) q_V---.:..:n.J..i '~.(:..:...n ~i +.:....:2~q.!.:..)! __ 
a,q r=q 2m kW k 2a- r(a-r)!(r+q)!(r-q)!( n k +q-r)! 

(
k= 1,2,··,2m ). 
a=O,I,·· 

(7) 

In deriving the relations (6) and (7) we have exploited the 
identities 

(a-a t) Zp 

= I (-1)' (2p)! :{(a-a t) Zp-2rL 
r=O (2p - 2r)!r!2r 

(a-a t) Zp+1 

=I(-l), (2p+l)! :{(a_at)zp+I-ZrL 
r=O (2p+ 1-2r)!r!2r 

(8) 

where p is a positive integer and: : stands for normal 
ordering. The perturbed coherent state for the 2m oscillators 
system can be written as 

Zm 00 Zm (- i' A. k) n , 

= exp( -! I A. ;) I II --=0=--
i=1 n "n, •... ,k=1 V n k! 

n 2m =0 

x {exp( ~ E ~ "n ,,"',n 2m t )r I,n Z,··,n zm)I}. (9) 

The perturbative solution to the equation of motion (5), 
using the relations (6), (7), and (9), can be obtained as 
I 

cos(2aq't/Jj+t/J;)t s-llC Zs - 1 cos(2aq't/J j + 2q+l t/J;)t }] 
l+aq'wJw i +q~12 s+q (q+aqlwJw;)(q+l+aq'wJw;) , 

(10) 

~O 
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in which the corrected frequency" j' corresponding to the ith oscillator is given by 

.I'.={E' -E', }/¥.I n .-n '.) 
'f'l nl.nl.···.n,.···.n Zm n1.n2 ....• n,.···.V2m '" I I 

where 

Nk = _1_C2aA 2a-2 
a 22a a k 

(k= 1,2, ... ,2m) 

(
a=O,I,2, ... ; ). 
k= 1,2,.··,2m 

The anharmonicity of the coupled harmonic oscillator sys­
tem is reflected through the interdependence of amplitudes 
and frequencies as can be easily seen from the relations (10) 
and (11). The solution (10) does not have any secular term 
and shows a resonance character, typical of forced 
oscillators. 

The higher order terms in the perturbation series can be 
obtained following the above procedure. The calculations 
are, however, more involved. It is hoped that when more 
terms become available, the general features of the nonlin-

2557 J. Math. Phys., Vol. 19, No. 12, December 1978 

(11) 

earities as well as the characteristics of a coupled system will 
be more clearly revealed. 
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A generalization of the spherical harmonic gradient formula 
B. F. Bayman 
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(Received 31 May 1978) 

The familiar gradient formula is generalized by replacing the gradient operator by an arbitrary solid 
harmonic of the gradient operator. The result is applied to various multi pole expansions of angular 
momentum eigenstates. 

1. INTRODUCTION 

The solid harmonic '?!I ~ (r) r k Y ~ (P) is a homoge­
neous polynomial of degree k in x,y,z with irreducible trans­
formation properties under R3 (the three-dimensional rota­
tion group). Let '?!I ~ (\7) symbolize the same homogeneous 
polynomial of a/ax, a/ay, a/az. Since the components of \7 
and r have the same transformation properties under R), 

'?!I~ (\7) will have the same R3 transformation properties as 
'?!I~ (r) or l% (P). Thus if we vector-couple '?!I~ (\7) to a func­
tion/(r)rm (P), 

['?!I k (\7)/ (r) y' (f) Jt-
= L (k I ml m2 I L M) '?!I~,( \7)1 (r) Y~,( P), 

m"m 2 

(1) 
the result will be a function ofr with the same R) transforma­
tion properties as Y t-(n. Then the completeness of the 
y t-( P) and their orthogonality properties imply that the 
angular dependence of (1) is given by Y t-( P), so that we can 
write 

(2) 

where the radial function g f,(r) is independent of M. The 
main object of this paper is to find an expression for g t,(r) in 
terms of/(r). 

The possible values that L can assume in (2) are 
k+l, k+I-2, ... , I k-fI. The restriction to even values of 
k + 1 + L is associated with the requirement that both sides of 
(2) have the same transformation properties under inver­
sion, r---+-r. 

If k= 1, we have 

m=+I'}. 
m=O. 

In this case, (2) becomes the well-known gradient formula l 

[:jll(V)f(r)Y'U) It 

In this sense, the expression we will obtain for g f,(r) in 
terms of/ (r) can be regarded as a generalization of the gradi­
ent formula to cases where k> 1. 

Throughout this paper we will use the Condon-Short­
ley phase convention for the spherical harmonics, so that 
Y~(i) =l) m,o«2/+ 1)/41T )112. 

2. Derivation of the formula for rl/r). 
One way to calculate the right-hand side of(2) would be 

to express '?!I; (\7) as a suitably vector-coupled product of k 
factors '?!I !,( \7), and then to use the gradient formula (3) k 
times, This would lead to an unwieldy expression, involving 
a (k - 1 )-fold sum of products of k - 1 Racah recoupling co­
efficients. A more fruitful approach takes advantage of the 
explicit form of the solid harmonics ':??I±n (r), 

n (-I) (n±n)/2 (2n + I)!) 112 . n 
'?!I +n (r) = (X+IY) . 

- 2nn! 41T -
(4) 

Thus itis relatively simple to apply '?!I~ (\7) to/(r)'?!I' _/( P) , 

= kf (k 1 k -/ I L k-l) 
L= Ik-' I 

k+', I (k I k -I I L k-l) 
L= Ik-/I 

(_l)k (2k+1)!(21+1)! )112 
2k+' k!l! (41T)2 

(
a. a )k /( ) (x - iy) , x -+1- r ax ay rl 

To do the differentiations in (5), we use the identity 

(5) 

[ C~ ;,:IJ/2(r'(r)-~f(r») y:';I(f) IfL=I+I,}. 
= _(2-_I_)'/'(f'(rl+~f(r») Y:"I(f) IfL=I-1. 

41T2/-1 r (
a. a )k f(r) ( . )' -+1- --X-IY 

(3) ax ay r' 
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k 2k - v k!ll L (x + iy) V(x-iy) I+v-k 
= v=ov!(k-v)!(l-k+v)! 

(6) 

This identity is trivially correct for k =0 and alii, and induc­
tion on k verifies that it is also true for k > 0 and alII. Accord­
ing to (4), 

(x+(y)v (x-(y )/+v-k = (-1 )V2/+2v- k v!( I+v-k)! 

( 
(41T)Z ) 1/2 

X (2v+ 1)!(2/+2v-2k+ I)! 

X '?J!~( r) '?J!~/~~~d r), (7) 

and the product of the two solid harmonics occurring here 
can be expressed as 

1+2v-k 
= L (v I+v-k v -I-v +kjL k-/) 

L=I/-'" 

1+2v-k 
= L (v I+v-k v -I-v +kjL k-/) 

L=I/-'" 

X (2V+ I)(2/+2v-2k+ 1) )112 
41T(2L+ 1) 

xCv I+v-k 0 W. 0) r l+2v- k yLI (f). (8) 

Ifwe combine (5)-(8), we get 

=(2k+l)I(2/+1)! )112 k X (_I)k+v(l+v_k)1 

41T(2L+ 1) v.?o 2k -
v (k-v)!(/-k+v)1 

X (v I+v-k v -I-v+k JL k-L )(v I+v-k 00 JL 0) 

«2v)!(21 +2v-2k )!) 112 

Xrl+2v-k (-.l.~)v f(r). 
r dr rl 

(9) 

All the vector-coupling coefficients in (9) have relative­
ly simple explicit expressions, Z 

(lOa) 
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(-1) (/,+1,-/)/2 [(11 +/2+1)/2 ]! 
= 

((Il+/z +1+1)1 )\12 

[(21 + 1)(/1 +/z-1)!(/l-/2+/)!( -11 +/z+/)! ] 1/2 
X~~--~~~~~~~~~----~~~--

[(11 +/2-1)/2 ]! [(Il-/z+1)/2 ]! [( -11 +/z+1)/2 ]1 

(lOh) 

If these are substituted into (9), and the v summation index 
in (9) is replaced by J.i v + (/- k - L )/2, we get 

g f/(r) 
( 2) (L-k-1)12 ( 
- (2k+ 1)(21+ 1) 

[(L+I-k)/2 J! [(L +k-l)/2J! 

X(k+I-L )!(/+L-k )!(L+k-/)!(k+I+L+ 1)!/41T~112 
(k+I-L)12 (L +J.i)! L!' r L+2J1 

X J1~O J.i!(2L +2J.i+ 1) ![(k+I-L )/2-J.i ]! 

X (-.l. ~)(L+k-/)/2+J1 f(r). 
r dr rl 

(11) 

This expressesgf/(r) of (2) in terms offer) and its deriva­
tives. Equation (11) is the main result of this paper. 

It is also possible to relategf/(r) tof(r) via an integral 
relation. We expressf(r)Y~ (P) in terms of its Fourier 
transform, 

f(r)Y~(f) =-I-fe;q·rF(q)y~(q)dJq, 
(21T)JIZ 

wheref(r) and F(q) are related by 

Here j I denotes the spherical Bessel function. Since 

a iq.r. iq.r 
--e =1 q xe , etc., ax 

it follows that 

'?J!~ (\7) e iq·r =i k '?J!~ (q) e ;q.r. 

(12) 

(I3a) 

(13b) 

Application of '?J!~ (\7) to the right-hand side of (12) then 
yields 

g f/(r) = f" K (r,r')f(r')r'Z dr 'z, (14a) 
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K(r,r')=i k + L - 1 ~(2k+l)(2/+1) )112 

1r 41r(2L + 1) 
X(k 100lL 0) 

(I4b) 

In particular, ifJ(r) is itself a spherical Bessel functionj I (Kr), 
the r' integration in (14a) can be done immediately, 

fOOj I (qr')j ,(Kr')r'2 dr' =~ b(q-K) , 
k 2 ~ 

which leads to 

L (r) =i k+L-l (2k+ 1)(2/+ 1) )112 
g kl 41r(2L+ 1) 

X (k 1001 L O)K kj L (Kr) (15) 

[f(r) =j L (Kr) ]. 

This equation can be shown to be consistent with the more 
general formula (11), if use is made of the recursion relations 
ofthej /(Kr). Since the spherical Neumann functions n I (Kr) 
and spherical Hankel functions h ~1) and h ~2) (Kr) obey the 
same recursion relations as thej /(Kr), they will also obey 
(15) with} dKr) on the right replaced by n L (Kr), h ~) (Kr), 
and h ~) (Kr), respectively. 

3. APPLICATION TO TAYLOR EXPANSIONS 

The Taylor expansion of a function t/J about the point r 
can be written 

(16) 

To convert this into a mUltipole expansion, we note that, for 
any two vectors a and b, 

(a.b) n =a nb n (cosey 

=anb n I 
k=n.n-2.n-4.··. 

(2k+ I)n! 

t n - k )/2[(n -k )/2]!(k+n + I)!! 

xP k( cose). (17) 

The spherical harmonic addition theorem can be written 

If this is substituted into (17), we get 
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which, when applied to (14), yields 

t/J(r+s)=4n f (-I)k(2k+I )112 
k=O 

( 

00 S 21' (\72
) I' ) 

X l'J;o21' J..l!(2k + 2J..l + 1 )!! 

X [§'k(S) §'k(\7) ]gt/J(r). (18) 

Now suppose that t/J(r) transforms under rotations like 
Y;"(f). Thus 

(19) 

and we have 

= IU(kk II;OL) 
L 

_" -1 k+l-L ( 2L+ 1 )1/2 
- f() (2k+ 1)(2/+ 1) 

xgf/(r) Y;"(f). (20) 

We have used here the explicit expression for the Racah coef­
ficient U(k k II ;OL). Thefunctiong f/(r) in (20) is related to 
J(r) in (19) via (2) and (11). The phase factor in theL-sum in 
(20) can be omitted, since we know that the only allowed L­
values make k + 1-L even. The Laplacian operator \72 ap­
plied to the r-dependent part of (20) gives 

Finally, we obtain the general expression 

k.L 
(k+I+L even) 

or equivalently, 

(_l)k(2L+ 1 )1/2 
21+ I 

B.F. Bayman 
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I[yk(S) yLU) ]::'tP~(r+s)dPds 

=(_I)k 41T (2L+I )112 
2/+ 1 

x f [S21-"+k(~~r~_L (L+I) )1-"1 
1-"=0 r dr dr r 

21L,u!(2k + 2,u + I)!! ] gr,(r). (2Ib) 

As an example of the use of(21), we calculate the over­
lap between wavefunctions tP :~, and tP ~, calculated in nearby 
spherically symmetric potential wells. Let one well be cen­
tered at the origin, and the other centered at a point shifted 
from the origin by vector s. The corresponding wavefunc­
tions are 

tP~,(r)=u I,(r) y~,U), 

tP~,(r-s)=u 1,( Ir-I I) Y~,(r-s)~ 

Using (2Ia), we find that 

I tP;;':(r)tP~,(r-s)d3r 
=41T 

k 
(k+I,+I, even) 

(22a) 

(22b) 

(23a) 

For a sufficiently small shift s, the dominant term for each k 
will have ,u = 0, 

i '" • I 
X ° U I, (r)g klJr)r dr. (23b) 

The functiong ~" (r) in (23a) and (23b) is obtained by replac­
ingf(r) or the right-hand side of (II) by u I, (r) from (22b). 

Another example of the use of (21) is in the calculation 
of the interaction energy E between two separated density 
distributions pl(rl) and p,(r,) due to a central potential 
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V( I r l -r, I), 

E(r)= I d3rl d3r7{J,( rl)p,(r,)V(Ir-rl+r,I)· (24) 

We perform a Slater expansion on V 

V( I r-t I) = l./,(r,t)P ,( p.i) 
I 

(-I )' 
= 41T " It (r,!) 7' (2/+ I )112 

(25) 

We substitute this expansion in (24), with t = r 1- r" and then 
use (2Ia) to separate the rhr, dependence. The result is the 
following multi pole expansion of E (r) 

Here q 1-"'/, and Q ILI,!,/, (r) are defined by 
m) m2 

Q':!,;"" (r) 2-d I[ I d d 

r 2 dr, dr, 
1,(/, + I) ]1-" 

r~ 

(26a) 

(26b) 

(26c) 

with g l:., (r,r,) calculated fromf,(r,r,) by means of (11). In 
the special case in which Vis a Coulomb interaction,jl(r,t) 
in (25) is t 'Ir 1+ I. Then g ;:.1 (r,r,) is nonzero only if 
I = II + I" the,u sums in (11) and (26a) consists only of the 
,u = 0 terms, and the sum in (26a) simplifies to 

( 
(21 )! )112 

X (2/1 + I )!(2/, + I)! 

X{[q°,l'(1)q°,l'(2) ]lyIU)}g. 

(27) 

An expansion of the type (2Ia) was given by Sawaguri 
and Tobocman. 3 The r,s dependence of the 
[ y k (S) Y L (f) ] ~ term in their expansion is expressed in 
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terms of a sum of products of what they call "modified" 
harmonic-oscillator functions," Y~.(aJ31s) Y~,(2,/3zr). 
The scale parameters a h az, /3 hand /3z are chosen to make the 
nh nz expansion coverge as rapidly as possible. The r, s de­
pendence of our expansion (2Ia) involves power of s and the 
original functionf(r) and its derivatives. It can be expected 
to converge best in situations in which s is small compared to 
the distance over whichf(r) changes by an appreciable frac­
tion of itself. 

A simple application of(2Ia) occurs whenf(r)=j /(Kr) 
so thatgMr) in (21a) is given by (I 5). If we use the factthat 

( 
1 d ..2 d L (L + 1)). () z • ( ) --r- lL Kr =-KJL Kr, r dr dr r 

theIL-sum in (21a) can be expressed as 
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Thus we have 

j /(K \r+si) y~(r+s) ~ = Ii L - k -/ (41T{2k+ 1) )112 

k,L 

X(klOO\LO) h(Ks)h(Kr) 

X[yk(S) yL(f) l~. 

Analogous equations can be derived for n /(Kr) and h ?) (Kr). 
Expansion relations of this form for multi pole fields have 
been given by Danos and Maximon.4 

'M.E. Rose. Multipole Fields (Wiley, New York, 1955), p. 28. 
'E.P. Wigner, Group Theory (Academic, New York, 1959), p. 191. 
'T. Sawaguri and W. Tobocman, J. Math. Phys. 8, 2223 ( 1967). 
'M. Danos and L.e. Maximon, J. Math. Phys. 6, 766 ( 1965 ). 
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The infinite series solution of the elementary neutron slowing down equation is studied using the theory of 
entire functions of exponential type and non harmonic Fourier series. It is shown from Muntz-Szasz and 
Paley-Wiener theorems, that the set of exponentials lexp(iA"u)I:;"~ _~, where IA"I:;"~ _~ are the 
roots of the transcendental equation in slowing down theory, is complete and forms a basis in a lethargy 
interval E. This distinctive role of the maximum lethargy change per collision is due to the Fredholm 
character of the slowing down operator which need not be quasinilpotent. The discontinuities in the 
derivatives of the collision density are examined by treating the slowing down equation in its differential­
difference form. The solution (Hilbert) space is the union of a countable number of subspaces L 2( - EI2, 
E/2) over each of which the exponential functions are complete. 

1. INTRODUCTION 

A complete solution of the neutron slowing down equa­
tion in an infinite homogeneous medium with isotropic elas­
tic scattering and constant cross sections has been obtained 
as an infinite sum of exponentials with the exponents ex­
pressed in terms of the roots of a certain transcendental 
equation. I This solution is valid for all magnitudes of absorp­
tion and all moderator masses, and gives accurate results, as 
numerical calculations performed in Ref. I show, with a rea­
sonably small number of terms of the infinite exponential 
sum. A series such as that encountered in the solution of the 
infinite medium slowing down equation represents what is 
known as a nonharmonic Fourier series,2 which is essentially 
a series given in terms of a countably infinite linearly inde­
pendent set! g n (u) J:~ _ 00 in a Hilbert space H. This set is 
neither orthonormal nor even orthogonal, and the study of a 
series in terms of them involves problems of the closure of 
the set together with the related though nontrivial question 
of being able to uniquely associate with every linear combi­
nation of the ! g n (u) J:~ _ 00 a vector in its closed linear span, 
V(G) [g= !gn(u): - 00 <,n<, 00 J]. Of course, the first problem 
implies the second if G is orthonormal; in the present case 
however, where G is merely linearly independent, they must 
be investigated separately.) The object of the present paper is 
to consider the series solution of the neutron slowing down 
equation from the viewpoint of a non harmonic Fourier se­
ries in a suitably constructed linear manifold Lla,b ) of the 
Hilbert space H. 

The plan of this paper is as follows. In Sec. 2, the prob­
lem and its solution is briefly discussed, and in Sec. 3, the 
linear manifold L 2(a,b ) with the appropriate a and b, are 
constructed. Section 4 contains a discussion of the closure of 
the set of exponential functions and also shows that any arbi­
trary function inL2(a,b ) can be suitably constructed in terms 
of this basis set. In the next section, we study the question of 
the discontinuities in the solution by considering the slowing 
down equation in its differential difference form. This analy-

sis follows standard procedures: Finally, we end the paper 
with some comments and discussions. 

2. THE PROBLEM AND ITS SOLUTION 

We are concerned with the representation of the com­
plete solution of the elementary slowing down equation 

tP(u)=S(U)+A ,C-E du'eU'-Us(u')tP(u'), U>€. (1) 

Here, 

tP(u) is the collision density of neutrons in the medium, 

S (u) is a source of neutrons independent of ¢, 

s(u)=o-,(u)/(7t(u) is the ratio of scattering to total cross 
sections of the moderator of mass A, and 

Equation (I) is the simplest equation for the slowing of neu­
trons in a moderating, nonmultiplying medium and can be 
considered as the counterpart of the one-speed equation in a 
nonmoderating purely diffusing medium. While the solution 
of this latter equation has been studied extensively in the 
literature,s·6 consideration ofEq. (I) has been confined most­
ly to qualitative discussions on the nature of its solutions. 5.? 

Actual calculation of the neutron flux involves, as in the one­
speed case, the roots of a transcendental equation. A general 
prescription for computing all these roots and thereby ob­
taining the solution is now available. 1.8 This solution is in the 
form of a nonharmonic Fourier series, and, as pointed out in 
the Introduction, gives good numerical results. In this paper 
we establish a mathematical foundation for such a represen­
tation of the collision density. 

For the sake of completeness, we give below a short 
sketch of the solution of(1). This discussion is based on Ref. 

2563 J. Math. Phys. 19(12), December 1978 0022-2488/78/1912-2563$1.00 © 1978 American Institute of Physics 2563 



                                                                                                                                    

1 to which the interested reader is directed for further de­
tails. The solution to the slowing down equation with a delta 
source (j(u) and cross sections that are constant in energy can 
be written as the infinite series, 

",(u)= I a(A:) exp(-A:u), U>E, (2) 
n~O 

where A : are the roots of 

A * = I-As+Aas exp(A *E) (3) 

and 

(4) 

Equation (3) has only one real root and an infinity of com­
plex roots. The real root can be obtained by iteration from 
the equation' 

s*= I-a(~ -1) exp(ads*)-I, (5) 
a I-a exp(aE/s*) 

where a = I-s and S* =al A ~, while the complex roots are 
evaluated as follows. Rewrite (3) as 

(6) 

where 

z=E(A * -bo), bo= I-As, c=AaEs exp(boE). 

If the constant c lies between zero and e- I
, which is true in our 

case, then the roots of (6) in the upper half plane lie one in 
each strip 

2n1T<y«2n+I)1T, n=I,2,.··, Z=X+IY, 

at the only intersection of the branches of the curves 

y=(c2e2X -x2VI2 

and 

X=y coty. 

Separating (6) into real and imaginary parts, we have 

x=ceX cosy, 

y=cex siny, 

and from (7), the limits on yare sharpened as 

17' 
2n1T<Yn <2n1T+ -, n=I,2,3,.··. 

2 

(7) 

(8) 

(9) 

For practical evaluation of the xn andYn equations (7) and 
(8) are then cast in a form suitable for successive iteration of 
these quantities. I Finally, the desired parameters ReA : and 

lmA : are related to the x nand y n by 

• X n 
ReA n = - +bo, 

E 

lmA:= ~. 
E 

For large n, Xn andy" can be approximated as 
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(10) 

(11) 

17' 
Y =2n1T+-

" 2 ' 
(12) 

(13) 

Having thus obtained all the roots A : , the neutron collision 
density for u > E can be obtained from Eqs. (2) and (4). 

It should be clearly noted that the above analysis is val­
id only if u > E. To study the nature of the solution when 
O<;U<;E, it is best to cast the slowing down equation in its 
differential-difference form,4 

(14) 

where bo= I-As, b l =Aas. As U cannot be negative we must 
have 

(15) 

with the initial condition ",(O)=As. The main point to em­
phasize here is that ",(u) satisfies different equations in u < E 

(an ordinary first-order differential equation) and for U > E (a 
differential-difference equation), hence the solutions in these 
two regions will be different. In particular, the two solutions 
need not be equal at u =E unless some additional conditions 
are satisfied. This simple discussion brings out a basic point 
in the nature of the solution, viz., it satisfies different equa­
tions in two different U regions, and this is responsible for a 
discontinuity unless some additional restrictions are im­
posed on the solution. These points will be taken up in great­
er detail in Sec. 5, where the discontinuities in the derivatives 
of ¢(u) will be studied. 

A. Mathematical preliminaries 

Solution (2) to the slowing down equation (1) is ex­
pressed in terms of the linearly independent set 
t g ,,(u) l;:~ __ 00 where gn(u) = exp( -A :u). The index n 
takes values appropriate to the roots of the transcendental 
equation (6). Since the complex roots of (6) occur in conju­
gate pairs, the index can be made to take all integral values in 
( - 00 ,00) as follows. 

If A : = 6 to + ip n ' then using 

A ~, = 6 to + ip n' n < 0, 

A : = 60, n = 0, A : = 6 n - ip n ' n > 0, 

the set G becomes 

t exp [ i( - P n + i6 n)u ll; 2 _ 00' exp( - 60u), 

t exp[i(p" +i6 ,,)u ll:~ l' 

We will thus examine solution (2) in terms of the linearly 
independent set t exp(i A n u) 1 ;: ~ _ 00 where the substitution 

A " = - iA : has been made. 

The basic theory of series of the type 
~;: ~ _ oc a n exp( iAn u) has been given in two different ap­
proaches by Paley and Wiener2 and Muntz and Szasz. 9 While 
the former have been concerned with conditions under 
which the linearly independent set t exp( iAn u) l:~ _ 00 is 
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not only closed but also forms a basis in the linear manifold 
Lla,b ), Muntz-Szasz theorem examines when 
[exp( iAn u) J:= _ 00 merely spans Lla,b). Both these theo­
rems are in the form of conditions on the [ A n J : = _ 00' The 
Paley-Wiener theorem is, however, more comprehensive be­
cause it lays down conditions under which a linearly inde­
pendent set behaves like an orthonormal set in as far as its 
behavior with respect to the representation of an arbitrary 
function in its closed linear span is concerned. This condi­
tion therefore implies the Muntz-Szasz condition. The con­
verse, however is not necessarily true. Thus the Paley-Wie­
ner theorem not only tells us when [exp( iAn u) J :; = __ oc 

spans the particular subspace L 2(a,b ) but also ensures that 
every linear combination of this set converges in the sub­
space. Because the set is not orthonormal (or orthogonal), 
the Muntz theorem on the closure of a set of linearly inde­
pendent functions does not necessarily imply that every se­
quenceS N ='L~N +a n exp(iA nU) is Cauchy inL2(a,b ).As 
an example of how this situation may arise, consider the 
following example from Naylor and Sell. 3 Construct the lin­
early independent set! x n J:= 1 

from an orthonormal set !y,zhZ2,Z3," J in a Hilbert space H. 
ThenitisnottruethateverYYEV(A ) where V(A ) is the closed 
linear subspace of H spanned by A = ! x n J := 1 [i.e., V (A ) is 
the set of all finite linear combinations of the [xn J], can be 
represented in the form 

The condition under which it can be so done is the basic 
content of the Paley-Wiener Theorem. We shall examine 
below both these conditions for the neutron slowing down 
equation and demonstrate the validity of our method of ob­
taining the neutron flux. 

3. THE SUBSPACE L2 (a,b) 

In this section we construct the linear subspace L 2(a,b ) 
of the Hilbert space H appropriate for the solution of the 
slowing down equation and show in the next section that it is 
the union of a countable number of closed linear manifolds 
spanned by the set G, and that any vector in these manifolds 
can be suitably approximated by a (finite) linear combina­
tion of the [g n(u)J:= -00' 

Consider the integral equation (1) having the integral 
operator 

K(u,u')=A i~-.- dus(u') eU'-u 

which is generated by the kernel 

k (u,u')=s(u')e u'-u, U,U'E(E,U m), 

where um is some maximum final lethargy, Note that 
A =(l-a)-I is a fixed constant and is not an eigenvalue pa­
rameter of the integral equation. In the interval (E,U m ) the 
kernel k (u,u') is zero for u' > u (no upscattering of neutrons) 
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as also for u' < u - E (neutrons can gain no more than fixed 
lethargy in each collision). The kernel generates what may 
therefore be considered a two-sided Volterra operator with 
the Fredholm property of a constant interval of integration, 
E. Thus the integral operator K can be expected to possess a 
combination of the properties of the Fredholm and Voltera 
operators. It will be shown in the following that this is true. 

In the space IL2«E,um ) X (E,U m» the kernel k (u,u') has 
the norm 

Illk (u,u')111 =(f'" du f'" du' A2s2(U') e 2
(u'-u) y12 < 00, 

and according to standard properties of integral equations 

IIKII=I Ilkll I, 
since it can be easily shown that 

IIKt/rII<lllklllllt/rll, 
where 

The physical quantity t/r(u) is, of course, real valued; the ex­
pressions (2) and (3) lead tol 

t/r(u) = 1-00 exp( -Oou) 
l-AaEs exp(OoE) 

where, 

f1n= l-AaEs exp(OnE) cospnE, 

Tn=AasE exp(OnE) sinpnE, 

/3 n =0 nf1 n +p n Tn' 

1Jn=On T n-Pnf1n, ando n=I-0 n, 

The operator K : L 2(E,U m )-+LlE,Um ) is obviously com­
pact, hence it has at most a pure point spectrum. For an 
arbitrary source S (u), the solution of the integral equation 
involves an inversion of the operator (/ - K); hence if the 
spectral radius of K is less than 1, the inversion, and hence 
the solution (2) is justified. We now prove that this is indeed 
the case. 

The proof is standard and straightforward. Let ro(K) 
denote the spectral radius of K, i.e., 

n--· 00 
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Hence 

and 

1 II' n-l(u)11 +--- , 
(n-l)! IIS(u)11 

where 'n_l(U) is the integral term on the right-hand side of 
the above inequality. 

Thus 

Since limn~oo '/In(u)=O for the series '!.;'; '/I n (u) to con­
verge, r ,,.(K) need not necessarily be zero. Thus there may be 
a discrete point spectrum of the slowing down equation of 
the form 

We shall now obtain an upper limit for the spectral radius 
and show that it is less than 1. 

Since 

r <7(K) < lim IIKn II~n, (16) 

where 11···1100 is the supremum norm, we obtain as an upper 
bound to the spectral radius in L 2(E,U m ), on evaluation of 
(16), 

r <7(K) <sm 

<1. 

The inversion process is thus valid and the Neuman series 
representation is justified. This points, however, to the care 
that must be exercised in solving the slowing down equation 
in possible cases where f.1 < 1. 

4. COMPLETENESS OF (exp(iAn(U»};=_oo 

We now examine the completeness, or what is the same 
in L 2, closure, oJthe set oj exponentials! exp(i An u)};,;= _ 00 in 
Lie,u rn). It will turn out that the set is closed over every 
interval oflength E, starting from u = E. Thus the linear space 
is a union of a countable number of subspaces. The argu-
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ments in providing the completeness of the exponential set is 
based on the fact that the A n are (essentially) the zeros of an 
entire function of exponential type E, 

J(z)=z-1 +As-Aas exp(zE). (17) 

We know from our previous discussions that the !An) con­
verge to infinity; hence there exists lO an integer x;:;. ° such 
that 

while 

---+2 f 1 <00 

IAolx+l n=l 1,.1, n Ix+l (18) 

andJ(z) can be represented as the infinite product 

J(z)=eg(z) nJ!oo (1- ;J 

Xexp - + -- + ... + --, (
z Z2 ZX) 

An U~ XA~ 

where g(z) is an entire function. 

Another representation of functions of exponential type 
a is of significance. This is a result due to Paley and Wiener 
(Ref. 2, p. 12) which states that an entire functionJ(z) of 
exponential type a bounded on the real axis according to 

L'''", IJ(x) 12 dx < 00 

can be expressed as 

J(z)= f:<7 h (u)e izu du, 

for some h (u)EL 2( -a,a). 

(19) 

Since the function in Eq. (17) is an entire function of 
exponential type E, it follows that it must have a Paley-Wie­
ner representation of the form (19), and also, obviously, 

J(An)= FE h(u)eiA"u du=O (20) 

for all n when h (u):;;t::O. Not all arbitrary !An) will possess 
this property, viz. thatf1An} =0 butJ(z)=O. A sequence 
admitting such a representation of an entire function has 
been called by Luxemberg .a-admissible. 11 From the defini­
tion of the closedness of a set of functions, Eq. (20) implies 
that! exp( iAn u)};,;= _ 00 cannot be closed over an interval of 
length 2E. To study if it is closed over any other interval, 
define, after Luxemberg, II a quantity L (A ) depending on the 
!An), as 

L (A)=inf!lj:J(z) is an entire function of exponential 
type bounded on the real axis and f(An)=O for 
all n}. 

Here If is the length of the indicator diagram h j e ) of the 
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functionJ(z). L (A) is the minimum of the lengths of the indi­
cator diagrams of all those functions that have the above 
representation in terms of the !1-admissible sequence IAn}. 
Because hjO) satisfies the inequalitylO 

-a<,hjO )<,a, 

L (A ) restricts the functionsJ (z) that can be represented in the 
form (19) and (20) in terms of the chosen IAn} by placing a 
lower bound on the type of the function. The connection 
betweenL (A )andEq. (18) is contained in the result,8.l0that if 
X = 0, then L (A ) = o. This means that if l: (1/ An) converges, 
then I An J is !1-admissible in all intervals (-a,a) and hence 
{ e i A" U J ;' = _ 00 cannot be closed in any of the spaces 
L 2( -a,a), a> O. Conversely, it can also be shownl

! that if 

L (A ) > 0, then Ie; A "u } is closed over any interval of length 
less than L (A ) [and obviously, from the above discussions, it 
is not closed in an interval equal to or greater than L (A )]. 
Thus the necessary and sufficient condition for the closure of 
a set of exponentials over an interval [equal to L (A )] is that 
l: (1/ An) diverges. Note that though the sum is independent 
of the interval, the quantity L is a function of I An}. This 
criterion for closure is the Muntz-Szasz condition. The most 
important fact to note in the above analysis is that the inter­
val is an upper limit of the regions over which a set offunc­
tions can be complete, because for any greater interval repre­
sentations (19) and (20) must hold. Stated otherwise, this 
means that if the sequence were not complete in this interval, 
by the very definition of L (A ), the interval would have been 
included in it. In our caseJ(z) is of type E (> 0 for finite 
moderator mass A ), hence by the above arguments, 

(21) 

cannot converge and {exp( iAn u) }:;,= _ 00 must be close in 
some interval of length less than 2E. We do not know the 
precise value of L (A ), and therefore the precise closure inter­
val. All that the factJ(z) is of type E and satisfies (20) signifies 
is that L (A )<,2E.l2 

The divergence of (21) can also be proved simply as 
follows: 

i.e., 

and 

E /,.1, n I <'(2n1r+ ~ )+ + (2n1r+ ~ )+boE 

CE 1T cbo 
- /,.1, n / <,2n1T+ - + -

2 2 2E 

1 1 
LIT,:I>L n+a ' 

where a is a positive finite constant. Hence l: (1/ An) diverges 
and I exp( iAn u) } :;' = _ 00 spans some interval of length less 
than 2E. Muntz's theorem, without a lower bound for L (A ), 
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has not given us the exact interval over which these exponen­
tials are complete, and of course does not automatically 
guarantee the possibility of expressing any arbitrary func­
tion in the interval by a linear combination of these exponen­
tials. To know when this will be possible, and to obtain the 
exact completeness interval, we will further sharpen our re­
sult by the application of Paley and Wiener's theorem. Con­
sider the complete orthonormal set in an interval less than 
2E, E say, i.e., the set 

{
I (.21T)} 00 • L ( E E) V E exp l---;-nu n=-oo m 2 - 2'2 ' 

in which it is also a basis. Now for a nonorthogonal set, Paley 
and Wiener's theorem states lJ that if I An}:;'= _ 00 is real and 
if 

I A n - 2; n I <,L, 

then the sequence I exp( iAn u) } :;' = _ 00 is closed in 
L 2( -E/2,EI2) and possesses a unique biorthogonal set 
I h n (u)}:;,= _ 00 such that the series 

00 (;( 1T/E)nu fEI2 L e J(x)e -;(1T!E)nx dx 
n= - 00 2E -E/2 

_eiA"u fEl2 f(X)hn(X)dX) 
-E12 

(22) 

converges uniformly to zero over any interval 
(-EI2+8<,u<,E!2-8) for every 8 >0, and over any such 
interval the summability properties of 

00 fE/2 L eiA"u J(x)h n(x) dx 
n= - oc -El2 

are uniformly the same as those of the Fourier series ofJ(u) 
provided L has a fixed upper bound depending on the inter­
val of completeness. 

In L 2( -1T,1T), inequality (22) takes the form 

1,.1, n -n / <,L. 

Estimates of L for this case have been given by Paley and 
Wiener, Duffin and Eachus, and Kadec, as 

1 
L < -=0.10, Paley-Wiener2 

rr2 

L < In2 =0.22, Duffin-Eachusl' 
1T 

L < 0.25, Kadec l5 

and it has been shown by Levinson 13 that L < 0.25 is the best 
possible estimate in the sense that the set 
{exp(iA nU)}:;'=-oo with 

An =0, n=O, 

An =n+!, n <0, 

is closed in L 2( -1T,1T) but does not satisfy the conclusion in 
the second part of Paley and Wiener's theorem. It is to be 
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noted that Muntz's convergence criterion will be met for all 
finite values of L, but unless L is suitably restricted by a 
Paley-Wiener condition of the type (22), exp( iAn u) I :;~ _ 00 

will fail to be a basis in the chosen space. In L2( - El2,El2) it 
is easy to verify that the Duffin-Eachus condition becomes 

L < 2ln2 
E 

and hence the best possible estimate of L, corresponding to 
that of Kadec is 

L < rr12. 
E 

If the [Ani are complex, the analysis becomes much 
more complicated and can be found in Ref. 16. Basic to the 
existence of a condition of the type (22) is the uniform 
boundedness of the imaginary parts of An' and it apparently 
has not been possible to remove this restriction. This, howev­
er, does not appear to be a particularly insurmountable prob­
lem when one recalls some of the basic definitions. Thus even 
though the set [g n I is countably infinite, its linear span is the 
collection of all fin ite linear combinations. Hence, in the ap­
plication of the Paley-Wiener theorem, we need consider 
only finite linear combinations of the exponential functions 
and if the imaginary parts of A n increase monotonically, 
then, for all finite n, ImA n is finite, and the restriction given 
in Ref. 16 can be applied. These arguments are formalized in 
the following theorem. J 

Let [gnJ be a countable linearly independent set in a 
Hilbert space H. Further assume that there are D> 0 and 
{) > ° such that 

{)2 nt! IP n 12~ II nt! P ng n 112 ~D2 nt! IP n 1\ 

for allPI,P2""'PN ' N= 1,2,3,···. Then eachYEV(G)where 
V (G) is closed linear subspace of H spanned by the [g n J ' can 
be expressed uniquely in the form 

y=a~l+a~2+"" 

where the a i are scalars. It is to be observed that the Paley­
Wiener theorem quoted in the form above is a direct conse­
quence of the above result. (For the original statement of the 
theorem, see Ref. 2, Chapter VII.) In our case ImAn=On is 
finite for finite n, and condition (22) takes the form, 16 

I ReA n - 2; n I ~L < rr;2 (23) 

Therefore, 

I 2rr I I 2rrn I ReA n - --;- n = P n - -E-

= 1
2rrn + ~ _ 2rrn I. 

E E E 

Since Cn trr!2 as n-oo [cf., for example, (12)], we have 

\ ReA n - 2; n \ < rr;2, 
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and inequality (23) is verified. This means that in an interval 
oflength E, the solution of the slowing down equation can be 
uniformly approximated by a finite linear combination of the 
exponentials. We also wish to point out that the distinctive 
role that the interval E plays is due to the Fredholm character 
of the slowing down equation in its having a constant inter­
val of integration, E. Notice how the finiteness of the series is 
essential for the validity of the strict inequality in (23), be­
callse cn frr!2 as n-oo. The exponentials 
[exp( iAn u) J:; ~ _ 00 thus forms a basis in Ll-El2,El2) and 
the series solution is justified. It should be noted that the 
interval was considered as ( - EI2,El2) merely because it is of 
the form used in Paley-Wiener's theorem, thus enabling a 
direct comparison with the condition (22) in its standard 
form. 

5. THE DERIVATIVES ,p<n)(u) 

A differential-difference equation of the form (14) has 
the remarkable property of possessing discontinuities in the 
derivatives of its solution at the points nE. A lucid descrip­
tion of such equations is given, on the basis of classical analy­
sis, in Bellman and Cooke,' and the interested reader should 
consult this work, particularly Chapter 3. We give below an 
account of the discontinuities, and follow Bellman and 
Cooke' in our approach. 

The slowing down equation can be written as 

tf;'(u)+botf;(u)+bltf;(U-E)=O, u > E, 

t/!'(u) + bot/!(u) =0, U~E, 

(14) 

(15) 

where bo = I-AS, bl =Aas. As explained in Sec. 2 the discon­
tinuity at U =E is because t/!(u) satisfies the different equa­
tions (14) and (15) in different regions, and the solutions 
need not match at U =E unless some additional conditions 
are met. From (14) it is also clear that because t/!(u) is discon­
tinuous at U=E, tf;'(u) cannot be continuous at U=2E. The 
discontinuity in t/!(u) at U = E is propagated forward to u = 2E 
as a discontinuity in t/!' =(u). To find out more about the 
behavior of t/!'(u), differentiate (14). Then t/!'(u) satisfies the 
equation 

(t/!'(u»' +bo(t/!'(u» -bl[bot/J(u -E) +bltf;(u(2E)] =0. 

(24) 

Again, since u cannot be negative, this equation will be valid 
for u > 2E only, and t/!' (u) can be represented in this region by 
a sum of exponentials just as t/!(u) can be so expressed for 
u > E. Thus tf;(u) is of class C' on (E,U m ) and of class Cion 
(2E,U m ). [That tf;(u) is continuous for u > E and t/!'(u) for 
u > 2E, can be seen simply.] 

The condition under which t/!(u) will be continuous at 
u = E can be found as follows. From (15) 

and from (14) 

t/!(E-) = - ~ t/!'(E-). 
bo 
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If ¢(E.) = r/J(E_), then 

r/J'(E.) = r/J'(E-) -b,r/J(O.). (25) 

Thus there will be no discontinuity in r/J(u) at u = E, if the 
above additional condition is satisfied. One way to meet the 
condition is to choose b, =0, when equations (14) and (15) 
become identical and r/J' (E.) = 1// (E _) is automatically valid. If 
b,=FO, but is a given fixed constant (b, =Aas), (25) cannot be 
satisfied for it is impossible to specify both the value of a 
function and its derivative at the initial point for the solution 
of a first order inhomogeneous differential equation which is 
what (14) is, once if;(u) is obtained from (15). Hence there 
will be a discontinuity in r/J(u) at u = E. Following a similar 
procedure for r/J'(u) at U=2E, we get 

r/J'(2E_) = - [bor/J{2E_) +b,r/J(E-)], 

bor/J'(2E.) = - [r/J"(2E.) -b,(boif;(E.)+ b,r/J(O.»]. 

If r/J'(2E_) = if;'(2E.), then 

r/J"(2E.)=b 6r/J(2E_)+boh, [r/J(E.)+¢(E_)] +b N(o.). 
(26) 

Again, it is not possible to specify both if;'(u) and, from (26), 
r/J"(u) at u =2E in the solution of if;'(u); hence a discontinuity 
at u = 2E in r/J'(u) exists. This process can be continued for 
each r/J(n)(u), which will show that if;(n)(u) satisfies two differ­
ent differential difference equations, one to the left and the 
other to the right of (n + 1 )E, and equality of r/J(n)(u) at these 
points would mean the specification of both if;(n)(u) and 
if;(n+ 1)(U) at (n + I)E. This being impossible, the discontinui­
ties cannot be eliminated. In the regions u < (n + l)E and 
u > (n + 1 )E, the differential-difference equations will have 
their respective exponential solutions, and these solutions 
cannot be matched at the points (n + l)E. 

6. CONCLUSIONS AND DISCUSSIONS 

In this paper we have used the theory of entire functions 
of exponential type to analyze the elementary neutron slow­
ing down equation. This approach, it is felt, is more versatile 
and is more easily adapted for the analysis of problems of 
greater complexity than the classical Laplace transform-re­
sidue integration technique.4 In such a problem, for example 
the slowing down of neutrons in a mixture,8 once the tran­
scendental equation corresponding to (3) has been obtained, 
the analysis of Sec. 4 can be applied almost straightforward­
ly. As discussed previously; the transcendental equation in 
such a case consists of a sum of exponentials, and hence the 
type off(z) will be the maximum value of E corresponding to 
the lightest element in the mixture. 

The main burden of the discussion in Sec. 4 revolved 
around the correct interpretation, and hence the distinction, 
between the theorems of Paley-Wiener and Muntz-Szasz. 
To the best of the knowledge of the authors, the distinction 
as presented here is not available in the literature, and papers 
dealing with one of these theorems almost always exclude a 
discussion of the other. The Muntz-Szasz condition, inter­
preted in the light of the theory of entire functions, II leads to 
an upper bound of the interval over which a sequence of 
exponentials can possibly be closed. In the case of the neu-
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tron slowing down equation, we obtained this upper limit 
from the Paley-Wiener theorem, which in addition ensured 
that the sequence is a basis in the Hilbert space. 

To study the discontinuities in the derivatives of the 
coHision density r/J(u), the simplest approach seems to be 
based on the theory of ditferential-ditference equation. Since 
the if;(n)(u) satisfy different such equations for u < (n + I)E 
and u > (n + 1 )E, the point u = (n + I)E is a point of disconti­
nuity unless the derivative r/J(n + 1)«n + I )EJ is also specified. 
Since it is not possible to do so, the discontinuities at these 
points remain. Also, the discontinuity at a forward point is 
due to the propagation of the discontinuity at the preceeding 
point. It may be pointed out as a passing remark, that ¢(u) 
might have been continuous at u = E if it were possible to 
choose the function in U<,E arbitrarily.4 This, however, can­
not be as if;(u) must satisfy Eq. (15). 

In conclusion, we wish to remark that the arguments 
used in truncating the infinite series in Sec. 4 will hardly 
satisfy the purist. In lieu of any other alternative, however, 
we found it sufficient for our purpose. A detailed investiga­
tion of this point, i.e., relaxation of the condition of uniform 
bounded ness of Im(An), nevertheless appears to be in order. 
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Contravariant rank two tensors which are divergence-free on one index and which are constructed from 
the metric tensor, an auxiliary collection of arbitrary tensor fields, and the first and second partial 
derivatives of these quantities are classified. The results generalize existing mathematical arguments in 
support of the Einstein field equations. 

1. INTRODUCTION 

In gravitational field theories such as general relativity, 
contravariant rank two tensors A rs which are divergence­
free playa significant and well-known role. In this paper we 
shall classify those tensors which are locally of the form 

A rs =A rs (g ij; g ij,h ; g ij,hk;P Q; P Q,h ; P Q,hk ), (1.1) 

and which satisfy 

(1.2) 

Hereg ij represents the components of a non degenerate sym­
metric tensor defined on an n-dimensional orientable mani­
fold M while P Q symbolically denotes a collection of tensor 
fields of arbitrary rank and weight which are independent of 
g ij' Covariant differentiation, as denoted in (1.2) by a verti­
cal bar, is defined in terms of the Christoffel symbols r t. It 
should be emphasized that in classifying A rs we do not as­
sume it to be symmetric, divergence-free with respect to the 
index r or a polynomial in any of its variables. Nevertheless, 
as the following theorem indicates, a rather precise charac­
terization of A rs is obtained. 

Theorem: If A rs is a tensorial concomitant of the type 
(1.1) and satisfies (1.2), then 

Ars=Brs+crs, (1.3) 

where B rs is a symmetric divergence-fre~ tensor of the type' 

B rs =B rs(g ij; g ij,h; g ij,hk)' (1.4) 

and C rs is a skew-symmetric divergence-free tensor of the 
type (1.1). Moreover, C rs decomposes into the form 

C rs =D rs +E rS1
1 
I' (1.5) 

whereD rs is a skew-symmetric divergence-free tensor of the 
type (1.4) and E rsl is an appropriate totally skew-symmetric 
tensor. 

As immediate consequences of this theorem we have 
the following three corollaries. 

Corollary 1: If A rs is a tensorial concomitant of the type 
(1.1), then A rs ls =0 if, and only if A rS I r =0. 

Corollary 2: If A rs is a symmetric divergence-free con­
comitant of the type (1.1), than A rs is independent ofthe 
fields P Q and their derivatives. 

Corollary 3: In a space off our dimensions, the most 
general divergence-free tensor of the type (1.1) is 

A rs =aG rs +bg rs +E rS1
1 

t' (1.6) 

where G rs is the Einstein tensor, g rs the inverse of g rs and a 

and b are constants. If, in addition, A rs is independent of 
P Q,hk , then E rsl is explicitly given by 

E rsl = t: rslu ( V Qp + W ) 
Qlu u , 

where VQ and W u are arbitrary concomitants of g ij and 

PQ' 

If the underlying manifold M is a spacetime, then we 
may replace the tensor g ij by the generalized Pauli spin­
matrices and assume that the fields defining P Q are spin­
tensorial in nature. Provided A rs is now treated as a scalar 
under spinor (i.e., tetrad) transformations, the previous re­
sults can be reproduced verbatim and Eqs. (1.3)-(1.6) re­
main valid. The proof of these results depend upon several 
technical innovations and involves numerous lengthy calcu­
lations. Consequently in the next section we shall briefly de­
scribe the proof by outlining the main steps.2 

These results lead us to a generalization of that deriva­
tion of general relativity in which the gravitational field 
equations are assumed to be of the form 

Vrs=T rs . (1.7) 

Here T rs is the energy-momentum tensor for the external, 
i.e., nongravitational, source fields and V rs is a tensor which 
is usually constructed from only those fields which charac­
terize the gravitational field. To ensure that (1. 7) implies 

T rs
ls =0 

it is customary to restrict vrs by the identity 

V rs
ls =0. 

If, for example, V rs is assumed to be a tensorial concomitant 
of the type 

(1.8) 

then it is known] that V rs is a linear combination of G rs and 

g rs in which case (1. 7) gives rise to the usual Einstein field 
equations with cosmological term, 
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aGrS+bgrs=T rs . (1.9) 

Consequently if for some reason one wishes to modify 
the Einstein field equations then, as emphasized by Ehlers,4 

the assumption (1.8) would have to be changed. One possible 
alternative to (1.8) would be to assume that vrs is of the type 
(1.1), where the fields P Q represent either the external 
source fields or auxiliary gravitational variables. However, 
the above results clearly indicate that even under these very 
general circumstances, the Einsteinjield equations must in­
eVitably be retained. Furthermore, our analysis shows that 
any attempt to modify T rs by adding to it a symmetric diver­
gence-free tensor of the type (1.1) cannot lead to different 
gravitational field equations. ~ 

Finally, we would like to point out that a considerable 
effort has been made in recent years6-14 to classify tensors S rs 

of the type (1.1) which satisfy certain identities arising either 
from properties enjoyed by the energy-momentum tensors 
of general relativity or from the conservation laws derived 
from invariant variational principles. All of these identities 
may be expressed in the form 

(1.10) 

where uris a vector which is constructed in a prescribed 
fashion. Since (1.10) is linear in S rs , it follows that U r 

uniquely determines S rs up to a divergence-free tensor of the 
type (1.1). Therefore, in view of our present work, a knowl­
edge 0/ u r suffices to characterize srs. Accordingly, it is 
anticipated that the results of this paper will simplify the 
existing solutions to classification problems of this kind and 
perhaps lead to new results in this area. 

~THEPROOFOFTHETHEOREM 

We denote the infinitesimal generators for the coordi­
nate transformations of the tensor fields byl~ F / Q R • Conse­
quently, the covariant derivative of P Q assumes the form 

PQlh =PQ.h -r~hPR' 

h r R F j Rr i . h' h were Qh = i Q jh' In W IC case 

- R R P Qlhk -P Qlkh - - Q hkP R' 

R . R . 
where R Q hk =F / Q R / hk' If g- Q denotes another collec-
tion of tensor fields of the same type as P Q' then the principle 
form 0/ the tensorial concomitant 

with respect to g- Q is the tensor l6.17 

(2.1) 

where 

aQi""i'T V 

apQ,i""i, 
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Since g- Q,i, ... i, can be expressed as a unique linear combina­
tion of the symmetrized covariant derivatives 

g- Q,g- ~i" .. ·,g- QIU,,.·i,>' 

pV(f:)= ~ TV;Qi",.i,!: .. 
~ L.. ~ Qll.···I J 

I~O 

(2.2) 

where T V;Qi,·,. i, is the tensorial derivative18 of T v with re­

spect top Qi, ... j,' It is not difficult to show19 that for m=2, 

T V;Qhk =a Qhk TV 

TV; Qhk = a Qh TV + 2r ~k a Shk T v + r 7k a Qlk T v 

and 

TV;Q =aQT V +r~h (aSh TV +r~ka Thk TV) 

+r~h,k a Shk 
TV. 

The transformation properties of T v lead to certain differ­
ential in variance identities, one of these being (again for 
m=2), 

where 

TV;Ij,hk = aT
v 

. 
ag lj.hk 

(2.3) 

The following lemma will be used to show that if A rs is a 
divergence-free concomitant of the type (1.1), then it is a 
polynomial in the second derivatives of both g ij and P Q' 

Lemma 2.1: Let S denote a set with n elements and for 
integers p,q~ I let 

/=/(sI""'S p,t l ,ul, ... ,t q,U q) :Sp+2q---+R 

be any function with the following three properties: 

(i) it is totally skew-symmetric in the arguments 

S"S2""'Sp' e.g., 

/(SltS2>'''~ p,th ... , U q)= -/(S2,SI''''~ p,th ... , U q); 

(ii) it is a symmetric in the arguments t IU I for each 
1= 1,2, ... ,q, e.g., 

and 

(iii) it satisfies the cyclic identity with respect to the 
argumentss kt IU I for each k= l, ... ,p and 1= 1, ... ,q e.g., 

/(s" ... ~ p,t l ,U 1, ... , U q)+/(Uh"'~ p,Shth'''' U q) 

+/(t" ... ,s p,UI,Sh""U q)=O. 

Then/vanishes identically whenever p+q > n. 

Proof We introduce subsets A and B a.l of S P + 2q with 
the definitions 

A = [(Sh'''' S P ,t 1,U II .. ·, t q,U q) I 
each OES occurs at least twice amongst the components 
SI""'S p ,t1,u 11"" t q'U q 1 

for each OES and 1= 1,2, ... ,q, 
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The union of all the sets A and B a,1 equals S p+ 2q and so it 
suffices to prove that the restrictions off to A and to B a,1 

vanish, The former may be established using arguments de­
vised by Lovelock20 while the latter follows by induction on 
n. 

In the next lemma n' equals n or n + 1 according to 
whether n is even or odd. 

Lemma 2.2: Let Trs,iJ,iJ""i,.J P be a tensorial concomitant 

of gab which enjoys the following symmetry properties: 

(i) it is symmetric in the indices i J I for all! = 1,2, ... ,p; 
and 

(ii) it satisfies the cyclic identity with respect to the indi­
cessi J I for all!= 1,2, ... ,p. 

Then, provided n > 2 and 1 <p<,n' - 2, Trs,iJ, ... ,i ,,j P satis­

fies the cyclic identity with respect to the indices ri J I for all 
!= 1,2, ... ,p. If p < n' - 2, then Trs,/J, ... "J" is also symmetric in 
the indices rs. 

Proof We shall establish this lemma by induction onp. 
For p = 1 and n > 2, the result follows from the explicit con­
struction of the most general tensorial concomitant which 
satisfies (i) and (ii).21 Let us now suppose that the lemma is 
true for p=q-l, where 2<,q<,n' -2, and proceed to estab­
lish its validity whenp=q. On multiplying the invariance 
identity 

g Ir T us,/J, ... i"J" + g Is T ru.iJ, ... i"J" 

+.t [gli'T",iJ, ... u}, ... i"i '+gIiT".iJ'''·i'U'''i,j.,] 

hI 

=g ur TIS,iJ, ... i ,,),, +g us Trl,iJ,'" i ,,),, 

+ .t [g ui 'T rS.iJ, ... I} , .. ·i ,,),, + g u} 'T rs,iJ, .. ·i ,I'" i ,,),, ] 

I~I 

by g Is' on replacing u by s, and by repeatedly invoking prop­
erties (i) and (ii), it is found that 

Tsr,iJ''''i ,,),, +(n -q-l) Trs,iJ, ... i"},, =g rs UiJ''''i "},, 

where 

vrs,iJI'''( i d ,) ' ... j ,j ,/ == Trs,iJ, ... j I 

(I) 

Ii, labi'l Ii" 1"'j'lj'lg 
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(2.4) 

ab' 

and the circumflex ( ) ~ enclosing a pair of indices indicates 
that those indices are to be deleted. 

Since the induction hypothesis is applicable to 

Vrs,iJ, ... i" J" 'each Vrs,iJ, ... i" J" , is symmetric in the indices 
(II (II 
rs. It now follows that each of these tensors is also symmetric 
under interchange of the pairs of indices rs and i h j h for all 
h = 1,2, ... ,q-1. By multiplying (2.4) by g rs we therefore ob­
tain the relation 

which implies that U iJ, .. ·i ")" enjoys all the symmetry proper­

ties of ViJ"iJ''''i q} q. Consequently if we successively cycle on 
(II 

the indices ri 21 _ I j 21- I and si 21 j 21 in (2.4) we find, after a 
simple analysis of the resulting equation, that 

U iJ1iJ2,··j 'Ii q == ViddJ~···i ,) q 

(I) 

for each 1= 1,2, ... ,q. In view of this result and the various 
symmetry properties of U iJ, ... i"},,, (2.4) simplifies to 

T".iJ, .. ·i ,j" +(n -q-l) Trs,iJ, ... i"j" 

= g rs UiJ, ... i ,,),, -!.t [g si, UiJ''''r} , .. ·i ,j" +gs} ,iJ, .. ·i, r .. ·i 'ii"~ J. 
I-I 

On account of the in variance identity for U iJ, .. ·i q j q, the left­
hand side of this equation is symmetric in rs and satisfies the 
cyclic identity on si I j I' Since the same must be true of the 
right-hand side, this proves the lemma for the casep=q, 
thereby completing our induction proof. 

Theorem 2.3: LetA rs be a tensorial concomitant of the 
type 

A rs = A rs ( g ij; g ij,h ; g ij,hk ). 

Then A rs ls =0 if, and only if A rS I r =0. 

Proof On account of the formula22 

A rs - 2 A rs: ij,hk R 
II - J hi)kll' 

it readily follows that the equations A rs ls =0 and A rS lr =0 
are equivalent to 

A rs; ij,hk + Ark; i),sh + A rh; i),ks = 0, (2,5 ) 

and 

A rs: i),hk +A ks; i},rh +A hs; i),kr =0, (2.6) 
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respectively. Consequently it suffices to show that ( 2.5 ) im­
plies ( 2.6 ). From ( 2.3 ) it follows that 

A rs; ij,hk =A rs; hk,ij , 

and so A rs; ij,hk also satisfies the cyclic identity with respect 
to the indices sij, We can apply Lemma 2.1 to the pth-order 

derivative of A rs with respect to g j 2/-,j u-. ,j u1 2/ 

(1= 1,2, ... ,p), viz., 

to deduce that A rs; jj"h,k, is a polynomial in g ab,cd of degree 
no greater than m - 2, where m = n' /2. This polynomial can 
be expressed in the form 

m-2 ........ . A rs; iJloiJz = L Trsl,.}Jr:;.hI~hl"'.""21 ,j 21 Ii 2,j 21 

1=0 

where the coefficients T rsij,···i 21 j 11 are tensorial concomitants 
of gab alone and enjoy the symmetry properties enumerated 
in Lemma 2.2. By virtue of this lemma each coefficient satis­
fies the cyclic identity with respect to the indices riJ2' There­
fore, (2.6) holds and the theorem is proved. 

Lemma 2.4: If A rs satisfies (1.1) and (1.2), then 

A rs; ij,hk +A rk; ij,sh +A rh; ij,ks =0, 

A rl; Qhk +A rk; Qlh +A rh; Qkl =0, 

!(A rh; Qk +A rk; Qh )+A rs; Qhk
ls 

=0, 

A rh; Q + A rs; Qh I s + A rl; Rhk R R Q Ik 

and 

+ ~A rl;Qmk R h =0 
.1 m Ik ' 

(2.1) 
(2.8) 
(2.9) 

(2.10) 

lR r (A Ih; Qk -2A Ih;Qkm )_' R r A Ih; Qkm -0 
2 I hk 1m') I hk I m - . 

(2.11 ) 

Proof Equation (2.1) is the consequence of differentiat­
ing (1.2) with respect tog ij,hks' To derive (2.8)-(2.10) we first 
remark that the principal forms P r <S) and P rs <S) of A rs Is 

and A rs with respect to 5 are related by 

By substituting into this identity from (2.2) and by equating 
the coefficients of 5 QI (hkl)' 5 QI (hk)' and 5 QI hand t Q in the 
resulting equation, we can conclude that the tensorial de­
rivatives [A rs Is r Qhkl, [A rs I s J' Qhk and [A rs Is J' Qh are given 
by the left-hand sides of (2.8)-(2.10) respectively while 
[A rs ]; Q =A rs; Q + L4 rh; Rk R Q + 1 A rh; Rkl R Q II 

I sis P R hk J R hk • 

Equations (2.8)-(2.10) now follow on account of (1.2). Fi­
nally, (2, I 1) arises via the simplification of the identity 
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Lemma 2.5: If A rs satisfies (1.1) and (1.2), then 

Drs; Qhk =0, (2. 12a) 

Drs;Qh =0, (2. 12b) 

Drs;Q=O, (2. 12c) 

where D rs =~(A rs +A sr). 

Proof To derive the first of of(2.12), we begin by repeat­
edly differentiating (2.11), first with respect to g ab,cde and 
then with respect top R"I,u, ,P R"I,U, , ... ,p R p,l r U p andg ij,.h,k, ' 

g iJ"h,k, , ... ,g i"j .,h ,k 4' On multiplying the resulting equation 
by a totally symmetric but otherwise arbitrary tensor ¢ cde' 

we find that 

+ t [griIFhlk,Qilab +grj'Fhlk,Qilab +grhIFi,j/Qk,ab 

1=1 

+ g rk 'Fi,j /Qh ,ab ];a(p); P(I,q) -.'i. 
.1 

R / hkFlhQkab; a(p);/3(O,q) =0, 

where 

E Qb = '" cde D cd; Qeb, FlhQkab = ¢ cde D Ih; Qke;ab,cd , 

and 

P(/,q) 

(2.13) 

Moreover, on account of (2.8), it follows from Lemma 2.1 
that 

Drs; Qhk; a(n-I) =0. 

Hence, to establish the lemma by mathematical induction, it 
suffices to show that if 

Drs; Qhk; a(p+ I) =0, 

where O<p<.n - 2, then 

Drs; Qhk; a(p) =0. 

(2.14) 

(2.15) 

In order to derive (2.15) from (2.14) we shall use a sec­
ond inductive argument. To start, we note that on account of 
(2.14) Drs; Qhk; a(p) is independent of P Q,ij in which case 
(2.3) leads to 
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Drs; Qhk;a(p); ab,cd =D rs; Qhk;a(p); cd,ab . 

By appealing once more to Lemma 2.1, we find that 

EQb;a(p);P(O,q') =0 and FiJIQbhlkl;a(p);P(I,q') =0 

whenever p+2q'>n. Therefore, let us suppose that 

EQb;a(p);P(O,q+l) =0 and FiJIQbhlkl;a(p);{3(1,q+l) =0 

(2.16) 

for p + 2q < n and proceed to establish the validity of (2.16) 
with q + 1 replaced by q. In view of the second of (2.16), 
multiplication of (2.13) by g ra gives rise to 

nE Qb; a(p); (3(O,q) 

- t [F h ,k,Qbi,j'+F i ,j,Qbh,k,];a(P);{3(I,q) =0. (2.17) 
1~1 

Similarly multiplication of(2.13) by g rh, yields (on replacing 
the indices k,ab by bh,k,) 

_ E Qb; a(p); (3(O.q) + nFiJ,Qbh,k,; a(p); (3(l.q) 

_ Fh,k,QbiJ,; a(p); (3(l,q) _ t [F h ,k ,Qbh,k,; iJ" i,j, 

1~2 

=0. (2.18) 

By repeatedly permuting all pairs of indices i J I and h I k I 

for 1= 1, ... ,q in (2.17) and (2.18) we obtain a homogeneous 
system of linear equations whose coefficient matrix is non­
singular.23 This implies that (2.16) remains valid with q + 1 
replaced by q and thus, by induction on q, 

E Qb; a(p) =0 and Fi)Qbhk; a(p) =0. 

It is now an elementary matter to obtain (2.15) from (2.13) 
(with q = 0). This completes our original induction argument 
and establishes (2.12a). 

Due to (2. 12a), (2.8), (2.9), and Bianchi identities, 
(2.11) reduces to 

(2.19) 

By cycling on the indices rhk in (2.9) and by covariantly 
differentiating (2.9) with respect to x r it is found that 

D rh; Qk +D kr; Qh +D hk; Qr =0 (2.20) 

and 

l(A rh; Qk +A rk; Qh) -lA rs; Rhk R Q 
2 Ir2 Rrs 

__ 'A kr;Qms R h =0 
} m rs • (2.21) 
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Differentiation of (2.21) with respect to g ab,cds leads to 

D rh; Qs; ab,cd + D rll; Qd; ab.sc + D rh; Qc; ab.ds = O. (2.22) 

On account of the symmetry properties (2.20) and (2.22), it 
is possible to derive (2. 12b) from (2.19) by an induction argu­
ment similar to that used to obtain (2. 12a). 

Finally, on noting (2.21), (2. 12c) follows directly from 
the result of symmetrizing (2.10) on the indices rand h. 

Lemma 2.6: If C rs is a skew-symmetric divergence-free 
concomitant of the type (1.1), then 

(2.23) 

where P rs (t) is the principal form of C rs and" 

vrst(p; 0 
= c'c[rs;Qt1uf; +[c[rs;Qt1_1c[rs;Qt1u If; 

~ ~Qlu 2 lu ~Q' 

Proof Let C r = C rs Is' Then (2.23) follows immediately 
from the formula 

prs{f;)=v rst +~c[r;Qsltuf; 
\b It 2 ~ Qltu 

+ [~C [r; Qs It _ C [r; Qs ltu ]f; 
1 lu ~ Qlt 

+ [c[r;Qsl_.lcc[r;Qslt +!c[r;Qsltu If; 
) It 2 Itu ~ Q 

which may be verified by direct calculation. 

It is now a simple matter to prove the theorem stated in 
the introduction. Indeed, in view of Lemma 2.5, the tensor's 

c~s= f[Ars;QpQ+ArS;QhpQlh 1 + A rs
;QhkpQlhk dt, 

where 

A rs =A rs (g i); g i).h ; g i).hk; tp Q; tp Q.h ; tp Q,hk ) 

is skew-symmetric in the indices rs. Moreover, on recalling 
(2.1) and (2.2) it is easily seen that 

A rs =A;; +C~s, (2.24) 

where A ;; =A rs (g i); g i),h ; g i),hk; 0; 0; 0). Since (1.2) im­
plies that A ;; is divergence-free with respect to the indexs we 
may refer to Theorem 2.3 to conclude that A ~s is divergence­
free with respect to the index r and can therefore be ex­
pressed in the form 

where B rs and C 2' are respectively symmetric and skew­
symmetric divergence-free concomitants of the type (1.4). 
Because A rs and A g are divergence-free on the index s, it 
follows from (2.24) that the same must be true of C;s . How-
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ever, C;' is skew-symmetric in its indices and therefore by 
setting 

we arrive at (1.3). Finally, (1.5) follows from Lemma 2.6 
upon setting 

Erst = f Vrst(p; tp) dt. 
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Constraint on the compound depolarization factor of aligned 
ellipsoids8

) 

Victor Twersky 

Mathematics Department. University of Illinois. Chicago 60680 
(Received 8 May 1978) 

The bulk parameters for random distributions of aligned ellipsoidal particles with nonsimilar ellipsoidal 
exclusion surface (the locus of the minimum separation of particle centers) can be specified by a 
compound depolarization factor D. It is shown that D is positive for all physically realizable values of the 
fraction of space occupied by particles. 

In recent papersI.2 we generalized the Maxwell 
(Clausius, Mossotti, Lorenz, Lorentz) form for the bulk rela­
tive parameter (P) for a random distribution of identical 
spheres (with relative parameter p) to the analogous problem 
of tensor parameters for aligned ellipsoids and nonsimilar 
cocentered ellipsoidal exclusion surfaces. In particular, for 
the case where the principal axes of the ellipsoids, of their 
tensor parameter, and of the exclusion surface were parallel, 
corresponding to (l4SY and (183)2, we obtained the form 

P,-I=Ll ,=WDJ(1+D,D,), D,=p,-I, 

D,=q,-wQ,. (1) 

Here 

(2) 

is the fraction of space V occupied by N ellipsoidal particles 
with semidiameters a ,; their shape factors q , are given by 
Maxwell's depolarization integrals 

q, =a,a2a,L" I(a ,,x) dx=q ,(a,), 

111 (a "x)=2(a i+x) [(a i+x)(a ~+x)(a ~+x)] 112, 

(3) 

and Q , is an analogous set for the exclusion surface. For the 
corresponding two-dimensional problem of aligned elliptic 
cylinders (a,- (0), 

(4) 

and W= (N1TIV)a,a 2 with Vas a surface. In the following, we 
show that the compound depolarization factor D , of (1) is 
positive for all physically realizable values of w. 

For isotropic (D, =D) spherical particles (a , =a) and 
spherical exclusion surfaces of radius 2a (associated with the 
usual radially symmetric pair-correlation function for a gas 
of hard spheres of radius a), we have q, =Q, =+ and (1) 

reduces to Maxwell's result' 

a)Work supported in part by National Science Foundation Grant MCS 75-
07391. 

Ll =w8!(1 +D~(1-w)], O<w<w r < 1. 
3 

(S) 

Although the upper bound w r (the densest random packing 
of identical spheres) has not been determined analytically, 
several measurement producers4 give w r ;:::;0.63. The analo­
gous problem of circular cy linders, q , = Q , = 4, corresponds 
to the replacement of; by 4 in (S); for the upper bound w r 

(the densest random packing of identical circular disks on a 
plane), we have used' w r ;:::;0.84. 

For the analogous problem of aligned ellipsoids (a ,) 
and similar exclusion surfaces with semidiameters 2a, (cor­
responding to elliptically symmetric pair correlations of 
aligned hard ellipsoids with semi diameters a ,), we have 
Q, =q ,(2a , )=q ,( a ,), and (1) reduces to 

Ll, =wD J[ I-D,q ,(I-w)]. (6) 

Since q , = I q , I and w<w r < 1, it is clear that for this case 
the compound depolarization factor D, =q ,(1- w) is posi­
tive. For the more general case (1), the statements after 
(14S)' and (183)2 mentioned positive and negative values of 
D, = q , - w Q ,; although negative values are not excluded 
by w<w r < 1, we now show that only positive values are 
physically realizable because of an implicit constraint that 
bounds w below w r for Q , =l=q i' 

The constraint may be introduced explicitly in the 
simpler context of spherical particles. Thus, Maxwell's form 
Ll as in (S) also applies if the exclusion surface is a sphere of 
radius 2A = 2ea > 2a, but for such cases w cannot attain the 
upper ound w r' To facilitate discussion, we regard the parti­
cles of radius a as coated with a hard transparent shell of 
thickness A -a (i.e., a shell having the same value for the 
parameter as the imbedding space). We write the volume 
fraction of coated particles (henceforth the envelopes of radi­
usA) as W=w(Ala)' such that 

D<W< Wr=w r, (7) 

i.e., the densest packing of the spherical envelopes is that of 
hard spheres. Consequently, the volume fraction of the scat­
tering particles (the spheres with parameter p) is restricted 
to' 

O<W<IV ra31AJ= IV ric" e=Ala> 1. 

Thus, although (5) is appropriate, its range of physical 
realizability in IV is bounded below IV r' 

(8) 
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The same considerations apply for aligned ellipsoidal 
particles (a ;) and similar envelopes (A ; =ca; >a;), i.e., for 
Q; =q iCC a ;)=q;( a;); theform..1 ; of(6) applies but wcan­
not attain w r' Because the volume fraction of the envelopes 
satisfies (7), win (6) is restricted to 

(9) 

which with Ai =c a; reduces to w ric' as for (8). 

For the general case (1), the relation of the volume frac­
tion of the particles to that of their envelopes, 

(10) 

provides the constraint that insures D ; > 0 for all realizable 
values of q i and Q i' Thus for elliptic cylinders specified by 
q ;( a;) of (4) and non similar envelopes 
Q i =q ;(A ;)=I=q ;(a), we have 

Q W ala, Q 
D;=q;-w i=q;- AlA, ; 

(11) 

with i = 1,2 and J = 2, 1 as the complement. We write 

D·=a1a, - >0 [ 
1 W J 

I a i(al+a,) A ;(Ai+A,) 
(12) 

where the inequality holds whether a, >AI or a, <Ai pro­
vided that A l>ah and A,>a,. Similarly for ellipsoidal parti­
cles specified by q J a i) of (3) and nonsimilar envelopes 
Q; =q i(A), we use (10) in D i to obtain 

D i =q i -w Q i =aia,a,l'" [lea i'X)- WI (A i'X) ] dx> O. 

(13) 

The inequality follows from (3) with l(a ;,x»I(A ;,x) for 
Ai >a i' and from W<o W r < 1. ThusD; > 0 holds for all re­
alizable cases including oblate particles within prolate enve­
lopes, or prolate within oblate, etc. The greater generality 
associated with Q i=l=q ; is that the configurational contribu­
tion w Q i < q i in (1) may be greater or less than wq;. the 
contribution for the special case of envelope similar to 
particle. 

We extend the essentials directly to the more general 
case of non coincident axes of the corresponding dyadics 
q,p,Q. We write (144)1 and (182)2 as 

A.(I+Q.Atl=wb.(I+q.bt l R(w,b,q), 

(14) 

where lis the identity dyadic and Ii is an abbreviation. For 
an isotropic imbedding space characterized by po, the rela­
tive dyadic parameters equal P=P'lpo, p=p'lpo, with the 
prime indicating nonnormaIized values; if the imbedding 
space is anisotropic (Po), then P = P' = Po 1, P = P"Po 1 , From 
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(14) we have A=R.(I+Q.A); thus (l-li.Q).A=R, and 
consequently 

(15) 

Substituting li-l=(I+q.b)(wbYI =(b-1+q)/w, we obtain 

with jj as the compound depolarization dyadic. 

In the system (Zi=Z,x,y) in which Q is diagonal, we 
write 

and 

D ii=q i;-WQ i' D ij=q ij for i=l=j. 

We use ~ i =r,O,~ in terms of the direction cosines 
(a i = la i' < 1) of;i=~ in Z;, i.e., 

~i=IaiZ;' 

;,= [ -(1-a D Zl +ala,z,+a1a,zd/(l-ai)ll2, 

(17) 

(18) 

(19) 

and take a l <a, <a" so that qi > q, > q3, in order to show 
directly that D ij > 0 for all iJ. 

Thus, from q ij = Iq II (z;.; 11)( ; II .z) =q ji' we obtain 

qll =q1a T+qll-a D, ql,=q'l =alalql-q,), 

q13=qJI =a1a/ql-q,), 

qv=q,,=a,a1 [(ql-q,)+(Q,-Q3)1(l-a D J, 
qJ,=Q1a ~+(q2a Ta ~+q,a D/(l-a D, Ia;= 1. 

(20) 

Since all q ij > 0, we have D ij > ° for i=l=J, and we need con­
sider only D ii' 

We write 

D .. =q .. -wQ. =ala ,a,LxJ .(x)dx If /I I ~ / , 

a 

J;(x)= II (a ",x) (Zi'~ ,,)'- WI (A i'X). (21) 

From I of (3), we see that if J ; (0) > 0, then J; (x) > O. Since 
the distances (a;;) to points az on the particle's surface 
.I,.( a ;,z;'; ,,fa,,)' = 1 intersec;~d by Zi satisfy a i; <A i' 

(22) 
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and since iliA i > ilna n' weseethatJ i(O) >0. ThusD ii >0, 
and consequently all D ij > O. 
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We discuss two different techniques for obtaining asymptotic estimates of the number of n -vertex graphs 
in a ljJ2N field theory as n---> 00 • The first technique relies on difference equations and the second makes use 
of Lipatov's methods. We show how various topological constraints, such as connectedness and Wick 
ordering, affect the total number of graphs. We show, for example, that Wick ordering reduces the total 
number of connected graphs by a factor of eN-I /2 as n---> 00 • 

I. INTRODUCTION 
There has been much interest lately in the behavior of 

Feynman perturbation theory in large order. 1 As n, the order 
of perturbation theory, approaches 00 the nth term in the 
perturbation expansion of til N quantum field theory in D 
dimensions behaves like 

n anb nn cd [1 +0 (n- I )], 

where a, b, c, and dare constants. It has been shown that nan, 
the most rapidly varying component of this behavior, is de­
termined by the number of Feynman graphs and not by the 
values of the Feynman integrals. 1 Therefore, it is essential to 
develop techniques for making precise asymptotic estimates 
of the number of graphs as n, the number of vertices, be­
comes large. 

In this paper we present two different combinatorial 
methods for counting numbers of graphs having many ver­
tices. The first approach consists of finding a difference 
equation which relates the number of graphs for different n 
and then solving this difference equation asymptotically for 
large n. The second approach uses Lipatov's method to ap­
proximate a generating function representation of ¢2N field 
theory in zero-dimensional space-time. 

The crucial idea in graph counting is the symmetry 
number of a graph. The symmetry number of a graph is 
defined as the reciprocal of the number of ways the graph can 
be turned into itself by permuting the lines or vertices. In 
Fig. 1 we give examples of graphs, each with its accompany­
ing symmetry number. 

We can now define what we mean by the number of 
graphs. We count a set 0/ n-uertex graphs in a ¢2N field theory 
by summing the symmetry numbers o/the graphs in that set 
and then multiplying this result by the/actor [(2N)W. We 
choose this definition of the number of graphs in a set be­
cause it is the same as the definition of the Feynman ampli­
tude in quantum field theory corresponding to that set of 
graphs in which the Feynman integrals have all been set 
equal to 1. 

We now summarize the organization and content of 
this paper. In Sec. II we compute the total number of uncon­
strained graphs having n vertices. We show that there are 

precisely 

(2Nn +J -l)!!/n! (1.1) 

(connected plus disconnected) graphs having n vertices and 
J external legs in a ¢2N field theory. 

In Sec. III we consider the topological constraint of 
connectedness. The restriction is not very strong: We show 
that as n --+ 00 the ratio of the number of connected graphs 
to the total number of connected plus disconnected graphs 
approaches 1. 

In Sec. IV we consider the constraint of Wick ordering. 
Wick ordering eliminates all graphs containing self-loops 
(lines which emerge from and return to the same vertex) and 
therefore reduces the total number of graphs in any order. 
We show that as n --+ 00, Wick ordering reduces the number 
of graphs in a tf? N theory by a factor of eN -112 • 

In Sec. V we use Lipatov's methods to consider the oth­
er kinds of topological constraints (eliminating all diagrams 
with specific kinds of vertex or mass corrections). It is re­
markable that imposing any finite number of these topologi­
cal constraints does not alter the factorial growth of the 
number of graphs in the theory as n --+ 00. 

I 
96 

I 
48 

I 
48 

1 

512 

FIG. 1. Four graphs and their accompanyin! 
symmetry numbers are shown. 
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II. TOTAL NUMBER OF GRAPHS 

In this section we compute A n(J,2N), the total number 
of graphs (connected and disconnected) having n vertices 
and J external legs in a if;2N field theory. Note that J must be 
an even integer. First, we use a combinatorial approach.2 
There are a total of 2Nn +J lines, 2N emerging from each 
vertex and J external lines, that must be connected in all 
possible ways to make all possible graphs. We begin by 
choosing any line and connecting it to one of the remaining 
2Nn +J -1 lines. There are 2Nn +J -1 ways to do this. We 
are now left with 2Nn +J - 2 free lines. We choose anyone of 
these lines and connect it to one of remaining 2Nn +J - 3 
lines. There are 2Nn +J - 3 ways to do this. We continue this 
process until all lines are connected. Finally, to avoid over­
counting we divide by n1, the number of arrangements of the 
vertices. This gives 

A n(J,2N)= (2nN+J-l)!! . 
n1 

For example, if J=2, N=2, and n=2, (2.1) gives 
911/21=3·5·7·9/2. This result is verified in Fig. 2. . 

(2.1) 

An alternative way to derive (2.1) makes use of the path 
intergral representation for the J-point Green's function in a 
if;2N field theory in D-dimensional space-time: 

x exp{f 2' [rp (x)]d DX }. 

The case under consideration is particularly simple because 
all Feynman integrals are 1. This obtains when D=O. Fur­
thermore, when D=O the path integral reduces to an ordi-

Graph 
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48 

~ 
16 

I 
128 

~S}'mmel'}'Number)(4~)2 
96 

Total 

144 

144 

36 

12 

36 

l 
2 

945 
-2-

FIG. 2. Graphs contributing toA,(2A); that is, all graphs having two exter­
nallegs and two vertices in a ¢l theory. Equation (2.1) predicts that the 
value of A 2(2,4) is 9!!/2! = 945/2. 
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nary integral: 

G (g,J,2N) = {'Ooo dx x J exp (_~x2_g x 2N)/ v' 2ff , 

(2.2) 

where we have normalized by dividing by 

G (0,0,2N)= v' 2ff. 

Ifwe nowexpandG (g,J,2N) intoa power series ing, we 
find that the coefficient of ( - g)n is precisely 
(2nN +J -1)l!ln!. 

III. THE CONNECTEDNESS CONSTRAINT 

Suppose we now select from the set of graphs that go to 
make upA,,(J,2N) just those graphs that are connected. We 
define Cn(J,2N) as the sum of the connected graphs. How 
much smaller than A ,,(J,2N) is C,P,2N)? 

An exact difference equation relating A n(0,2N) and 
C,,(0,2N) is 

1 ,,-I 

A,,-C n =- I kCkA n _ k , (3.1) 
n k=1 

where we have suppressed the indices J and N. This equation 
is merely an enumeration of all the disconnected graphs 
which constitute A n - C /I' 

The content of (3.1) can be restated in generating func­
tion form. We define the connected Green's function 
Gconnected(g,J,2N) in terms of its asymptotic series in powers 
ofg: 

x 

G connec.tcd (g,0,2N) - I C" (0,2N)( - g) n . (3.2) 
n=l 

Then the difference equation (3.1) is exactly equivalent to 

G connected (g,0,2N) =lnG (g,0,2N). (3.3) 

The simplest way to find the relation between A nand Cn 

for large n is to use (3.1). As n ~ 00, the largest term in the 
convolution sum is the last (k = n - 1). The next largest 
terms are the k = 1 and k = n - 2 terms, and so on. Retaining 
just the k = n - 1 term, we have 

C -A [1- _a - - ... ] (n ~ (0), (3.4) 
n fI n !V-I 

where a is a positive constant depending on N: 

a = (2N - 1 )!!/ 2N N tv • (3.5) 

For example, if N = 2 and n = 7, then a = 3/16. We know 
from (2.1) that 

A, = 27·25·23·21·19·17·15·13·11·3/16 

and from (3.1) that 

C, = 27.23201.244/7. 
Thus, 

C7/A7~0.961. 

This is to be compared with our prediction in (3.4) that 

1- _3_ =0.973. 
16·7 . 
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From (3.4) we conclude that 

. C ,,(0,2N) 
hm 1. 
n-~oo A n(0,2N) 

(3.6) 

This shows that eliminating disconnected graphs is not a 
major effect in large order (large n). 

The results is (3.6) is valid even when J-=/=O. For exam­
ple, when J = 2 (3.1) is replaced by 

n-I 

A n(2,2N)-C n(2,2N)= L C k(2,2N)A n_k(0,2N), (3.7) 
k=O 

where Co(2,2N) = 1. Analysis of(3.7) for large n gives (3.6) 
with 0 replaced by 2. We obtain more complicated convolu­
tion equations as J increases, but the result is still that given 
in (3.6) with 0 replaced by J. 

IV. THE WICK-ORDERING CONSTRAINT 

Wick ordering is a constraint which eliminates all 
graphs having self-loops. 

A. Difference-equation approach 

Consider first the special case of a 1/1' (N = 2) theory with 
J =0 (vacuum graphs). For this special class of graphs each 
graph has precisely 2n lines, and, ifit is connected and n > 1, 
it may have from 0 to n self-loops (at most one self-loop for 
each vertex). Let W".k stand for the sum of all connected 
graphs having n vertices and k self-loops. Then 

ft 

c n = I W n•k • 
k=O 

(4.1) 

Furthermore, Wn,k satisfies the difference equation 

12 
W n,k =T [(2n-k-l) W,,_I,k_1 

+k W n-l,k 1 (k>I). (4.2) 

To derive (4.2), we use the following combinatorial argu­
ment: We obtain all of the graphs in the class Wn,k by insert­
ing one vertex, with a self-loop attached, to (i) one of the self­
loops of each of the graphs of the class Wn _l.k (there are k 
ways to do this because each graph in this class has k self­
loops); or to (ii) one of the lines (not a self-loop) of each of the 
graphs of the class Wn-I,k_l (there are 2n -k -1 ways todo 
this because each graph in this class has 2n - k - I lines that 
are not self-loops). We must then multiply by 4!=24 because 
we have added a new vertex, divide by 2 because that is the 
symmetry number associated with one self-loop, and divide 
by k because each graph in W",k has k self-loops and has 
therefore been produced k times too often. This reproduces 
(4.2). 

Next we find the approximate solution (4.2) for large n. 
We will show that 

lim C nlW n,0=e312~4.482 (4.3) 
n~oo 
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Substituting (4.2) into (4.1) gives 

n-I W n _ lk 
C n = W n,O+ 24(n-l) W n-I,O+ 12(2n-l) k~1 k+ l' 

Substituting (4.2) into this equation gives 

C n = W n,O+ 24(n-l) W n-I.O 

+I2(2n-l) 12(n-2) W n - 2,o 

n-2 W k 
+122(2n-l)(2n-2) I n-2. 

k=1 (k+ 1)(k+2) 

After substituting (4.2) m times, we obtain 

n-m W n-m,k 

+b n-m k~1 (k+ I)(k+2) ... (k+m) 

where we find using induction that 

2(12) m(n-m)(2n-l)! 
a(n - m) = ----'---'---'-'---'-

m!(2n-m)! 

b(n-m)= (l2)m(2n-l)!. 
(21l-m-l)! 

(4.4) 

Finally, we divide both sides of (4.4) by Wn,o, take n 
large, define lim" . 00 C " 1 W n.O = R , and recall that, up to 
corrections of order 1/n, Cn ~(4n -1)!!ln! as n--oo [see 
(3.4) and (2.1 )]. This converts the series in (4.4) to an infinite 
sum of the form: 

R= 1 +'+C )2/2!+· .. +C_)tnlm!+· .. =e312 
~ 2 :: 

and thereby establishes the result in (4.3). 

Next, we generalize this argument to the case of iflN 
(N = 3,4,5, ... ) theory, still keeping J, the number of external 
lines O. For this case there is not one but N - 1 simultaneous 
difference equations analogous to (4.2). These difference 
equations are generated by inserting one vertex with 1 self­
loop, or 2 self-loops, ... , or N -1 self-loops into the various 
classes of connected graphs having fixed numbers of self­
loops. We define W n.k"k" .... k, , as the number of n-vertex 
connected graphs with k, vertices having one self-loop, k2 
vertices having 2 self-loops, k3 vertices having 3 self-loops, 
and so on. Note that k,+k2+ .. ·+kN _ 1<n. 

For example, for ",6 theory we have two difference equa­
tions. Inserting one vertex having two self-loops (see Fig. 
3(a) gives 

Wn.k"k, 

=.2Q. [(k,+I) Wn-l,k,+I,k,-1 +2k2 Wn-I,k,-I,k, 
k2 
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(4.5) 
and inserting one vertex having one self-loop (see Fig. 3b) 
gives 

Wn.k"o 
120 lk (k =-- h 1 1+1) 
kl 

W n_l.k,+I.o+(2k l -l) W n-I.k,-I,I 

+k l(3n-k l -3) W n-l.k"O +4W n-l,k,-3.2 

(4.6) 

This last equation is complicated because inserting a one­
self-loop vertex requires that we cut two lines in a graph. 
There are many possibilities to consider: cutting two non­
self-loops, one non-self-loop and one self-loop, two self­
loops, the same self-loop twice, and so on. 

The complexity of these difference equations might 
seem forbidding. However, because we are only interested in 
asymptotic results for large n, we can make enormous sim­
plifications which reduce the problem almost to triviality. 
For example, for large n, we may replace (4.2) by the much 
simpler equation 

W n•k = 2~n W n - l •k _ 1 (4.7) 

without altering the asymptotic result in (4.3). 

Similarly, we may replace the pair of difference equa­
tions (4.5) and (4.6), for large n by just one much simpler 
equation 

W = 540 n2 W. (4 8) n.k"O kJ n-l.k,-I.O . 

The generalization to ¢2N theories of (4.7) and (4.8) is 

W = (2N)1(Nn) N-I W 
n.k"O.O ..... O 2kJ(2N _ 3)!!(N -I)! n-I,k, --1,0.0 ...• 0' 

(4.9) 

This equation is obtained by inserting a vertex to which is 
attached a single self-loop (see Fig. 3c). This procedure re­
quires that we cut N - 1 lines of the existing graph to attach 
the 2N - 2 free legs of the new vertex. Since there are roughly 
Nn lines in the original graph, there are roughly 
(Nn) N-I I(N -1)1 different ways to perform these cuts. We 
multiply by (2N)! because we have added a new vertex. We 
divide by 2 because the symmetry number for a self-loop is ~ 
and we divide by (2N - 3)!! because this is the number of 
ways of connecting up to the pairs of cut lines [here, we use 
the same argument that led to (2.1)]. Finally, we divide by k, 
because each graph produced by the vertex insertion has kJ 
self-loops and therefore has been produced k times too often. 
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Next, we iterate (4.9) in precisely the same manner as 
we iterated (4.2). We begin with the identity 

c n(J=0,2N) = I W n,k"k" .. k, J 

k L+k2 +,··+ k ,,\ ,.;"N 

n 

- L W n,k"O.O, .... O· 
k,~O 

(4.10) 

This asymptotic relation is valid as n--+ 00 because 
W n,k"k" .... k, J (one of k2, ... ,kN _ 1'7"::0) contributes negligibly 
to the sum as n--+ 00 ; this is true because the highest power of 
n in the relevant difference equation is less than N - I. Next, 
we repeatedly substitute (4.9) into (4.10) to obtain 

n a 
C n(J=0,2N)=W n,0,0 ... 0+ L -k Wn-l.k,-I.O.O •...• o 

k,~ I , 

= W n.O.O .... o+a W n-I.O,O •...• O 

= W n.O.O ..... o+a W n-1.0.0 ..... 0 

a 2 

+-W + ... 2! n - 2.0.0 •...• 0 ' 
(4.1 I) 

where a = (2N )!(Nn)N -1 1[2(2N - 3)!!(N - 1 )!]. 

However, we know from (2.1) and (3.6) that 
Cn(J=0,2N)~(2Nn -1)!!ln! (n--+oo) and therefore that 

C n(J=0,2N) ~ (2Nn)'" =(3 (n--+oo). (4.12) 
C n_ I(J=0,2N) n 

Combining this result with that in (4.11) gives 

. C n(J=0,2N) 
hm-----

n ~x WII.O,o .... o 

(a) 

(b) 

(c) 

= lim 1 +al(3+ (al(3)2 + (al(3)3 + ... 
II 'r 2! 31 

~ + ~-?~ 
(one line cut 

m + ~ ~ 
~two lines cut 

P10 LJ + ~ ~ 
;';'>'. / zN:=2 lines 

l N-I lines cut 

FIG. 3. Insertion of self-loops into graphs. In (a) a vertex having two self­
loops is inserted in a <p' graph and in (b) a vertex having one self-loop is 
inserted in a <p' graph. In ( c) a vertex having one self-loop is inserted in a <p"v 
graph. 
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= lim exp(a/{3) 

. (2N)!(Nn)N-I n 
= hm exp ----------

n~oo 2(2N - 3)!! (2Nn) N (N -I)! 

=e N-1/2, (4.13) 

which reduces to (4.3) when N=2.3 

B. Path-integral approach 
The method we use here to impose topological con­

straints on graphs is quite general. We eliminate those 
graphs having any given topological structure from the set of 
all graphs by inserting counterterms (which correspond with 
the topological structure to be removed) into the exponent in 
the integrand of(2.2). We refer to the argument of the expo­
nential as the action, and we refer to terms which are to be 
subtracted from the action as counterterms. 

The insertion of counterterms to remove specific topo­
logical structures can be viewed as a renormalization of the 
graphs of the theory because the graphs have no momentum 
dependence when D=O. For example, for a Wick-ordering 
subtraction in a tflN theory we must subtract off the value of 
the graph in Fig. 4a. By the Feynman rules for a 1/lN theory 
in zero-dimensional space-time, the value of a self-loop is 
(2N)!( -g)/2. [The Feynman rules are simply that each ver­
tex has a factor of - g(2N)!. The factor of! is the symmetry 
number of a self-loop.] This requires that we add a counter­
term to the action of the form 

2N-2 
1(2 N)'g x =N(2N -I)gx 2N-2. 
2 . (2N-2)! 

(4.14) 

The factor of X 2N - 2 occurs because there are 2N - 2 free legs 
on the graph in Fig. 4a. 

The counterterm in (4.14) miscounts those graphs in 
which the same vertex is involved in two such subtractions 
(see Fig. 4b). That is to say, the counterterms also need 
counterterms to subtract out their effects. The appropriate 
modification of the action is given by Banks and Bender3 for 
the case of Wick ordering (subtracting out all self-loops). 
The Wick -ordered X2N, written :x2N:, is just 

where H 2N(x) is a Hermite polynomial. The integrand for 
counting graphs in the Wick-ordered theory is then 

exp( - :x2/2; _ ;gx2N;) 

=exp[ -!Hlx/ Y2)-g H 2N(x/Y2)/2N ] 

=exp[ -x2/2+i-gx 2N +gN(2N-I)x 2N-2 

-gN(N-l)(2N-I)(2N-3) X 2N- 4/2+ ... ]. 

Dividing by the g = 0 case to normalize the path integral, we 
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obtain the generating function for Wick-ordered graphs: 

-gN(N-I)(2N-I)(2N-3) x 2n-4/2+ ... ]. (4.15) 

We use the idea of Lipatov to find the coefficient of 
(-g)" in the expansion of(4.15) when n is large. We expand 
the terms linear in g into an exponential series, pick out the 
appropriate term and estimate the resulting integral using 
Laplace's method. The coefficient of ( - g)" is given by 

(1/ n!Y 21T ) {"'oo dx exp{ -x2/2+n In[x 2N p(x) n, 

where 

p(x) = l-a1x-2+a2x-4+ ... , 

a1=N(2N-I), 

a2=N(N-I)(2N-I)(2N-3)12. 

The functionf(x) = -x2/(2n) + In[x2Np(x)] hasa maxi­
mum at x =Xo, where 

f '(XO)= _ Xo + 2N + p/(xo) =0. 
n Xo p(xo) 

When n is large, the approximate location of the maximum is 
given by 

x~-2Nn . 

The fluctuations about the maximum are controlled by 

f"(xo) 

= _ ~ + 2N + p"(xo)p(xo)- [p/(xo»)2. 

n x ~ [p(xo) F 

Observe that this is negative, which verifies thatxo is indeed a 
maximum. 

The functions p(xo), p' (xo), p" (xo) are sequences of terms 
of rapidly decreasing size. Therefore, it is easy to obtain 
higher-order corrections. (We already know the exact value 
of the integral for a;=O. We therefore divide out all terms 
which are independent of the a j.) The fraction of graphs hav­
ing n vertices in a Wick-ordered theory compared with the 
total number of graphs without the Wick-ordering con­
straint is, by Laplace's method 

(a) , 
2N-2lines 

(b) 5R 
2N-4iines 

FIG. 4. Subgraphs removed by the Wick-ordering 
constraint. Note that the counterterm for (4a) 
oversubtracts (4b). Figure 4a has a symmetry fac­
tor of! and Figure 4b has a symmetry factor of h. 
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~exp {n lnp(xo)- nx~ [pl(XO) ]'}[1+ at ]-112 
8N p(xo) (2fV2n) 

(
-at) [ 2Na2-(N-1) a t-2Na,] 

~ exp -- 1 + ---------
2N 8n IV' 

[ 
2N-1) =exp( -N+!) 1-~ . (4.16) 

This is the higher-order in lin version of (4.13). 

Finally, if we repeat the above argument for J=/=O 
(graphs with J external legs) then the ratio of Wick-ordered 
graphs is 

1 [ 2N-l ( J)J exp(-N+ 2) 1-~ 1-
N 

. (4.17) 

We estimate that the fraction of graphs with no self­
loops for N=2 and n=6 is e-J12 =i=0.22313 in leading order. 
The first correction changes this to 0.19523. If we ask the 
same question for connected graphs, the discussion of Sec. 
III requires that we divide by (1- _'_.J.). Only the denomina-

16 6 

tor is changed because there are no one-vertex connected 
graphs having no self-loops. This estimated fraction of con­
nected graphs with no self-loops is then 0.2022, which is a 
good approximation to the exact value of 0.2044 for n=6. 

V. OTHER TOPOLOGICAL CONSTRAINTS 

Consider a constraint which is weaker than Wick order­
ing. Suppose we wish to exclude those graphs having vertices 
with two or more self-loops (graphs having no or one self­
loop per vertex are allowed) from the set of all graphs. Then 
we take 

al=O and a2= -N(N-1)(2N-1)(2N-3)12 

in the previous Laplace integral. We find that the fraction of 
graphs having two or more self-loops for each vertex is 

(N -1)(2N -1)(2N - 3)/8Nn. (5.1) 

Note that there is a factor of lin, which shows that the over­
whelming majority of graphs with self-loops do not have 
more than one self-loop per vertex. 

(a) 

(b) 

2584 

The reason that (5.1) vanishes with n [while (4.17) is 

FIG. S. Simplest propagator correction in a 
Wick-ordered (a) rp' theory and (b) rp2N 
theory. 

~
,/---" N-Ilines 

, , , ' 
..... _--/ 
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(a) Q M=I 
lIS 
2N-2 lines 

(b) ~M=2 

(c) M=3 

FIG. 6. Examples of subgraphs that occur with non vanishing probability as 
n, the number of vertices, tends to 00. We call these graphs necklace graphs. 
Each bead or vertex on the necklace has 2N - 2 free lines that connect to the 
rest of the graph. M is the number of beads. 

0(1) as n-oo] is that the required counter term has two 
loops (see Fig. 4b) (rather than one as in Fig. 4a). In general, 
we will see that if the graphical representation of a counter­
term has L loops, then the fraction of graphs containing this 
subgraph will be of order lInL

-
' 

Consider, for example, the propagator bubble graph in 
Fig. 5. The value of this graph is 

[(2N)!g)2!(2N-1)!=2N(2N)!g2. 

Thus, a counterterm of the form 

-N(2N)!g2x2 

is necessary in the action to eliminate all graphs having this 
subgraph. The stationarity conditions in this case are 

-xo=2Ng.,x ~N-I -2N(2N)!g~o=0 

and 

_X~N -~ -2N(2N)!goX~ =0. 
go 

[See (5.4) and (5.5) to see how these equations arise.] We find 
that the leading contribution (divided by the unconstrained 
counting) is 

( 
(2N -I)! ) 1 (2N -I)! (5.2) 

exp - 2(2Nn) 2N-3 ~ - 2(2Nn) 2N-3 . 

Thus, for N = 2, the fraction of graphs having propagator 
bubbles of the form in Fig. Sa is 3/(4n). Since the counter­
term has two loops, the fraction of graphs having bubbles is 
o (l/n). 

A. One-loop counterterms 

Granting the above assertions, it follows that the only 
counterterms which eliminate non vanishing fractions of 
graphs in the many-vertex limit are those whose graphical 
representations have just one loop. The simplest sorts of 
counterterms having one loop are shown in Fig. 6. We call 
these subgraphs necklaces. We now calculate the value of the 
generic graph of this class, a necklace with M beads. There 
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are factors of [ - g(2N )!]M from the M vertices, 
[M (2M - 2)]!/[(2N - 2)!]M for the number of ways of com­
bining the remaining lines into a graph having 2N lines 
emerging from each vertex, with all lines indistinguishable, 
and (2Mtl for circular symmetry. Finally, we include the 
factor -x M(2N -2) I [M(2N-2) ]! to convert the graph 
into a counterterm, and we obtain the term 

AM = -( -g) M X M(2N-2) [2N(2N -1) ]M 12M 

to be added to the action. 

Let us examine the integral 

Joo dxexP[-!x2_gX2N+ I AM] 
-00 l';;;;;M<n 

in the limit oflarge order n. We will compute only the lead­
ing order terms. Higher-order corrections vanish for large n 
like 0 (lin). To pick out the coefficient of gn, we take a con­
tour integral ~ dg g-n-l, where the contour encloses the cut 
along the negative real-g-axis, and perform a steepest-de­
scent aproximation on the resulting integral. The coeffi­
cient of gn is 

--=J:. dg Joo dx 
21Ti V 21T j g - 00 

The leading contribution for large n comes from the 
saddle point in (x,g) space, which satisfies the two equations 

0= -xo-2Ng,;x 6N - 1 - I (-go) M X ~(2N-2)-1 
M 

X (N-I) [2N(2N-I) ]M, 

0= -x 6N + I (-go) M-I x ~(2N-2) 
M 

X [2N(2N -1) ]M 12-nlgo. 

(5.4) 

(5.5) 

Dimensional arguments give us the useful expression 

![x~ -(2N-2)g~] 
dx dg 

X [ -!X2_gx 2N + IA M -n In( -g) ] Ix=xo 
g=go 

= -!x 6-g,;x 6N -n(N-I)=O (5.6) 

at the saddle point. Substituting 

x 6=2Nn(I +E) and -go=n (2Nn) -N (1 +8) 

into (5.6), where E and 8 are 0 (lin), we find that in fact 
8=0 (lIn2) and may be neglected to leading order. 
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With these approximations we find that as n----+ 00 the 
fraction of graphs without a given set of necklace subgraphs 
is simply 

exp [ - M~I (2N -1) M 1(2M)]. (5.7) 

For M = 1 this reproduces the leading behavior for the 
Wick-ordered graphs as derived in (4.13). We see from the 
form in (5.7) that we can, in leading order, treat any class of 
subgraphs separately, so that the fraction of graphs without 
an M-bead necklace is exp[ -(2N _1)M 1(2M)]. Note that as 
M-oo, this exponential vanishes, showing that all graphs 
have such a subgraph, as of course they must for M suffi­
ciently large. 

B. Distribution of subgraphs 

Let us introduce a factor (1-a M) into the counterterm 
for the necklace subgraphs 

_( _g) M X M(2N-2) [2N(2N-l) ]M (I-a M)/(2M). 
(5.8) 

The a'd then multiplies each occurrence of the given sub­
graph, so that a graph with subgraphs of M-bead necklaces 
has a factor of ( aM) k multiplying it. This factor results 
from combining + 1 for any necklace subgraph coming from 
the expansion of the action, and - (1 - aM) coming from the 
expansion of the counterterm. This is true for each subgraph, 
independent of the details of the rest of the graph. Of course, 
it miscounts overlapping necklaces but this is an 0 (lIn) ef­
fect. For a M= 1 we recover the perturbation series without 
the contraint on M-bead necklaces. For a M=O, we have the 
case treated in partA. To leading order in lin (the higher­
order corrections are very complicated) if there are k sub­
graphs of the M-bead necklace type, the fraction e,!: of that 
type satisfies 

I (a M) ke,!: =exp[ -(l-a M)(2N-I) M 1(2M)]. 
k 

(5.9) 

The right side of this equation is simply (5.7) with the extra 
factor (1-a M) included in A'd. Equation (5.6) shows that 
this is the only change resulting from the (1-aM) factors to 
leading order in lin. The integral which we are estimating 
corresponds to the sum of ( aM) k times the fraction of 
graphs with k of these M-bead necklace subgraphs, as dis­
cussed after (5.7). We have divided out the value for no sub­
traction, a M= 1. For aM=O the sum reduces to the previous 
case e ~ , the fraction of graphs with no such subgraph. Dif­
ferentiating with respect to aM and setting aM=O we find 
that the fraction of graphs with k M-bead necklaces is 

C W = ~ [(2N-l) M]k e -(2.'1-1) H/(2M). 

k k! 2M 
(5.10) 

This is a Poisson distribution. The independence of the dif­
ferent classes of graphs and the independence in each type of 
subgraph occurring in a many-vertex graph gives a Poisson 
distribution for each type of subgraph. 

In Table I we compare the theoretical distribution in 
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TABLE 1". There are 97 connected diagrams in sixth order (n=6) in a l/f theory (N=2) having no external legs (/=0). In this table we compare the exact 
fractions of diagrams having a given number WofWick loops (Wranges from 0 to 6) and a given number L (L ranges from 0 to 6) of propagator corrections 
(two-bead necklaces as in Fig. Sa) with the asymptotic prediction given in (5.10) that for large n this fraction should be [(I! WI) (~) We- l12][(I!L!)(!.) L e-,,,]. 

2 4 

Although the asymptotic predictions in this paper are valid as n--. 00, we see in this table that n = 6 is sufficiently large for these predictions to be quite accurate 

L=O L=I L=2 L=3 

W=O 0.0235 0.0529 0.0595 0.0446 
0.0095 0.0286 0.0643 0.0524 

W=I 0.0353 0.0794 0.0893 0.0670 
0.0190 0.0571 0.1428 0.0571 

W=2 0.0265 0.0595 0.0670 0.0502 
0.0143 0.0786 0.0999 0.0476 

W=3 0.0132 0.0298 0.0335 0.0251 
0.0095 0.0571 0.0357 0.0190 

W=4 0.0050 0.0112 0.0126 0.0094 
0.0077 0.0196 0.0089 0.0024 

W=5 0.0015 0.0034 0.0038 0.0028 
0.0036 0.0036 0 0 

W=6 0.0004 0.0008 0.0009 0.0007 
0.0006 0 0 0 

L 0.1054 0.2371 0.2668 0.2000 
all W 

0.0642 0.2446 0.3517 0.1785 

"The upper number in each square is the asymptotic prediction and the 
lower number is the exact fraction. 

(5.10) for M = 1 (Wick ordering) and M = 2 (simple vertex 
corrections) with the actual distribution of sixth-order 
(n = 6) vacuum graphs in a ¢4 theory. 

Until now we have mostly considered vacuum graphs 
(graphs with no external legs; that is, J =0). However, our 
leading-order results remain unchanged when there are ex­
ternallegs. If there are J external legs, then the exponent in 
(5.3) has an extra term of the form Jlnx. This term can only 
affect the large-n behavior by terms of order 1/ n because x ~ 
and go change by terms of order lin. Thus, the distribution 
in (5.9) is independent of J. This is not surprising; fixing a 
few lines of the diagram will not alter the leading-order prob­
ability for a given subgraph to occur somewhere in the 
diagram. 

For graphs with many vertices, we now have a simple 
statistical interpretation of how they are constructed. Al­
though they are complicated structures, the probability of 
occurrence of any given subgraph is independent, to leading 
order in 1/ n, of the occurrence of any other subgraph of the 
same or of a different type. The number of occurrences of a 
particular subgraph follow a Poisson distribution. The neck­
lace graphs are special subgraphs because they have a non­
vanishing probability of occurring as n-+ 00 ; they are a set of 
measure one. For example, we predict that 1 % ofalll/l the­
ory Feynman graphs in nth order (n large) are connected 
graphs having one self-loop, two two-bead necklaces, and 
two three-bead necklaces. 
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L=4 L=5 L=6 L 
all L 

0.0251 0.0113 0.0042 0.2231 
0.0274 0.0143 0.0053 0.2044 

0.0377 0.0169 0.0063 0.3347 
0.0452 0.0190 0.0056 0.3475 

0.0282 0.0127 0.0048 0.2510 
0.0214 0.0089 0.0024 0.2731 

0.0141 0.0064 0.0024 0.1255 
0.0071 0 0 0.1284 

0.0053 0.0024 0.0009 0.0471 
0 0 0 0.0386 

0.0016 0.0007 0.0003 0.0141 
0 0 0 0.0072 

0.0004 0.0002 0.0001 0.0035 
0 0 0 0.0006 

0.1126 0.0506 0.0190 

0.1011 0.0422 0.0133 
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A closed form solution is found to a model problem for pulse propagation in a medium that responds 
hydrodynamically to the pulse. This solution is useful for testing pulse propagation code. 

I. INTRODUCTION 

Afficionados of the art of numerical computation know 
that a computer program must be tested in a variety of ways 
before it can be deemed satisfactory. One ofthe best tests is to 
find a model problem for which an analytic solution is 
possible. 

We have recently developed a program for propagation 
of electromagnetic pulses in a medium which responds hy­
drodynamically to the energy deposited within it. The elec­
tromagnetic propagation code and the hydrodynamic prop­
agation code can be tested separately. However, the codes 
are used in alternating fashion to integrate over different 
variables (space and time). Moreover, prediction and correc­
tion steps must also alternate so that each code has corrected 
values of the other variables. We can test the complicated 
logic involved by specializing from several electromagnetic 
variables to a single electromagnetic variable E (the pulse 
energy) and from several hydrodynamic variables to one (the 
density of the medium). What distinguishes the elass of 
problems we are interested in from others is that there are 
two timelike variables: z, the distance into the medium 
(which if divided by the velocity of light c is a time) and 
s=t-z/c, the time back from the leading edge of the pulse. 

The simplest model problem we can invent consists of 
the coupled linear equations 

aE (z,s) 

az 
-aE-bn, 

an(z,s) = -cE -dn, 
as 

(1.1) 

(1.2) 

where a, b, c, and d are constants, and the equations are to be 
solved subject to the initial conditions 

n(z,O) = no(z), 

E(O,s)=E(s), 

(1.3) 

(1.4) 

where no(z) describes the density of the medium before the 
pulse hits it, and E (s) describes the shape of the pulse at the 
input plane. 

The solution of first-order coupled linear equations 
would appear to be trivial. However, the reader may con-

a)Work at City College supported in part by the Army Research Office. 

elude from the answers 

[ r ' (bCZ )112 E(z,s)=e -az E(s)+)o e -d(s-s) s-s' 

X II (2 [bcz(s-s') ] I12)E(s')dsj 

-be -ds f e -a(z-z') 10 (2 [bcs(z-z') ] 1/2)no(z') dz', 

(1.5) 

n(z,s) = -ce -az f e -d(s-s')Io (2 [bcz(s-s') ] 1/2)E(s') ds' 

X II (2 [bcs(z - z') ] 112) no(z') dz' ] (1.6) 

(where 10 and II are modified Bessel functions of order 0 and 
1) that the solution of the model problem is not completely 
trivial. 

Even for the special case in which the initial density is 
uniform, 

no(z) = no = constant, 

nontrivial solutions result. The part of E (z,s) proportional to 
no simplifies to 

~ (a 2z )k12 E(z,s)n=-be-ds(no/a)e- az £.. 
k=1 bcs 

XI k (2 [bcsz ] 1/2). (1. 7) 

Similarly, the part of n(z,s) proportional to no reduces to 

00 (a2z )k/2 n(z,s)n=noe-(az+ds) I - Id2[bcsz])I12, (1.8) 
k=O bcs 

a result not simply proportional to E n (z,s) because the sums 
have different limits. 

We have given the results already, in a form adequate 
for testing pulse programs. The remainder of this paper is 
devoted to a derivation of these results. 
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II. LAPLACE TRANSFORM SOLUTION 

Although Eqs. (1.1) and (1.2) appear to describe the 
time evolution of a pair of coupled linear equations this is not 
the case because two independent variables are involved. 
There is no point, then, in diagonalizing the two-by-two ma­
trix. A more fruitful procedure is to introduce the Laplace 
transform on the variable s, 

E(z,p) = 1'" exp( -ps)E(z,s) ds, 

n(z,p) = f" exp( -ps) n(z,s) ds. 

The energy equation takes the same form as before, 

JE(z,p) 

Jz 
-a E(z,p)-bn(z,p), 

but the density equation reduces to the algebraic form 
/"0. 

pn(z,p)-n(z,O)= -eE(z,p)-dn(z,p). 

Thus we can solve for the transformed density 

'( ) no(z)-e E(z,p) 
n z,p = 

p+d 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

in terms of the initial density no(z)-n(z,O) and the trans­
formed energy. The differential equation for the energy, with 
this result inserted, takes the form 

JE(z,p) 

Jz 

where 

/"0. b 
-a(p) E (z,p) --- no(z), 

p+d 

be 
a(p)-a---. 

p+d 

Thus the transformed energy has the solution 

E(z,p)=e -a(p)z E(O,p) 

(2.6) 

(2.7) 

__ b_ (Zea(p)(Z'-Z)no(z')dz'. (2.8) 
p+d Jo 

If this result is inserted into Eq. (2.5), the solution for the 
transformed density is found to be 

C /"0. 
fi(z,p) = ---e

d 
-a(p)z E(O,p) 

p+ 

+ (no(z) + be (Z no(z') e -a(p)(z-z') dZ'). (2.9) 
p+d (p+d)2Jo 

The first terms in Eqs, (2.8) and (2.9) will be denoted 
E E (z,p), fi E (z,p) since they are sensitive to the initial energy 
distribution E (s), and the second terms will be denoted 
En (z,p), n n (z,p) since they are sensitive to the initial density 
no(z). 
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III. PULSE SHAPE DEPENDENT TERMS 

The first terms in Eqs. (2.8) and (2.9) depend onE(O,p), 
that is, on the initial pulse shape. By means of the convolu­
tion theorem 

L-Ij(p)g(p) = ff(S')g(s-S') ds', (3,1) 

and the shifting theorem 

L- I g(p+d)=e -d'L-I g(p), (3.2) 

where L -I denotes the inverse Laplace transform, the inverse 
of these terms can be written 

E(z,s) E =exp( -az) f G (y,s-s')E (O,s') ds', 

(3.3) 

n(z,s) E = -exp( -az) f g(s-s') E(O,s') ds'. (3.4) 

The subscript reminds us that we are only writing down the 
terms that depend on the initial pulse shape E (O,s). The fac­
tors G and g are given by 

exp(s,d)G 0',s) =L-I exp(ylp) =8(s) +L-I[exp(y/p)-l] 

where y = bez, H (s) is the Heaviside unit function, and 

g(s)=exp( -dS)L- I ; exp(;) 

=c exp( -ds)Io(2 Y sy ), (3.6) 

These inverse Laplace transforms may be found as (31) and 
(35), with v=O in Table 5.5 of Ref. 1. These integrals were 
independently evaluated with the help of the generating 
function 

exp[sp+0'lp)]= ! [(sly) 112 p]k I k(2Y sy), (3.7) 
k= - 00 

and the application of a convergence factor 
m 2 I[ m 2 - (p + d)'] to E (z ,p ) to eliminate the delta function in 
Eq. (3,5) and insure the validity of the convolution theorem. 
When the limit m--+ 00 was taken, the results reduced to 
those obtained directly from the table. Equations (3.5) and 
(3,6) agree with the pulse shape dependent portion of the 
results, Eqs. (1.5) and (1.6) quoted in the Introduction, 

IV. DENSITY DEPENDENT TERMS 

The inverse Laplace transform of the terms in Eg, (2,9) 
that involve no(z) can [with the help of the shifting theorem, 
Eq, (3.2)] be written in the form 

n(z,s) n =exp( -ds)no(z)+exp( -ds) f no(z') 

xexp[ -a(z-z') ]R (z-z') dz', (4,1) 
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where 

R (z)=L -1(bclp2) exp[bcz/p ] = (bcs/z) 11211 (2(bcsz)1I2). 
(4.2) 

[See Table 5.5, (35) of Ref. I with V= 1.] Equations (4.1) and 
(4.2) agree with the result, Eq. (1.6), quoted for the part of 
n(z,s) that contains no(z). 

The density dependent part of E (z,s) may be written 
using Eq. (2.8) and the shifting theorem, Eq. (3.2) as 

E(z,s)1I = -b exp( -ds) f exp[ -a(z-z') ]no(z') dz'F, 

(4.3) 

where F is the inverse Laplace transform 

.F::::::LI[(l/p) exp[bc(z-z')/p]} 

= Io<2[ bc(z - z')] 112). (4.4) 

The results, Eqs. (3.9), (3.15), (4.3), and (4.4) combine to 
give the complete answer, Eq. (1.5), for E (z,s) quoted in the 
Introduction. 

V. DENSITY DEPENDENT TERMS: UNIFORM 
CASE 

The case in which the initial density is a constant 

n(z)=no, (5.1) 

leads to simplified formulas which are most easily obtained 
by direct use of this assumption from the beginning. If Eqs. 
(2.8) and (2.9) are integrated over z', the density dependent 
terms are given by 

E( ) = _ bno l-exp[ -az+y/(p+d)] 
z~ " , 

a p+d-po 
(5.2) 

ii(z,p) " no {I-~exp[-(a-~)zJ}, 
p+d-~ p+d p+d 

(5.3) 
where po = bcla. 

After application of the shifting theorem, Eq. (3.2), the asso­
ciated inverse Laplace transforms may be written 

E( ) _bno -dsL-I I-exp[y(l/p-l/po)] z,s ,,---e , 
a po-p 

(5.4) 

n (z,s) " =noe -ds L-I _I_{I_PO exp[y (~-~)J}. (5.5) 
p-po p p po 

In both cases, no singularity occurs atp=po. Thus the inte­
gration path may be contracted to an infinitesimal circle 
around the essential singularity at p = o. When this is done, 
the first term which is nonsingular in each case makes no 
contribution. Thus we may write 

E(z,s) " = -~ -(ds+az) _1_. fexP[Sp+(y/p)] d (56) p, . 
a 2m po-p 
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n (z,s) /I =noe -(ds+az) _1_. fpo exp[sp + (y/p) ] dp. (5.7) 
2m p po-p 

The integrals may then be evaluated by means of their resi­
dues at p = o. These are easily obtained by using the generat­
ing function, Eq. (3.7), and expanding (I_p/Potl in a power 
series in p. The results then agree with Eqs. (1. 7) and (1.8) 
quoted in theIntroduction. The results for Eq. (5.7) may also 
be obtained from those for Eq. (5.6) by noting that 

po _1_=_1_+~. 
p po-p po-p p 

The second term is the one previously evaluated in Eq. (3.6). 

VI. SOME INTEGRAL IDENTITIES 

A comparison between Eqs. (1.5) and (1. 7) leads to an 
integral identity. If one makes the transformation of 
variables 

X=(2aZ)1/2, a=(2bcs/z)ll2, t=[2a(Z_Z')]II2, 

this identity reduces to the indefinite integral 

Lx 00 (x )k+l e -1'/2Io(at)t dt= e -x'/2 I - I k+ 1 (ax) 
o k~O a 

(6.1) 

found in Luke2
• A comparison between Eqs. (1.6) and (1.8), 

with the same transformation leads to 

1 +a IX e -1'/2 II (at ) dt= e -x'/2 f (~)k I k (ax) . (6.2) 
Jo k~O a 

Equation (6.2) may also be derived by multiplying Eq. (6.1) 
by a and integrating on a from 0 to a with the help of the 
relations 

In any case, we have found simple derivations of these indefi­
nite integrals as a by-product of our general calculation. 

VII. DISCUSSION OF THE SOLUTION 

The contribution to the total solution proportional to 
the inputE (s) pulse may be obtained by setting no(z) = o. The 
solution is best understood in terms of the impulse response 
to a delta function input pulse E (s) =8(s). For this case, we 
obtain 

( 
bcz )112 E(z,s)=e-az8(s)+e-aze-ds -s- II (2(bczs)1l2) , 

(7.1) 

M. Lax 2589 



                                                                                                                                    

n(z,s) = -c e -az e -ds 10 (2(bczS)II2). (7.2) 

Thus the energy pulse E (z,s) contains a delta function pulse 
whose amplitude diminishes exponentially with z, plus a 
pulse whose length in s expands with z. The density nez,s) 
contains a similar pulse. At large times the shape of these 
pulses is determined by the asymptotic form of the modified 
Bessel functions. Ignoring slowly varying algebraic factors, 
the shape of these pulses is determined by 

exp[ -az-ds+2(bczs)II2]. (7.3) 

see Figs. I and 2 for E and n, respectively. This pulse decays 
if the stability condition 

ad-bc>O, (7.4) 

is obeyed. 

The distance s from the leading edge s = 0 of the pulse at 
which this broad pulse has a maximum is given by 

Vi' 
~ .., 

s=bcz/d2
• (7.S) 

3.0 

2.5 
Z~16 

2.0 

1.5 

1.0 

0.5 

0.0 +-+--+-+-+-+-+-+=F=F=!=r;;~H~~-=t 
o 2 3 4 

S 

5 6 7 B 

FIG. 1. The pulse shape E(z,s) of Eg. (7.1) is plotted in normalized form 

against S for several Z, where Z=az, S=ds, and A=bclad is chosen to be 
0.5. For large enough Z, a maximum appears as suggested by the asympotic 
shape, Eg. (7.3). 
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10.0 

8.0 

Vi' 
6.0 Z=16 

N 

Z 
4.0 

Z=B 

FIG. 2. The pulse shape nez,s) ofEg. (7.2) is plotted in normalized form 

N(Z,S)=n(z,s) =e - SIo(2(AZS)"~ 
nCO,s) 

against S for several Z, where Z=az, S=ds, and A=bclad is chosen to be 
0.5. 

This simple result neglects the algebraic prefactors (men­
tioned earlier) which have only a minor influence on the 
result. 

As mentioned in the Introduction, this model problem 
has been used to test the logical structure and computational 
properties of a code to handle pulse propagation. The nu­
merical results will be reported in a paper describing the 
propagation problem and its numerical results. 
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We consider one-speed neutron transport or monochromatic radiative transfer in a slab of finite width. 
with particles incident on both faces. The scattering kernel is represented as a finite sum of Legendre 
polynomials. An exact expression is obtained for the expansion coefficients of the flux in a singular 
eigenfunction representation. It involves the X and Y functions of Chandrasekhar and the ql and Sl 

polynomials of Sobolev. Case's full- and half-range expansions are obtained as limits when the slab 
thickness becomes zero or infinite, respectively. Orthogonality relations for the singular eigenfunctions 
and their adjoints are given. Also, we derive a number of orthogonality relations of the Iniinii-type 
involving moments of the eigenfunctions. Expressions for surface densities, currents, and higher order 
Legendre moments of the surface fluxes are obtained. Singular integral transform relations between the 
Chandrasekhar <I> and Ijs functions and the polynomials gl(V), are given. Also, we give the solution of slab 
problems with one face having diffuse or specular reflecting boundary conditions. 

I. INTRODUCTION 

In this paper we consider a boundary value problem for 
the one-speed neutron transport equation, or the analogous 
radiative transfer equation. The scattering kernel is repre­
sented as a finite sum of Legendre polynomials. The flux 
If/(x,/1) is determined in a slab of finite width O';;x';;r with 
particles incident on both faces, i.e., 1f/(0,/1) and If/(r, -/1) are 
given for /1 > 0 The flux is represented in a singular eigen­
function expansion of the forml-J 

V>O)d 
O v. 

v< 
(1.1) 

Here, the notation is standard, and is reviewed below. Our 
main result is that the expansion coefficients A'(v) are given 
exactly by 

A'( ) 1 fl A:( ) (1f/(0,/1), 
V= N(v) _1/1,/,V,/1 If/(r,/1), (1.2) 

Here, ¢;(v,/1) is a function similar in form to ¢(v,j.l). It is 
expressed in terms of the Chandrasekhar X and Y functions4 

and the Sobolev' polynomials q!Jt) and s!Jt). In the limits 
r ---+ 0 and r ---+ 00, the above expressions reduce to Case's 
full-range and half-range expansions, respectively. 

The general result above leads to a variety of orthogo­
nality relations involving moments of ¢(v,/1) and ¢;(v,/1). 
Also, expressions for the Legendre moments of the flux both 
on the surfaces and in the interior of the slab are obtained. 
Finally, the general result is easily modified to solve prob­
lems with a reflecting boundary. 

The results given here represents, in a sense, a culmina­
tion of a long series of works by many investigators: Expres­
sions for surface fluxes (but not internal fluxes) were ob-

"Supported by DOE, Contract EY-76-C-06-1830. 
"Summer NORCUS Fellow, now at the Department of Physics, Columbia 
University. 

tained for some versions of this problem by workers in 
radiative transfer theory using methods based on nonlinear 
integral equations.4

-
6 Expressions for internal fluxes were ob­

tained by neutron transport theorists using Fourier trans­
form 7

•
8 and singular eigenfunction expansion methods l

-
3 for 

many less-general versions of the above problem (isotropic 
scattering, semi-infinite media, approximate results, etc.). In 
the present paper we obtain expressions for surface fluxes 
and internal fluxes. These results hold for finite or semi­
infinite slabs, and for general N-term anisotropic scattering. 

The plan of this paper is as follows: In Sec. II we sum­
marize relevant results from the theories of radiative transfer 
and neutron transport. In Sec. III we derive the expression 
for the expansion coefficients. In Sec. IV, the limiting cases 
of zero and infinite slab thickness are examined. In Sec. V, 
expressions for surface fluxes and various relations involving 
them are derived. In Sec. VI, we derive various orthogo­
nality relations involving the singular eigenfunctions or their 
moments. In Sec. VII, we consider problems with reflecting 
boundary conditions. We conclude with a brief discussion in 
Sec. VIII. 

II. SUMMARY OF PREVIOUS RESULTS 

This paper draws upon a variety of results from the 
theories of radiative transfer and neutron transport. This 
material is found in many different sources, written in varied 
notation. Thus, it is convenient to summarize essential mate­
rial here in a consistent notation. 

The transport equation for one-speed neutrons in plane 
geometry with azimuthal symmetry is' 

a 
-!/I{x ,/1) ax 

+ ~ (If/(X,/1)-! LI P(P,/1/) !/I(x,/1/) d/1') =0. (2.1) 

Here, x is distance measured in mean free paths and /1 is the 
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cosine of the angle between the neutron velocity and the 
positive x axis. The neutron flux is denoted by «P(x,Il), and 
p(P' ,11 )dll is the mean number of secondary neutrons emerg­
ing from a collision with direction cosines in dll if the origi­
nal direction cosine was 11', We consider the case of anisotro­
pic scattering of arbitrary finite order N, 

N 

P(P'Il')= L (J),P,(p)P,(p'), N<oo. (2.2) 
'=0 

Here, P Nt) denotes the Legendre polynomials and (J), a set of 
expansion coefficients determined by theory or experiment. 

We consider a slab of either finite or semi-infinite thick­
ness, o<x< 1'< 00. The slab is required to be subcritical. This 
is always true if (J)o < I, and for finite l' it is also true if (J)o is not 
too much greater than I. 

Astrophysical applications have motivated studies of 
the reflection and transmission properties of slabs, and many 
results have been obtained by Ambarzumian,6 
Chandrasekhar: Busbridge,9 Sobolev,' and others. The sim­
plest problem of this type has a conical beam of neutrons 
with a given direction cosine 110 incident on the slab face at 
x = 0. This problem is described by Eq. (2.1) with the bound­
ary conditions 

«P(0,1l) = 8(p -110)' 11 > 0, 

(2.3) 

We shall call this Problem 0, and denote the corresponding 
flux by «Po(x,Il). The reflected flux is «Po(O,Il), 11 < 0, and the 
transmitted flux is «Po(1',1l),1l > 0. Chandrasekhar4 defined 
two new functions, S (P,llo) and T (P,llo) in terms of these 
unknown fluxes by writing 

1 
«Po(O, -11) = - S (P,llo), 11 > 0, 

211 

(2.4) 

In the latter equation, the first term on the right represents 
neutrons which pass through the slab without collision; the 
second term represent neutrons which experience one or 
more collisions. 

Chandrasekhar also introduced functions ¢k(PO) and 
lh(Po) which are the Legrende moments of «Po(x,ll) at x =0 
andx=1', i.e., 

(2.5) 

(These are Chandrasekhar's definitions of if! and ¢. In 
Sobolev's work, the roles of if! and ¢ are interchanged.) Use 
ofEqs. (2.3) and (2.4) in Eq. (2.5) leads to alternative defini­
tions of if! k(PO) and ¢ k(PO) in terms of the Sand T functions, 
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¢ k (po) =P k (Po) e- rl"" + ! (' T(P,llo)P k (P) dll . 
Jo 11 

(2.7) 

Conversely, it was shown by Chandrasekhar that S (P,llo) 
and T(P,llo) are determined by the first N of the ¢ and if! 
functions: 

The ¢ and if! functions are solutions of a pair of nonlinear 
integral equations. One of these follows by substituting (2.8) 
into (2.6), 

N I' P (II') if!k(P)-Pk(P) =!!:...- L (-I)'+k(J), kif" , 

2 kO 0 11+11 

(2.10) 

The other equation follows when (2.9) is substituted into 
(2.7). 

It was discovered by Chandrasekhar (for special cases) 
and Sobolev (in general) that the (2N + 2) functions ¢ k(P) 
and if!k(P) (k=O, I,"·,N) can be expressed in terms of two 
transcendental functions, X (P) and Y (P), and two sets of 
polynomials, qk(P) and Sk(P), Specifically,' 

if! k (P)=X (P)q k (P)+ (-1) k Y(p)s k (-11), 

(2.11 ) 

The X and Y functions are solutions of the nonlinear 
integral equations4 

X(P) 

= 1 + ~ (' g(P',Il') [X (P)X (P')- Y (P)Y (P')] dll', 
2 Jo 11+11' 

Y(p) 

=e - rll' + ~ (' g(P' ,11') (Y (,u)X (P') 
2 Jo 11-11' 

-X (P)Y (P')]dll'· 

Alan G. Gibbs and Richard Seto 

(2.12) 

(2.13) 
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Here, ig{jJ,Il) is the so-called "characteristic function," 
which is defined in terms of a more general functiongCu,v). 
The latter function is defined by 

N 
g{jJ,v)= L (1)/p,{jJ)g,(v). (2.14) 

[=0 

The coefficients (1), are the same as in Eq. (2.2). Theg t<: v) are a 
set of polynomials··8

•
1o generated from the recurrence 

relation 

(/+1) g'+I(v) 

=(21+1-{;)/)vg/(v)-lg,_I(v) 

beginning with got v) = 1. They have parity ( - 1 )'. 

(2.15) 

The X and Y functions are required to satisfy both Eqs. 
(2. 12) and (2.13) and a set oflinear constraints. The latter are 
expressed in terms of the zeros of a dispersion function l1(z) 
defined as 

A (z)= 1- ~fl g{J.l',f.J? df.J'. 
2 -I Z-f.J 

(2.16) 

This function has 21<: 2N + 2 zeros Vj occurring in pairs. I I 
The constraints on the X and Y functions are, for 
j= 1,2.· .. ,21, 

_ v} -Th"ll g(ji',f.J')Y(ji') d ' --e f.J. 
2 0 vj+Il' 

(2. I 7) 

The X and Y functions are also solutions of a pair of 
linear singular integral equations9

: 

+(p t Y(;.L')g(ji',j1') df.J')e -T/~ = 1, 
2 Jo Il +f.J' 

(2.18) 

+(~ t XCu')g(;.L:,f.J') d/L')e-T/~=e-TIll. (2.19) 
2 Jo p+p 

These equations hold for /L E(O, 1), with ACu) defined as 

ACu)=!(A 'Cu)+I1-(ji) ] 

=~lim [I1Cu+iE)+11 (,u-iE)]. (2.20) 
f·· .0' 

Either Eqs. (2.12) and (2.13) or Egs. (2.18) and (2.19) can be 
used to give an analytic continuation of X (;.L) and Y (J.l) to the 
complex Z plane. In this event, A{jJ) is replaced by A(z) and, 
from Eqs. (2. I 8) and (2.19), the extended functions satisfy 
the reflection property 
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Y( -z) =eT1zX (z). (2.21 ) 

It is worth noting that the constraints, Eqs. (2.17), are noth­
ing more than the requirements that the analytic continu­
ations of Eqs. (2.18) and (2.19) hold in the complex plane at 
the pointsz=vj , whereA(z) vanishes. Finally, the polynomi­
als qf.Jl) and s,(ji) in Eq. (2.11) satisfy a pair of integral 
equations; 

qf.Jl) = {i f X (ji') [q ,(;.L')g:,:~: q J{J.l)g(ji' ,p') J df.J' 

+( -1) { !!..- t Y(ji')[s ,( -p')g(;.L,f.J')-s I( -p)gCu',f.J') J 
2 Jo . P'-Il 

(2.22) 

sf.Jl)= {E- t X (ji')[s [(ji')g(p,:') -s J{jJ)g<J-I',f.J') J df.J' 
2 Jo p -p 

(2.23) 

In summary, the complete solution of Problem 0 is ob­
tained as follows: The coefficients (1), are determined from 
the scattering properties of the slab and the polynomials 
g/.. v) are computed from (2.15). The function g( v,p) is then 
given by (2.14). The dispersion function l1(z) is computed 
from (2. 16) and its zeros Vj are located, generally numerical­
ly. TheX and Yfunctions must then be obtained as solutions 
of Eqs. (2.12) and (2.13) subject to the constraints (2.17). 
These solutions are known to exist, and to be unique, for 
subcritical slabs. 12 Closed-form expressions are not known 
for these functions, in general, except for the case T= 00, but 
analyticity properties can be deduced and numerical meth­
ods can be used to generateX (ji) and Y (;.L) to high accuracy. 
The polynomials q JCu) and s!.fl) can then be determined from 
Eqs. (2.22) and (2.23). These equations appear cumbersome, 
but substitution of the polynomial expressions 

.v .'1 

q,<J-I)= 23'Hf.J", s ,<J-I)= Is ("f.J /I, (2.24) 
11--'-0 n-==O 

leads to 2N + 2 algebraic equations for the coefficients qlll 
and slr,' These equations can then be solved by standard 
methods. The functions tPk(ji) and 4>k(,u) follow from Eq. 
(2.11); then, S (,u,f.1o) and T (ji,f.1o) are given by (2.8) and (2.9). 
Finally, the reflected and transmitted intensities for Problem 
o are given by (2.4). 

It is important to realize that all ofthefunctionsS, T,X, 
Y, 4>, tP, q[,s,are implicitly dependent on the slab thicknessT. 
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In the limit r~ 00, the results simplify since the transmitted 
flux If/(r,p) goes to zero. Thus, from (2.5), the functions 
¢ k(PO)~O. The limit of the X function as r~ 00 is 
Chandrasekhar's H function.' This function satisfies the 
equation 

Also, H (J.1) satisfies the set of constraints 

1-~ r1 
g{J.1',,,t')H{J.1') dp'=O. 

2 Jo vj-p' 

(2.25) 

(2.26) 

The latter equation holds for those Vj with Re vj > O. Also,' 
when T--4OO 

(2.27) 

The polynomials q k{J.1) in the limit r~ 00 were studied exten­
sively by Busbridge.9 We recall' that the H function has an 
analytic continuation to the complex z plane which provides 
a Wiener-Hopffactorization of A (z): 

1 
A (z)= (2.28) 

H(z)H(-z) 

The procedure summarized above is seen to lead to ex­
pressions for the emergent surface fluxes If/o(O, - p) and 
If/o( T,p), p > 0, but no expressions are obtained for the inter­
nal flux If/o(x,J-l), ° < x < r. Since the internal flux is needed in 
neutron transport problems, workers in that field have de­
veloped alternative methods of analysis to study Eq. (2.1). 
Most relevant to the present paper is the singular eigenfunc­
tion representation of the flux If/(x,p). This representation 
was first derived in its present form by Case l for isotropic 
scattering. His results were soon generalized by Mikall and 
by Kuscer and McCormick13 to include anisotropic scatter­
ing. The main result of these analyses is that the neutron flux 
If/(x ,p) has the representation 

2J ~xlv 
If/(x,p)= I A (v)¢(vj,p)e ' 

j~l 

+ f I A (v)¢ (v,p)e ~xlv d V. (2.29) 

Here, the v are the zeros of A (z), as above. The "discrete 
J 

eigenfunctions" ¢(vi'p) are given by 

v J g( v J'p) 
¢(v j ,P)=-2' (2.30) 

Vj-P 

with g(v,p) given by (2.14). The "continuum eigenfunc­
tions" are given by 

¢(V,p)= ~ g(v,J-l) +,.1, (v)S(v-p). 
2 v-p 

(2.31) 

The integral in Eg. (2.29) is interpreted as a Cauchy princi­
pal value. The A (v) and A (v) are a set of expansion coeffi­
cients which must be determined from boundary conditions. 
In discussing expressions for A (v) it is convenient to con­
dense notation in Eq. (2.29) by writing it as 
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(2.32) 

Here, a denotes the union of the Vj and the continuum 
( - 1, I). It is, in fact,14 the spectrum of the inverse of the 
operator in the second term ofEq. (2.1). The symbol S advin 
Eq. (2.32) denotes integration along (-1,1) plus summation 
over the vi" 

The ¢( v,p) are normalized so that 

fl ¢(V,I1)dp=l, VEa. (2.33) 

If we definegn(v) by 

g /I (v)= f I P /I (P)¢ (v,p) dl1, v E a, (2.34) 

then it follows by multiplying Eq. (2.31) by (v-p)Pn(P) and 
integrating over p that thesegn(v) satisfy the relation, Eq. 
(2.15). Thus, Eq. (2.34) provides an alternative to Eq. (2.15) 
as a definition of the g polynomials. 

The work of Case, Mika, and Kuscer and McCormick 
is concerned with the so-called "full-range" and "half­
range" expansions. The former arises if If/(0,11) is given for 
(-1 <p < 1), i.e., if 

i A (v)¢ (v,p)dv= If/ (O,p) (known), pE( -1, 1) (2.35) 

In this case, A (v) is given by!.ll 

I fl A (v)=-- 11¢ (v,I1)lf/(O,P) dfL 
N(v) ~I 

(2.36) 

Here, N (v) = - N (- v) is a normalization factor given by 

'1'2 

N(v)= -fg(vj,vj)A'( v), j=I,2,.··,LJ, 

N(v)=vA'(v)A-(v), vE (- 1,1) (2.37) 

The half-range expansion arises in the albedo problem 
for a half-space. In that case, the boundary conditions for 
Eq. (2.1) are 

l[I(O,p) = (known), O<p< 1, 

If/(00,11)=0, -1 <11 < 1. (2.38) 

Now, A (v) is given by13 

A (v) 

{

_l_ (11 H(P) ¢t(v,l1)l[I(O,I1)dl1, 
= N(v) Jo H(v) 

0, 

V E u+, 

VEU_. 

(2.39) 

Here, u --\ denote the parts of a having positive and negative 
real parts, respectively. The function 4> t(v,l1) is given by 

{

v) g t( v) ,11) 
- , 

t 2 V-11 
4> (v,p)= t j r-

~ g (v,l1) +,.1, (v)8(v-I1), 
2 v-11 

j= 1,2,.··,LJ, 

vE(-I,I). 

(2.40) 
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Here, 
N 

gt(V,Il)= I (-l){w{q{(-v)q{(p), (2.41) 
(~O 

where the qlJ1) are the Busbridge q polynomials,9 i.e., the q 
polynomials for the case i---+oo. 

The full- and half-range expansions are special cases of 
representations appropriate to finite slab problems. For a 
slab of thickness i with neutrons incident on both faces, Eq. 
(2.32) leads to 

1 A(v)¢(v,ll)e -rho dV='/I(i,ll) (known), 1l<0. (2.42) 

These equations are dual singular integral equations for 
A (v). For the case of isotropic scattering, a respresentation of 
A (v) was given by Gibbs, IS who used a technique ofVekua16 

to recast singular integral equations of semigeneral form into 
a matrix Hilbert problem. The X and Y functions appear in 
the solution of the corresponding homogeneous Hilbert 
problem, and the final result has the form 

A (v) 

1 fl W( )A.( j'/l(O,Il), Il>O)dll.. 
= N(v)_11l i,V,1l 'f' V,Il\IJI(i,Il), Il <0 ,... 

(2.43) 

Here, W (i, v,ll) is a weight function related to the X and Y 
functions. It is the extension of this result to the case of ani so­
tropic scattering, which will be given in the present paper. 

III. EXPANSION COEFFICIENTS 

The method used below to derive expressions for A (v) 
makes use of the known results for the reflected intensity for 
a finite slab and uses the full-range expansion to relate A (v) 
to the S function. This approach was first suggested by 
Pahorl7 for half-space problems. Also, for finite slabs with 
isotropic scattering, it has been used by Pahor and Zweifel 18 

and by Gibbs. 19 Here, we consider the general case of finite 
slabs with anisotropic scattering. We again consider Prob­
lem 0, so that '/Io(O,Il) is given by (2.3) and (2.4). We denote 
the corresponding A (v) by Ao(v). The full-range expansion, 
Eqs. (2.35) and (2.36), then gives a representation of lJIo(X,Il), 
with 

Ao(v) 

In the following development, two new functions relat­
ed to the X and Y functions will be needed. For z i-.( -1,0), 
these are defined by 

WI(z) = 1- !.- (I X (P/)g(P,"Il/) d Il', (3.2) 
2 Jo z+1l 

(3.3) 

For the case of isotropic scattering and z E (0,1), essentially 
these functions have been tabulated by Sobouti.20 Some iden­
tities relating WI (z) , W/z) and the X and Y functions follow 
from the extensions of Eqs. (2.12) and (2.13) or Eqs. (2.18) 
and (2.19) to the complex plane. Thus, from Eq. (2.12) we 
deduce that 

(3.4) 

Equation (2.13) leads to the same result when the reflection 
property, Eq. (2.21), is used. Equations (2.18) and (2.19) 
lead to 

WI ( -z)= e -T/z W2(z)+A (z)X (z), 

W 2( -z)=e -r/z W I(Z) -A (z)Y(z) 

By using the above three equations, it follows that 

A(z)= WI(Z)WI( -z)- Wlz) Wi -z). 

(3.5) 

(3.6) 

(3.7) 

The form of A(z) obtained here can perhaps best be under­
stood as the determinant of the matrix obtained when Eqs. 
(2.42) are reexpressed as a matrix Hilbert problem, as in Ref. 
15. As shown below Eq. (3.7) reduces to Eq. (2.28) in the 
limit i---+ 00 

In obtaining expressions for A (v) it is convenient to in­
troduce a function W (v) related to WI(z) and Wlz) which is 
defined for all v E (T. Let 

W(V)={WI(V), VE(T., (3.8) 
W/ -v), v E (T_. 

In the Appendix, we derive two identities relating W(v) to 
the ¢ and t/J functions: 

=g k(V)- [( -1) k W(v)q k( -v) 

(3.9) 

= N~V) [IlO¢(V,llo)-! f S(P,llo)¢ (v,-Il) dll]. (3.1) and 

While this result expresses Ao(v) in terms of the S function, 
and thus indirectly in terms of X and yfunctions andq{ands{ 
polynomials, it is not in the most useful form for mathemat­
ical insight, for computational convenience, or for more gen­
eral boundary conditions. Thus, a number of manipulations 
will be made to put the expression for Ao( v) in a more suitable 
form. 
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= [W( -v) q k(v)-( -1) k W(v)s k (-v) ]e rev), 
(3.10) 

In the above, we have defined 
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(3.11 ) 

Equations (3.9) and (3.10) hold for all v E (T. 

With this preparation, we return to Eq. (3.1) for Ao( v). 
Substituting S (j.1,/lo) from (2.8) yields 

N(v)Ao(v) 

U sing the definitions of ifJ( v,/l), Eqs. (2.30) and (2.31), and 
making a partial fraction expansion, leads to 

(3.13) 

Using the expansion of g(v, -/l)from Eq. (2.14) and the 
( - 1)' parity of the Legendre polynomial P,(j.1) converts Eq. 
(3.13) into 

(3.14) 

Using this result in (3.12), rearranging terms, and noting 
that ¢J( v, - /l) = ifJ( - v,f1) leads to 

(3.15) 

From Eq. (2.10), the sum over I in Eq. (3.15) is seen to be 
lh(j.1o) - Pk(j.1o). The remaining integral in (3.15) can be ex­
pressed in terms of the function W(v) by using Eqs. (3.9) and 
(3.10). Making these simplifications, cancelling common 
terms, and using the definition of ¢J (v,f1) leads to 
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Here, we have defined 

- v 
ifJ(V,f1) = g(V,/l)+A. (v)b(v-f1), v E (T, f1 > O. 

2(v-f1) 
(3.17) 

(For v=vj,j= 1,2, ... ,2J, the delta function term is zero.) The 
function g( v,f1) is defined for f1 > 0 by 

g(v,f1) 

N 

= W (v) I (- 1) k UJ k 

k--O 

N 

X I UJdifJk(j.1)qk(v)-tPk(j.1)Sk(V)], 
k~O 

(3.18) 

An equivalent expression for g( v,/l) follows by writing the ifJ 
and tP functions in terms of X and Y functions as in Eq. 
(2.11). Forf1>OandvE(T, 

g(V,f1)=X(j.1) (W(V)ktO (-I)k UJk [Qk(j.1)qk(-v) 

x 
-Sk(j.1)Sk(-V) J+ We-v) I UJdQk(V)Sk(j.1) 

k~O 

N 

+W(-v) I (-I) kUJ dQk(v)gk(-f1) 
k~O 

(3.19) 

The above equations define ¢)(v,f1) for f1 > O. It is convenient 
to extend this definition to negative values of f1 by defining 

(3.20) 

This definition implies thatg(v,f1) must be extended to nega­
tivef1 as 

g(V,-f1)=g(-V,f1), f1>0, VE(T. (3.21 ) 

It is also of interest to evaluateg(j.1,f1). From Eq. (3.19), when 
f1 > 0 we have 

N 

X I (-I)k UJ /(Qk(j.1)Qk(-f1)-sk(j.1)Sk(-f1»· 
k=O 

(3.22) 
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The factor in square brackets is unity by Eq. (3.4). The re­
maining sum was considered by Sobolev,' who showed it to 
be equal to g(p,f.L). Thus (3.22) reduces to 

g(p,f.L) =g(p ,f.L) , f.L > O. (3.23) 

By Eq. (3.21), this result also holds for f.L < O. 

The solution of Problem 0 above is given by Eq. (2.32) 
withA (v) given by Eq. (3.16). With this preparation we now 
consider more general boundary conditions. First, consider 
Problem I, defined by the boundary conditions 

1[/(0,f.L) =/(p) =known, 0<f.L < 1, 

1[/(7,f.L) =0, -1 <f.L <0. (3.24) 

We denote the solution of this problem by I[/I(X,f.L) and the 
corresponding expansion coeficients by AI(v). Clearly, Prob­
lem I is a superposition of problems of type O. Thus, 

A I (v) = f Ao(v)f(Po) df.Lo, (3.25) 

i.e., using Eqs. (3.16) and (3.24), 

e,,(V)ll -
A I (v) = -- f.L ¢( V,f.L) 1[/ I (0,f.L) d f.L. 

N(v) 0 

(3.26) 

Now, consider Problem II defined by the boundary 
conditions 

1[/(0,f.L) =0, 0 <f.L < 1, 1[/(7,11)=/( -f.L), -1 <f.L <0. 
(3.27) 

By symmetry, the solutions of Problems I and II are related 
by 

1[/ II (x ,f.L)= 1[/ I (7-X,-f.L)' (3.28) 

Substituting the corresponding representations from Eq. 
(2.32) leads to the conclusion that 

A II (v)=A I (-v)e rh', (3.29) 

Substituting A I( - v) from Eq. (3.26) and using Eq. (3.27) 
leads to 

e rev) [ -
A II (v)= -- f.L¢(v,f.L) 1[/1I(7,f.L)df.L' 

N(v) I 
(3.30) 

Finally, we consider our most general boundary value prob­
lem, Problem III, defined by Eqs, (2.42), i.e., 

1[/(0,f.L) known, f.L > 0, 

1[/( 7,f.L) known, f.L < O. (3.31) 

By linearity, 

1[/ III (x,f.L) = 1[/ I (x ,f.L) + 1[/ II (x ,f.L). (3.32) 

Thus, 

A III (v)=A I (v)+A II (v). (3.33) 

Using (3.26) and (3.30) in (3.33) gives the final result 

er(v) II - (1[/«0 11 ) 11.>0) A (v)=-- f.L ¢(v,f.L) 'r' r df.L. (3.34) 
N(v) -l 1[/(7,f.L), f.L<0 
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A somewhat more symmetrical result is obtained by defining 

A (v)=A'(v)eT(v). (3.35) 

Then, Eqs. (2.32) and (3.34) become 

l[/(x,f.L) = L A'(v)¢ (v,f.L) e -xlve r(v)dv, (3.36) 

A'(v)= _1_fl f.L¢;(v,f.L) (1[/(0,f.L), f.L>O)df.L. 
N(v) _\ 1[/(7,f.L), f.L <0 

(3.37) 

These results are identical to (1.1) and (1,2), and provide an 
exact representation of the solution of the general boundary 
value problem ofEq, (3.31) for the transport equation with 
anisotropic scattering. The function ¢;( v,f.L) is defined by Eqs. 
(3.17) and (3.20). The function W(v) which occurs ing(v,f.L) 
is defined by Eqs. (3.8), (3.2), and (3.3). The computation of 
the remaining functions in ¢( V,f.L )-the X and Y functions 
and q, and 5, polynomials-is discussed in Sec. II above. 

IV. SOME LIMITING CASES 

In this section, we examine some simplifications which 
occur when the slab thickness 7 approaches 0 or 00, or when 
the scattering is isotropic. 

In the limit as slab thickness goes to zero there is no 
scattering in the slab; thus, from Eqs. (2.4), the Sand T 
functions are zero, From Eqs. (2,7) and (2.7) it follows that, 
as 7-0, 

(4.1) 

(4.2) 

For 7=0, Eqs. (2.21) and (3.4) imply thatX (P)= Y(p)= I is 
a solution of Eqs. (2.12) and (2.13). From the definition of 
A(z), Eq. (2.16), it follows that the constraints, Eqs. (2.17), 
are also satisfied by these solutions. Since the X and Y func­
tions are uniquely determined by Eqs. (2.12) and (2.13) and 
the constraints, it follows that as 7-0 

X(P)-I, 

Y(p)-l. 

From Eq, (2, II), it then follows that as 7-0, 

Pk(P)-qk(P)+(-I)k 5k (-f.L), 

P k(P)-5 k(P)+(-I)k qk (-f.L), 

(4,3) 

(4.4) 

(4.5) 

(4.6) 

By subtracting Eq. (2.23) from (2.22) and using Eqs. 
(4.3)-(4.6), it follows that as 7-0, 

Qk(P)-5 k(P)-gk(f.L). (4.7) 

Finally, from Eqs, (3.4), (4,3), and (4.4) it follows that as 
7-0 

W1(z)_1- W,(z)- 1- !.- t g(p',f.L') df.L'. 
2 Jo z+f.L' 

(4.8) 

Now, consider Eq, (3.18) for g(v,f.L)' Using Eqs. (4.1), (4.2), 
(4.7), and (4.8), and the definition of W (v), it follows that for 
7-0, 
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N 

g(V,ji)---> 2: W /p /(;1)g /(v)=g(v,ji). (4.9) 
/- 0 

Thus, from Eqs. (3.17) and (2.31) it follows that 

7j( v,ji) ---> ¢( v,ji). (4.10) 

Thus, the general expansion of I/I(x,ji), Eqs. (3.36) and (3.37) 
reduces to the full-range expansion, Eqs. (2.35) and (2.36) in 
the limit r_O. 

The limit r ---> 00 produces different results. For a semi­
infinite slab, clearly I/Io(r,fl) _ 0. From Eq. (2.5), this im­
plies that as r ---> 00, 

(4.11 ) 

In this same limit, we note thatX (;1)=H (;1), Y(;1) = ° satisfy 
Eqs. (2.12) and (2.13) identically [from the H equation, Eq. 
(2.25)]' In addition, Eq. (2.26) shows that the constraints, 
Eq. (2.17), are satisfied. Since this determines the X and Y 
functions uniquely we have, for r ---> 00, 

Equations (2.11) now imply that 

t/J k (fl) - H (fl)q k (p.) , 

Sk{fl) - 0. 

Equations (2.22) now reduces to 

H{fl')[q /(fl')g{fl,ji')-q [(fl)g{fl',ji')] 
X , 

fl -fl 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

This is the equation satisfied by the Busbridge q polynomi­
als.l? The functions W,{ v) are determined from Eqs. (4.13), 
(3.2), (4.12), and (3.3): 

W,(z) -->- 1/ H (z), 

W2(z) -->- 0. 

From Eq. (3.8) it now follows that as r --+ 00, 

!
1/H(V), v E a+, 

W(v)-
0, VEa_. 

(4.17) 

( 4.18) 

(4.19) 

Finally, using the above results in Eq. (3.18) gives, for ji > 0, 

Thus, from Eq. (3.17), as r - 00 we have for ji > 0 
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{

H{fl) ¢ t(v,ji), 
7j(v,ji)--+ H(v) 

0, 

v E a" 
(4.21) 

Here, ¢ t(v,fl) is the function defined by Eq. (2.40). The ex­
tension of Eq. (4.21) to ji < 0 is given by Eq. (3.20). This 
result reduces Eqs. (3.36) and (3.37) to the half-range result 
of Kuscer and McCormick,'] Eq. (2.39). 

An additional limiting case in which simplifications oc­
cur even for finite r is the case of isotropic scattering. Now, 
only the 1=0 term is present in Eq. (2.14), so 

g{fl,v) - WO' (4.22) 

With this simplification, it is easily verified that a solution of 
Eqs. (2.22) and (2.23) is 

qo{fl) = 1, (4.23) 

So{fl) =0. 

Thus, from Eqs. (2.11), 

t/Ji,fl) = X (fl), 

¢o{fl) = Y{fl). 

With the above simplifications, Eq. (3.18) yields 

g(v,ji)---> wo[X (fl) W( v) + Y{fl) W( - v)]. 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

This defines g( v,fl) for ji > 0, with the extension to fl < 0 giv­
en by Eq. (3.21). From Eqs. (3.21) and (4.22) it follows that 

~g{fl'fl)-1. (4.28) 
(UI) 

Now, we define 

W(r,v,fl) = J.- g(v,ji). (4.29) 
Wo 

Using Eqs. (3.17), (4.27), and (4.28) we find that 

7j(v,ji) ---> W(r,v,ji) ( (tJoV + A. (V)£5(V-ji»). 
2(v-ji) 

(4.30) 

Thus, Eqs. (3.37) reduces to 

1 fl (1/1 (O,fl) , 
A'(v)= -- flW(r,v,fl)¢(v,fl 

fl( v) .. I 1/1 (r,fl) , 
ji >0) dN. 
ji <0 

(4.31 ) 

This is the same result obtained earlier by Gibbs'9 for the case 
of isotropic scattering. 

Finally, it is of interest to examine the expression for 
A(z) in terms of the functions W,(z) and W2(z), Eq. (3.7). 
Since A (z), defined by Eq. (2.16), is independent of the slab 
thickness r, Eq. (3.7) gives a family of representations of A(z) 
for 0,;;; r';;; 00. In the limiting case r ---> 00, the limiting forms 
of W, (z) and W 2(z) from Eqs. (4.17) and (4.18) may be used 
in Eq. (3.7) to obtain the Wiener-Hopffactorization of A (z), 

as in Eq. (2.28). 
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In contrast, when the limit r -. ° is taken in Eq. (3.7), 
we use Eq. (4.8) to deduce that 

A(z) = 1- !- t g{f1',f1:) d/1' - !- t g{f1',/1') d/1'. (4.32) 
2 Jo z+/1' 2 Jo Z-/1' 

Replacing /1' by -/1' in the second integral leads to Eq. 
(2.16) which is the defining integral for A (z). Thus, interest­
ingly, both the defining integral for A(z) and the Wiener­
Hopffactorization of A(z) are seen to be special casesofthe 
more general expression, Eq. (3.7). 

v. SURFACE FLUXES 

The representation of lJI(x,/1) in Eq. (3.36) is useful in 
deriving expressions for Legendre moments of the surface 
fluxes. These are defined by 

Mk(x)= fI Pk {f1)IJI(X,/1)d/1, x=O,r. (5.1) 

The lowest order moments, k = 0, I, represent the product of 
the neutron density and velocity, and the neutron current, 
respectively. In deriving expressions for Mk(O) and Mk(r), 
we use several identities involving the ¢ and rP functions. The 
first two of these are obtained directly from the definitions, 
Eqs. (2.5), by substituting the representation of lJIo(x,/1) from 
Eqs. (3.36) and (3.16). For /10 > 0, this yeids 

(5.3) 

Interchanging orders of integration and using the fact that 
the Legendre moments of ifJ(v,/1) are the gk(V) gives 

(5.4) 

In the above expressions, /10 > O. It is also of interest to evalu­
ate the integrals on the right-hand sides of(5.4) and (5.5) for 
/10 < 0. To do this, we replace v by - v in these integrals and 
then use the relation (3.20) and Eqs. (5.4) and (5.5) to obtain 
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(5.6) 

(5.7) 

Expressions for the moments now follow by substituting the 
representation of lJI(x,/1), Eq. (3.36), into Eq. (5.1) and inter­
changing orders of integration to get 

Mk(X)= 1 A'(v)gk(v)e-x/ver(v)dv. (5.8) 

Substituting A'(v) from Eq. (3.37) and interchanging inte­
grations again yields 

fl (IJI (0,/1), /1 > 0) 
M k(X)= 

-I IJI (r,/1), /1 < ° 

(5.9) 

Setting x=o and x=r, and using Eqs. (5.4) through (5.7) 
then gives 

/1>0) 
d/1. 

/1 <0 
(5.11 ) 

These expressions for the surface moments can also be de­
rived directly from the definitions of the ifJ and rP functions, 
using superposition arguments. 

Equations (5.10) and (5.11) express the surface mo­
ments in terms of ¢ and rP functions and thus, via Eqs. (2.11), 
in terms of X and yfunctions and q, ands, polynomials. For 
k = ° and k = 1, these results have been noted by K uscer and 
McCormick. 21 The above results extend theirs to all k> 0, 
while Eq. (5.9) gives the moments at any internal point 
O<x<r. 

VI. ORTHOGONALITY AND SINGULAR 
INTEGRAL TRANSFORMS 

The general expansion ofEqs. (3.36) and (3.37) is equiv­
alent to an integral transform pair, in the following sense. 
Define the two functions 

j{f1)={IJI(O,/1), /1>0, 
IJI (r,/1), /1 < 0, 

( ) {
e rev), 

e r V,/1 = ere-v), 
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Then Eqs. (3.36) and (3.37) imply that 

f(P)=i A'(v)cfJ (v,fl) eT(v,fl) dv, 

I II -A'(v)= -r- fl cfJ (v,fl)f(P) df.1. 
A (v) -I 

(6.3) 

(6.4) 

Thus,J(P) andA'(v) are singular integral transforms of one 
another. These equations follow rigorously" if flf(P) belongs 
to the class H* on (-1,1) or, with more analysis,'l if flf(P) 
belongs to L/ -1, 1) with p > 1. Formal results may be ob­
tained by applying the transforms to functions which are not 
in these spaces. Thus, if we consider f(P)=8(P -fl'), Eq. 
(6.4) yields, formally, A'(v)=fl' ;r(v,fl')/N (v). Substituting 
this result in Eq. (6.3) leads to 

8(P-fl')= ( fl'¢;(v,fl')cfJ(v,fl)e T(V'fl)~' (6.5) 
)(7 N(v) 

In a similar fashion, by choosingA'(v) to be a delta function 
we obtain the expression 

8(v- v')= _1 - II fl ¢;(V,fl)cfJ(V',fl) e T(V',fl) dfl . (6.6) 
N(v) -I 

[This is shorthand notation consistent with Eq. (2.29). For 
v = Vi and v' = vi' the 8 function is actually a Kronecker 8.] 
These formal orthogonality relations are correct in the sense 
that iff(P) belongs to one of the above spaces, then multiply­
ing Eq. (6.5) by f(P'), integrating over fl', and interchanging 
orders of integration on the right-hand side leads to Eqs. 
(6.3) and (6.4), which is the correct result. The same result is 
obtained by multiplying Eq. (6.6) by A'(v') and integrating 
over v' EO-. 

A transform pair which is, in a sense, adjoint to Eqs. 
(6.3) and (6.4) can be derived formally by multiplying Eq. 
(6.5) by (P/fl')g(P), integrating over fl, interchanging orders 
of integration and defining 

B (v) = r I flcfJ (v,fl)g(p)e T(V,fl) dfl . (6.7) 

This sequence of operations yields 

1 - dv 
g(P)= B (v)cfJ(v,fl) --. 

<7 N(v) 
(6.8) 

The transform pair in Eqs. (6.7) and (6.8) is similar to the one 
in Eqs. (6.3) and (6.4) with the roles of cfJ(V,fl) and ¢;(v,fl) 
interchanged. It has been derived here formally. A rigorous 
verification that Eq. (6.8) is a consequence ofEq. (6.7), and 
vice versa, would require solving each equation as a singular 
integral equation for B (v) or g(P). This procedure would 
require the same restrictions on g(P) that are required for 
f(P) in Eq. (6.3). 

A number of additional results which have the charac­
ter of orthogonality relations can be derived from the above 
transform pairs, or from Eqs. (6.5) and (6.6). These results 
may be useful in evaluating certain integrals which arise in 
applications of the general theory. As an illustration, we 
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multiply Eq. (6.5) by (P/fl') PI.P) P m(P') and integrate over 
fl andfl'· We interchange orders of the (regular) integrations 
over fl and fl' with the (singular) integration over v. We 
define the functions 

gm (1', v) = rIP m (P') ;r(V,fl') dfl: (6.9) 

(6.10) 

Then, from the orthogonality properties of the Legendre 
polynomials, we obtain 

( g,(r,v)gm(r,v)~=-2-8'm' L N(v) 2/+ I 
(6.11) 

This relation also follows directly from the transform pair of 
Eqs. (6.3) and (6.4) by choosingf(p) =P m(P)/fl then multi­
plying Eq. (6.3) by flPI.P) and integrating over fl. It is of 
interest to examine Eq. (6.11) in the limits l' ----+ 0 and 
l' ----+ 00. By using Eqs. (4.10) and (2.34), we deduce from Eq. 
(6.9) that, as l' - 0, 

g", (r,v) - g m(v). (6.12) 

To evaluategtCr,v), we use the recursion relations for the 
Legendre polynomials and for the gtCv) [Eq. (2.15)] to de­
duce from Eq. (6.10) that as l' - 0 

g ,(r,v) _ (1-~) vg ,(v). 
2/+ 1 

Thus, for l' _ 0, Eq. (6.11) becomes 

This relation has already been derived by Inonii.'4 

(6.13) 

(6.14) 

In the limit l' ----+ 00 we have, instead, the following re­
sults. From Eq. (6.2) 

e T(V,fl) - {6: fl > 0, 
other. 

Thus, from Eq. (6.10), we find 

V E 0-+ or fl < 0, 

and, by replacingfl by -fl in Eq. (6.10), 

g,(r,v)- -(-I)'g,(oo,-v), vEO-_. 

From Eqs. (4.21) and (3.20) we have, for l' - 00, 
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H (P) ifJ t(v /-l) 
H(v) " 

/-l > 0, VEa+, 

f(v,/-l) ~ H(-/-l) ifJt(-v,-/-l), /-l < 0, VEa_, 
H(-v) 

0, other. 
(6.18) 

In evaluating gm(1',v) in the limit 1'-00, we also need the 
result"" 

f H (P)P m(P) ifJ t(v,/-l) d/-l =( -1) mq m( -v), V E a+. 

(6.19) 

Here, qm denotes the Busbridge q-polynomial. Using Eqs. 
(6.13) and (6.19) in (6.10) now leads to 

[
H~V) (-I)mqm(-v), VEa+, 

g",( 1',v)- (6.20) 
1 

H(-v) qm(v), vEa_. 

Finally, we use the results, Eqs. (6.16) and (6.20) in Eq. 
(6.11). Writing the integral over a as separate integrals over 
a. and a_, and replacing v by - v in the latter, leads to 

( dv (-1) m D 
L q ", (-v)g ,(oo,v) H(v)N(v) = 2/+ 1 mi' 

(6.21) 

This relation, which expresses the biorthogonality of the 
qm( -v) and thegloo,v) [defined by Eq. (6.16)] on a., with 
weight lIH(v)N(v), appears to be new. 

Clearly, the above results Eqs. (6.11), (6.14), and (6.21), 
are not the most general relations possible. Indeed, rather 
than multiplying Eq. (6.5) by (pl/-l') PiJt) Pm(P'), as we did 
in deriving Eq. (6.11), other powers of /-ll/-l', or even other 
orthogonal functions besides PI' along with any appropriate 
weight factors, could have been chosen. Thus, it is possible to 
derive a very large class of relations of the form Eq. (6.11), 
wheregl'1',v) andgm(1',v) denote appropriate integrals with 
respect to /-l of ifJ( V,/-l) and f( v,/-l). 

Results analogous to the above can also be obtained by 
using Eq. (6.6) instead ofEq. (6.5). For example, multiply 
Eq. (6.6) by g ,(v) g m (v')v'IN (v') and integrate over v and 
v' (over a). Define 

P m(T,/-l)= i v'g m(v')ifJ (v',/-l)e T(V"/-l)~' (6.22) 
(7 N(v') 

(6.23) 

Then, use Eq. (6.14) to deduce that 

f I PI (1',/-l)p m(r,f.-l)d/-l=(21+ 12_ {U J Dim' (6.24) 
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By arguments analogous to those used above, it is readily 
verified that in the limit T ~ 0 both Pm and p, reduce to 
multiples of Legendre polynomials and Eq. (6.24) becomes 
the well-known orthogonality relation for these functions. 
Similarly, for r -+ 00, it is easily shown that 

1 dv 
vg In (v)ifJ (V,/-l)-(-) ' /-l > 0, 

a. N V 

(6.25) 

and 

(6.26) 

Finally, Eq. (6.24) reduces to 

Thus, the Busbridge q polynomials and the functions 
Pm(oo,/-l) defined by Eq. (6.25) form a biorthogonal set on 
(0,1) with weight function H (P). This result is also new. 

The point of the above development has been to indicate 
that a large number of integrals that may arise in applica­
tions can be evaluated by using appropriate orthogonality 
relations easily derived from the singular integral transform 
pairs Eqs. (6.3) and (6.4) or (6.7) and (6.8). These relations 
extend the results of Inonii,z' derived implicitly for 1'=0, to 
include all 0<1'< 00. 

Finally, we note one additional result which generalizes 
previous work. In the limit r ~ 00, it is known 13 that the 
polynomialsgk(v) satisfy 

(6.28) 

Here, qk(P) denotes the Busbridge polynomial. 9 The corre­
sponding relation for the case of finite l' is obtained from Eqs. 
(5.4) and (5.5) above. Define 

(,,) {tP k (po), /-lo> 0, 
K k IJ-"O = (_ 1) k ifJ k ( - /-lo), /-lo < O. (6.29) 

Then, from Eqs. (5.4) and (5.5), 

1 i - dv -K k(PO)= g k(v)e ,(v)ifJ(v,/-lo)--. 
/-lo a N(v) 

(6.30) 

Interpreting this result as a singular integral transform and 
using the inversion formula, Eq. (6.7), leads to 

(6.31) 

This result, which expresses the polynomialsgk(v) as a trans­
form of the ifJ and tP functions, reduces to Eq. (6.28) in the 
limit T -+ 00, and to Eq. (2.34) in the limit r -+ O. 

Alan G. Gibbs and Richard Seta 2601 



                                                                                                                                    

VII. REFLECTING BOUNDARIES 

In applications of radiative transfer theory to finite at­
mospheres, it is often necessary to consider boundary condi­
tions more general than those of Eq. (2.42). In particular, a 
common problem has radiation incident on one boundary 
and reflected from the other, i.e., 

'P(O,p)=f{J.l) known, J1 > 0, 

(7.1) 

Here, R denotes a reflection operator. In this section, we 
indicate how the above methods may be adapted to solve this 
problem in two special cases. In the first, total specular re­
flection is assumed, i.e., 

(7.2) 

In the second, diffuse reflection with an albedo is assumed 
. ' 
I.e., 

(7.3) 

This second case is often called the Lambert reflecting 
ground, and simply states that the current of photons inci­
dent on the bounary x = 7 is absorbed, and a fraction a < 1 is 
reemitted in random directions over the hemisphere p < 0. 

The problem for the reflection opeator R I is most easily 
solved by appealing to symmetry: Consider a slab of width 27 
with the flux satisfying the boundary conditions 

'P(O,p) = /(J.l), p > 0, 

'P(27,J1)=/(-p), p<O. (7.4) 

By symmetry, the solution of this problem satisfies 

'P(x,p) = 'P(27-X,-p). (7.5) 

In particular, for X=7 this requires that 

'P(7,p) = 'P(7, -J1), (7.6) 

which is just the condition (7.2). Thus, to solve the problem 
of transport in a slab of width 7 with specular reflection at 
x = 7, one simply solves the problem in a slab of width 27 
with the boundary conditions ofEq. (7.4). This is a special 
case of the problem solved in Sec. III above [Eqs. (3.36) and 
(3.37)], except that all functions depending on slab thickness 
must now be evaluated for a slab of thickness 27. 

The problem for the reflection operator R2 is solved 
directly. Define 

J.(7)= f J1''P(7,J1') dJ1'. (7.7) 

Then, the boundary condition ofEq. (7.3) becomes 

'P(7, -p) = 2aJ+(7). (7.8) 

Assuming temporarily that J+(7) is known, we write the flux 
as in Eq. (3.36) 

'P(x,J1)= 1 A'(v)¢(v,p)e-XIVeT(v)dv, (7.9) 
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where, from Eqs. (3.37), (7.1), and (7.8) 

1 ((I _ 
A'(v)= N(v) Jo p ¢ (v,p)f{J.l) dp 

+2aJ+(7) IIPi'(V,P)dP). (7.10) 

To condense notation, let 

. 1 il -A I(V)= -- P ¢ (v,p)f{J.l) dp, 
N(v) 0 

(7.11) 

(7.12) 

Correspondingly, for i = 1, 2 let 

'P ; (x,p) = 1 A ; (v)¢ (v,p)e -xlve T(V) dv, (7.13) 

Note that theA; and 'P;(x,p) are now known quantities. 
Using Eqs. (7.9)-(7.13), it follows that 

'P(x,p) = 'PI (x,J1) + 2aJ+(7)'P2(X,J1). (7.14) 

When this expression is substituted into Eq. (7.7), we obtain 

J+(7) = J I (7) (7.15) 
1-2aJ2(7) 

Here, we have defined 

J ;(7)= l'p''P,(r,p') df1,' (i= 1,2). (7.16) 

The complete solution of the transport problem with R =R2 

is now given by (7.14), whereJ+(7) is obtained from (7.15), 
theJ,(7) from (7.16), the 'P ; (x,p ) from (7.13) and theA ;(v) 
from (7.11) and (7.12). 

VIII. DISCUSSION 
The main result ofthis paper is the representation of the 

flux 'P(x,p) as an eigenfunction expansion, Eq. (3.36). The 
coefficients A '(v) in that expansion are given by Eq. (3.37) as 
integrals over the incident surface fluxes. The weighting 
function ¢( v,J1) in those integrals has a form similar to that of 
the eigenfunctions ¢( v,/1) themselves. The function g( v,p) 
appearing in the definition of ¢( v,/1), Eq. (3.17), is defined in 
terms of Chandrasekhar ¢ and t/J functions or, alternatively, 
in terms of X and Y functions and Sobolev polynomials. 

The above results extend and unify much previous 
work. The full-range and half-range eigenfunction expan­
sions are obtained as special cases of the present expansion in 
the limits of zero and infinite slab thickness. Also, the pre­
sent results show how the functions arising in the invariant 
imbedding study of surface fluxes in transport theory (X, Y 
et al.) are related to the singular eigenfunctions occurring in 
the representation of the internal flux. 

Alan G. Gibbs and Richard Seto 2602 



                                                                                                                                    

Finally, the biorthogonality relations, Eqs. (6.5) and 
(6.6), which follow from the properties of the eigenfunctions, 
generalize those obtained earlier for the half-space prob­
lem.13 Integral moments of these relations lead to orthogon­
ality relations for moments of the eigenfunctions. In special 
cases they reduce to known results for Legendre polynomials 
and for Inonii's polynomials, and in general [Eqs. (6.11) and 
(6.24)] they provide results which may be useful for simplify­
ing integrals which arise in applications. 

In closing, we note that while the analysis of the present 
paper has been carried out for the case of azimuthal symme­
try, this does not seem to be an essential limitation. More 
generally, the flux is expanded in a Fourier series in the azi­
muthal angle cpo The equations for the coefficients '/I m(X,fl) of 
e im</> in that expansion then uncouple, and each coefficient 
satisfies an equation analogous to Eq. (2.1). The main differ­
ences in the required analyses are the presence of associated 
Legendre functions PI' (P) in the equations, and weighting 
functions (I-fl2) ml2 in the integrals over fl. For the half­
space problem, the eigenfunction expansion results have 
been given by Kuscer and McCormick. 13 For the surface 
fluxes, including the case of finite slabs, the corresponding 
results involving X and yfunctions are given by Sobolev. 5 

Apart from some notational complexity, the extension of the 
present work to include azimuthal dependence thus seems 
straightforward. 
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APPENDIX: SOME USEFUL IDENTITIES 

Here, we derive the identities, Eqs. (3.9) and (3.10). We 
begin with the equations satisfied by the ql and SI polynomi­
als, Eqs. (2.22) and (2.23). These were originally derived for 
o <fl < 1; however, since both sides of these equations are 
polynomials in fl, they hold throughout the complex fl­
plane. Replacingfl by -v, multiplying by (_1)1 and using 
the parity oftheg~v) converts Eqs. (2.22) and (2.23) into 

-( -1) Iq I( -v)=( -1) 12:'.- (' X (P')[q I (P')g( -V,fl') 
2 Jo 

and 

( ) (II") dfl' -q I -v gV" ,fl 1 --, 
v +fl 

+ ~ (' Y(p') [s I( -fl')g( -v,fl') 
2 Jo 

-(-I)/s/ (-v)=(-I)/2:'.- (' X(P')[sl(P')g(-V,fl') 
2 Jo 

-s I( -v)g(P',fl') 1 ~+ ~ r' Y(p') 
v +fl 2 Jo 
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(AI) 

x [q I( -fl')g( -v,fl') -q I (v)g(P',fl') 1 dfl' ,. (A2) 
v+fl 

Regrouping terms and using the expressions (2.11) for the cp 
and '" functions leads to 

and 

From the definition of CP(v,fl), Eq. (2.31), we have 

~g( -v'fl') =dJ( -V,fl')-A (v)8(V+fl'). 
2 v+fl' 

(A3) 

(A4) 

(AS) 

Using this result in Eqs. (A3) and (A4), and appealing to Eq. 
(2.11) leads to 

and 
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-;l(v)X( -v)O( -V»)-q /(v) (~ 

xiI Y(p')g(P:,/l') d/l'+;l(v)Y(-v)O(-v~ 
o v+,u J 

Here 8(v) is a step function defined by 

8(v)= {I, vE(O,l), 
0, other. 

(A7) 

(A8) 

For v E a+ the quantities in brackets on the right-hand sides 
of Eqs. (A 7) and (A8) are W1( v) and W2(v). For v E (- 1,0), 
we refer to the singular integral equations satisfied by the X 
and Y functions, Eqs. (2.18) and (2.19). With,u ---+ - v> 0 
we find, since ;l(P) is even, that 

1-8( -v);l(v) X (-v) _ ~ (I X (P')g(P,',,u') d,u' 
2 Jo v+/l 

= ~ (I Y(p')g(P',,u') d,u' e r/v 

2 Jo -v+,u' 

= Wl-v) e r/
v

, VE (-1,0) 

and 

V 11 8(-v);l(v) Y(-v)+-
2 0 

Y (p ')g(P' ,/l ') d/l' 
V+!l' 

= (1- (-v) t X (P')g(P',,:') d,u') e T/l' 

2 Jo -v+,u 

(A9) 

(A10) 

In deriving the last quantities above, we have used Eqs. (3.2) 
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and (3.3). Finally, we consider v=vj E a_. Now, the terms 
involving 8( -v) in the above equations are zero. The con­
straint equations, Eq. (2.17) satisfied by the X and Y func­
tions now show that Eqs. (A9) and (A 10) also hold for 
v=vj E a .. Writing Eqs. (A6) and (A7) in terms of the func­
tions W(v) [(Eq. 3.8)] and eT(v) [Eq. (3.11)] and using Eqs. 
(A9) and (A 1 0) for v E a_ leads to Eqs. (3.9) and (3.10). 
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Second-quantization representation for a non relativistic 
system of composite particles. II. Kinematical properties of 
the multispecies Tani transformation 

M. D. Girardeau 

Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403 
(Received 24 April 1978) 

In previous publications a first·principles method was developed for constructing second·quantization 
representations for systems of composite bound states and their constituents. It is based on the 
introduction of redundant modes ("ideal atom variables") which are given physical content by carrying out 
a suitable unitary transformation. A single transformed Hamiltonian explicitly and simultaneously exhibits 
all kinematically possible scattering and reaction channels. Most of the previous results were limited to 
the case of two fermion composites. This restriction is removed herein, in order to allow a first·principles 
approach to the many·particle quantum dynamics and statistics of chemical and nuclear reactions. The 
kinematical aspects of the relevant transformation are examined. 

1. INTRODUCTION 
In previous publicationsI-l a method was developed for 

constructing second-quantization representations for sys­
tems of composite particles and their constituents from first 
principles. The method is based on the application of an ap­
propriate unitary transformation to the second-quantized 
Hamiltonian of the constituents. The transformation is cho­
sen so that the composite bound states appear explicitly in 
the relevant scattering and reaction terms of the transformed 
Hamiltonian. Except for some specific calculations for liq­
uid helium' and ferromagnetism, 5 the previous results were 
limited to two-fermion composites. Here we shaH remove 
this restriction in order to obtain a formalism adapted to the 
treatment of the quantum dynamics and statistics of chemi­
cal and nuclear reactions. 

The "generalized Tani transformation" method em­
ployed aHows a natural decomposition of such problems into 
two parts: (a) evaluation of a transformed Hamiltonian in 
which the structure of the composite bound states and the 
kinematics of the scattering and reaction processes involving 
these bound states are explicitly exhibited in the various 
terms of the transformed Hamiltonian; (b) treatment of this 
transformed Hamiltonian by standard methods (Wick's 
theorem, Green's functions, etc.) We shaH be concerned here 
only with part (a). Furthermore, we shaH restrict our atten­
tion to elucidation of the general kinematical properties of 
the relevant multispecies Tani transformation. Explicit eval­
uation of the various terms in the transformed Hamiltonian 
is best carried out separately for each specific application 
(specific choice of composite species involved), in view of the 
algebraic and notational complexities entailed by a com­
pletely general notation. 

2. FORMALISM 

Consider a nonrelativistic many-particle system com­
posed of various different species of "elementary" con­
stiuents. In applications to quantum theories of solids, liq­
uids, gases, plasmas, chemical physics, etc., these 
constituents could be chosen to be electrons and nuclei of 

various species, whereas in an application to low-energy nu­
clear physics they could be chosen to be nucleons. Let 
!/I(x v» and I/t \ x v» be the second-quantized field annihil­
ation and creation operators for particles ofthejth constitu­
ent species. Here x v) = ( rV) ,(T V) with rV) the position vec­
tor and (T v) the spin z-component variable for a particle of 
the jth species; if this species has spin zero, then the argu­
ment (T (j) is to be omitted. Ifwe adopt the standard conven­
tion6 according to which kinematically independent fermion 
species anticommute, then these field operators will satisfy 
the commutation and/or anticommutation rules 

I/t( XIV) ).I/t( x, (/»= I/t t( xY) ).I/t t( x/I) =0, 
(I) 

Here {j(XIV) -x,V» stands for the product 
{j( f V) - f,V) {j ",(j) {j a,V) of a Dirac delta function of posi­
tion variables by a Kronecker delta function of spin varia­
bles, whereasA·B stands for the graded Lie bracket' 

A (XIV) )·B (x/i) =A (x,v»B (x, (I) 

which is an anticommutator ifthejth and I th species are both 
fermions, and is otherwise a commutator. The permutation 
parity p j is defined to be zero (or even) if the jth species are 
bosons, and unity (or odd) if they are fermions. 

These various constiuents species will interact, e.g., 
through the Coulomb interaction, leading to the possibility 
of formation of various bound states which define the var­
ious composite species, which may be atoms, molecules, ions, 
etc. (or nuclear species in applications to nuclear physics). 
Suppose that the sth composite species consists of n,' I , parti­
cles ofthe first constiuent species, n/') particles of the second 
constituent species, etc. Then the corresponding bound state 
wavefunctions may be denoted by ipaS<x/l)".xn~': 1', 

XI(2) .. ·xn :,,< 2',,,,), where a stands for all the quantum numbers 
necessary to label such a state. These bound states may be 
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assumed without loss of generality to satisfy orthonormality 
relations 

(3) 

where SdxjV)=~(T:J,fd 3r /j). In addition they are symmetric 

(pj=even) or antisymmetric (Pj=odd) in the arguments of 
eachjth constituent species. However, there is no complete­
ness relation involving the bound states alone, since the total 
state space includes unbound states (involving constituents 
not bound into composites) as well. Furthermore, there is in 
general no simple relation analogous to (3) involving differ­
ent composite species sand s'. 

States and observables of the system are in principle 
expressible soley in terms of the dynamical variables of the 
various constituent species. However, if such a representa­
tion is employed then the presence, properties, interactions, 
etc., of the bound composite species are not explicit in the 
algebra of observables but must be inserted essentially as 
boundary conditions on the state vectors. For many-particle 
state vectors representing a system of nonzero density, this is 
a highly nontrivial problem. The Tani-transformation meth­
odl-l is designed to avoid this difficulty by use of a unitary 
transformation which introduces explicit composite-particle 
dynamical variables to describe the composite bound states 
but retains the constituent-particle dynamical variables to 
describe the unbound constituents. The definition and prop­
erties of the relevant transformation are straightforward 
generalizations ofthose considered previouslyl-3 for two-fer­
mion composites. 

3. COMPOSITE-PARTICLE ANNIHILATION AND 
CREATION OPERATORS 

The second-quantized state vector [as) representing a 
single composite particle (bound state) of composite species s 
and bound-state quantum numbers a is 

(4) 

where I 0) is the normalized vacuum (no-particle state) and 
A as t is the composite-particle creation operation 

x IT t//(Xlv) ... ",t(xn~)V) dXlv) dXn~'v), 
j 

(5) 

The corresponding annihilation operator A as is defined to 
be A as =( A as t) t. More generally, a state containing only 
bound composites of various species is a linear combination 
of composite-particle product states A a,s,t ... A a "s" t 10). 

Inner products between such states involve the commuta­
tion relations between the A as and the A as t. These can be 
determined by using Wick's theorem to rewrite A asA f3s' and 
A asA f3/ as sums of normally ordered products of the con­
stituent field operators", and ",t. The various terms involve 
contractions which are the graded Lie brackets (I). In this 
way one finds with (3) 

A ·A - A t·A t - 0 as /3s' - as {3s' - , 

(6) 

A as·A f3/ =/) af3/) 55 + C as.f3s" 

where the graded Lie bracket notation (2) has been extended 
to the composite-particle operators in the obvious way: 

(7) 

The permutation parity p s of the sth composite species is 
taken to be even or odd according to whether composite 
species s contains an even or and odd number of fermion 
constituents; boson constituents are to be disregarded in this 
counting. The c-number term /) af38 ss' in the second line of 
(6) isjust what would occur if these composite particles were 
elementary, whereas the operators C as.f3s' exhibit the kine­
matical effects of the composite nature and internal struc­
ture of the bound states. They are found to be given by 

XK ( (1) (1) (2) (2). (1) (1) (2) (2) )./,t (1) 
as,{3s,Xv l)+l ···Xn .(\) ,Xv(2)+1 ···Xn ,(2) "··'Yv(L)+l ···Yn(LI 'YV(21+1 ···Yn (2) , ••• 'r (X v(])+l ) , , , , 

X .I.t (1) .I.t ( (2» .I.t (2) .1. (2) ).1. ( (2) ./. 
"'V' (X n.'" )V' Xv' 2) + 1 '''V' (Xn.'" )···V'(Yn.", ) ... V' V"'+l )V' 

(1) .1.( (1) 
(Yn,(l) )'''V' Y v(l'+l ), (8) 

where the "exchange kernels" K as.f35 are defined as 

K (X (l) ... x (l),x (2) ... x (2) .... Y (l) ... y (1) Y (2) ... y (2) ... ) 
as.{3s' V(l)+ 1 n/ 11 V(21+ I n,12 1 " V111 + 1 n,(l) , yll)+ 1 n,(2) , 
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(9) 

Here m .v) is the smaller of n v) and n ,W, note that n IJ) or n ,v) may be zero, in which case the sum over v v) is (8) contains 
$5 .s Ii'S S 

only the term v vi = 0. If s =s' then the c-number term in (8) (that with v (I) = n s (I) , v (2) = n s (2) , ... ) is to be omitted, being 
already explicitly exhibited in (6) as the c-number term /) ap/) ss" We shall now need the explicit formula forthe( +) prefactorin 
(9) here. The term with v' I> = v' 2) = ... =0 is to be omitted from the summation (8), being already accounted for it in the term 

A p/A as' 

The interpretation of the kernels K as,/ls' as arising from exchange of identical constituents between the composite bound 
states ({J as and ({J {H is intuitively clear from their definition. Since such exchange can only occur when the bound-state 
wavefunctions overlap, we expect that the kernels K as.!3,' and hence the operators C as.p,· will vanish in the limit of vanishing 
overlap. This expectation will be substantiated and generalized by the results which will be established in Sec. 6. It follows that 
the A as and A as t behave like elementary Bose or Fermi operators in the limit of vanishing overlap. This result is, of course, 
expected on physical grounds. 

In addition to (6) one has commutation andlor anticommunication relations between the constituent ¢ and ¢t fields and 
the composite A and At operators: 

¢(xV)·A as = 0, 
(10) 

with 

X y)xzIJ) .. ·x n.-I,IJ!, x/J+ 1) ... X n ,'" ,,iJ+ '1, ... ) II ¢t(x,(/ ~ ... ¢t(x n:J'<'?dx,(I) ... dxn,'"u) 
/ 

(11 ) 

where the prime on IT; implies omission of the factors ¢t(x,IJ) and dx j
v) in the term with l=j. The graded Lie bracket in (10) is 

defined as 

(12) 

The operator C m( x Vi) in (10) is a consequence of the lack of kinematical independence between the composite particles and 
their constituents. It is easy to see that C aJ x 0) vanishes either if the composite species s does not contain constituents of the 
jth species or if the position vector rV) lies outside some finite region .9l as within which the bound state If' as is localized. This will 
be discussed in more detail, along with its consequences, in Sec. 6. 

4. IDEAL STATE SPACE AND TANI 
TRANSFORMATION 

The nontrivial commutation relations (6) and (10) 
would lead to computational difficulties if one were to em­
ploy the A as and A as t operators as composite-particle dy­
namical variables. For example, the composite-particle 
product states A as t .. -A a s t I 0) are neither orthornormal 
nor independent ~f the co~~'tituent product states 

¢ t(x/')"'if; t( x n (j ,,» I 0). A related difficulty is that Wick's 
theorem only applies to operators satisfying elementary 
Bose or Fermi commutation or anticommutation relations. 
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These difficulties can be overcome by carrying out a map­
ping to an "ideal state space" in which the annihilation and 
creation operators representing the composite particles sat­
isfy elementary Bose or Fermi relations, the effects of the 
composite structure of the bound states being transferred 
from the commutation relations to the formulas for the sec­
ond-quantized operators representing observables (e.g., the 
Hamiltonian). Such an approach is in the spirit of Dyson's 
theory8 of "ideal spin waves" in the Heisenberg model and 
the Bohm-Pines theory9 of plasma oscillations. 

Define the physical state space &' to be the space of aU 
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normalizable linear combinations of constituent product 

states t,b t (x 1 (j,) ) ••• tP ( X n (j,,) I 0). Also define a completely 

independent state space C(f, the ideal composite particle state 
space, to be the space of all normalizable linear combinations 
of ideal composite particle product states a a,s,t ···a a "s" t 10) 
where, by definition, the a as and a 0< t satisfy elementary 
Bose/or Fermi commutation and/or anticommutation rules 

a ·a -a t'a t-o as /35' - as {ls' - , 

(13) 

the graded Lie bracket being defined as in (7). Finally, define 
the ideal state space f to be the space of all normalizable 
linear combinations of product states 

a t···a t./,t(x/J,) ... t,bt(x j"')IO) 
a1s) a liS" 'r m 

of both constituents and ideal composite particles. To make 
this definition meaningful, one must supplement (13) by 
commutation relations between the a, at, t,b, and t,bt operators 
considered as operators on .f. We take them to be "normal 
commutation relations" 6 

t,b(x (j).a as =t,b(x (j)}a as t =0, (14) 

where the graded Lie bracket is defined as in (12). It then 
also follows from (14) and (5) that 

(15) 

with the graded Lie bracket defined as in (7). The commuta­
tion relations (1), (6), and (10) on ,C;lJ and those (13) on ((; are 
then also extended to f. 

The physical state space 9 is trivially isomorphic with 
the subspace f 0 of f consisting of those states I 'P)Ef 
which satisfy the contrains 

(16) 

Defining the ideal composite particle occupation-number 
operators N as =a as ta as' the composite species occupation 
numbers 

N .. = LN as = Ia as ta as' (17) 
a a 

and the total ideal composite particle number operator 

N c = IN s = LN as = La as ta as (18) 
as as 

and noting the positive semidefinite property of all of these 
occupation numbers, one can equivalently state the con­
strains (16) in the form 

N ( i'P) =0, i'P )E.f o· (19) 

The interpretation is that in f 0 the ideal composite particles 
are "redundant modes" (totally unoccupied), which makes 
the isomorphism of fo with g; trivial and obvious. 
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We now perform a unitary transformation U, the gener­
alized Tani transformation, which shifts the description of 
bound composites to the a as and a as t, in a sense which will 
presently be precisely defined. We take U to be the obvious 
generalization of the previous transformation 1-3 to the multi­
species case: 

U=exp(~1TF), 

(20) 

F= I.( a as tA as -A as ta as)· 
as 

The kinematical properties and resultant physical interpre­
tation of U relating to the interpretation of asymptotic scat­
tering states will be discussed in Sec. 6. However, we shall 
first discuss here some simpler properties of U related to the 
particle-number conservation laws. 

Let 

F s'-= I.a o./A a.' (21) 
(l 

and let N j be the number operator for constituent species): 

N
j
= f dx V) tf;t(x(j))tf;(x(j)). (22) 

Then by (5) one has with (17) 

NjF,,-=F ,-( N j -n,v)), 

and hence 

[( N j + ~n ,v) N,).F,,-) =0. 

(23) 

(24) 

Combining this with the similar relation for F/=( F ,,-) t, 
one sees from (20) that the operators N j + k,. n s (j) N, com­
mute with Fand hence with U: 

(( N j + ~n, (j)N,).U) =0. (25) 

Next let I 'P) be any state in fo which is a simultaneous 
eigenstate of the N j for all of the various constituent species, 
with eigenvalues n j: 

(26) 

Let I 'P) be the image of such a state under the transformation 
(20): 

I 'P)= ~ 'P), I 'P)= U- 1 I 'P)' (27) 

Then it follows from (25) and (26) that 

(N j + ~n ,(j) N,) 'P)=n )I'P)' (28) 

The physical interpretation is that in I 'P) the total number of 
constituents of constituent species} is the sum of the number 
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of unbound constituents of this species (counted by N j ) and 
the number of such constituents bound in the various com­
posites, counted by n s (J) N 5 for the sth composite species. 
Note the shift in the meaning of N j : Before the transforma­
tion, i.e., in the state I cp), it counts all constituents oftypej, 
whereas after the transformation, i.e., in the state I cp), it 
counts only unbound constituents of this type. Similarly, the 
commutation property (25) ensures that in the transformed 
Hamiltonian U-1HU, only reaction terms consistent with the 
conservation of particles of each constituent species will oc­
cur. This is a generalization of the property exhibits pre­
viously2.] for the case of two-fermion composites. 

This kinematical property of the multi-species Tani 
transformation (20) generalizes immediately to any physical 
observable A on the physical state space rY' which commutes 
with the constituent species occupation numbers: 

(29) 

Recalling that rY' is isomorphic with the subspace .Yo of the 
ideal state space .Y and that A, being a physical observable 
on rY', is expressed solely in terms of the constituent fields tP 
and tPt , one sees that A will also commute with the composite 
species occupation numbers N s : 

[N s.A ] =0. (30) 

Equations (29) and (30) are valid as operator identities on.Y. 
It then follows with (25) that 

(31) 

This established a set of superselection rules, one for each 
constituent species j: For any physical observable A satisfy­
ing (29), its generalized Tani transform U-1A U has nonvan­
ishing matrix elements only between states with the same 
eigenvalue of N j +~, n , (j) N,. These supers election rules 
are merely the transforms, under U, of the usual particle 
number conservation superselection rules. They have impor­
tant consequences for the kinematical structure of the trans­
formed observables U-1A U. For example, as previously not­
ed, U-1HU has terms representing dissociation of a 
composite particle into its constituents and other terms re­
presenting dissociation into smaller composites (plus per­
haps free constituents) as well as terms representing the in­
verse reactions (recombination). In fact, there will be terms 
explicitly exhibiting all kinematically possible reactions, i.e., 
all reactions compatible with the constituent particle conser­
vation laws; however, no other terms will occur. This shows 
that the transformation (20) is constructed in such a way as 
to explicitly exhibit the various possible reaction channels in 
the transformed Hamiltonian U-1HU. 

5. SUBSIDIARY CONDITION AND STATISTICAL 
MECHANICS 

States I cp) related to states I cp)do by (27) define a sub­
space.Y phys of.Y which is isomorphic to .Yo and hence to the 
original physical state space rY'. One can write symbolically 
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.Y h =U-1'yO' 
P ys 

(32) 

.Y is the subspace of those states I cp)d satisfying a sub-
sidii:y condition which is the transform of (19): 

(U-tNP)lcp)=O, Icp)E.Yphys' (33) 

For any two physical states I cp), I cp')ErY' , there are esssen­
tially identical'° states in .Yo, which have images 
I cp ),1 cp')d phys' Any calculation in the physical state space 
rY' is equivalent to a calculation in f phys' For example, for 
any observable A one has trivially 

(cp [A [cp')=(cp I U-tAU [cp'). (34) 

The advantage of carrying out the calculation in .f phys is 
that processes involving existence, excitation, and reactions 
of bound composites are then built explicitly into the algebra 
of observables and hence exhibited explicitly in U-1A U. The 
subsidiary condition (33) is dynamically consistent in the 
sense that 

[U-tHU,U-W c U 1 =0, (35) 

since the original Hamiltonian H is a functional only of the 
constituent-particle fields tP and I/Jt and hence commutes 
trivially with N c . 

The definition (19) of.Y 0 generalizes to an infinite se­
quence of subspaces .f" oLf, n = 0, 1,2,. .. , where J-" is the 
space of those states I cp) satisfying 

Nclcp)=nlcp), [cp)E f". (36) 

The.Y" are disjoint, and their union (n running from Oto 00) 
spans the ideal state spacef. If the subsidiary condition (19) 

is dropped then, since H does not contain any a as and a a.1 t 

operators, it will have the same eigenvalue spectrum on..Y as 
it does on the subspace .fo, but with a spurious infinite de­
generacy of every energy level. Similarly, along with 
.fphy , = U-If o there is an infinite sequence of disjoint sub­
spaces U-I.I" whose union is ,.1'; each U-I./ " for n;;, I can be 
regarded as a "copy" of . .1'phY" each state I cp)Ef rhys being 
imaged, with the same energy, in all the other subspaces 
U-1,f". The same argument applies to any other physical 
observable: one can safely ignore the subsidiary condition in 
evaluating eigenvalues, so long as the density of states is not 
required. 

On the other hand, the grand partition function 

Zl(f3;/11,/12"")= Tro exp[ -/3 U-'(H - fJ1 jN)U 1 
(37) 

does depend on the density of states, and so the trace must be 
restricted to a basis spanning .Y phy,; this is the meaning of 
the ~ero subscr~pt on Tro. Here the N j are the constituent­
specIes occupatIOn number operators (22) and the /1 j are the 
corresponding constituent chemical potentials. One can, 
however, remove the restriction on the trace by defining a 
generalized partition function 
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E (f3,t,!ih!i2,"') 

=Tr exp [ -(1U-'(H-A N c - ~jN)U J. (38) 

where 

t = exp(f3A), (39) 

and the trace now runs over the whole ideal space J. Then 
the grand partition function Z can be recovered as the coeffi­
cient of the constant term in the expansion of E in powers of 
t, or equivalently as a contour integral 

Note that chemical potentials for the composite species do 
not occur in (37) or (38); there are no constraints on the 
occupations of the composite species, which adjust their oc­
cupations to the equilibrium values as a result of the chemi­
cal (or nuclear, etc.) reactions implied by the various reac­
tion terms in U-'HU. In cases where one is dealing with a 
situation where the occupations of one or more composite 
species are constrained to have values other than those ap­
propriate to complete equilibrium, one would introduce ad­
ditional terms -Ii sNs in (37), where the!i , are the chemi­
cal potentials of only those composite species which have 
constrained non equilibrium values. 

These properties and consequences of the subsidiary 
condition and resultant decomposition of J are all straight­
forward generalizations from the special case of two-fermion 
composites. Similarly, as in that case the projector Po onto 
'Yo can be written as2 

Po=:e N.: 

(41) 

where the colons denote normal-ordering. The correspond­
ing projector onto J phys is U-'Po U. 

6. BEHAVIOR OF THE TANI TRANSFORM FOR 
ORTHOGONAL OR NONOVERLAPPING 
COMPOSITES: ASYMPTOTIC STATES 

The generalized Tani transformation (20) was intro­
duced for the purpose of shifting the description of bound 
composites from the original A as' A as t operators to the 
"ideal composite particle operators" a as' a as t which satisfy 
elementary particle commutation relations (13). In this sec­
tion we shall investigate the sense in which this shift is effect­
ed, along with related questions of the interpretation of the 
transformed operators and of the asymptotic scattering and 
reaction states. 

Let us first investigate the behavior of the transforma­
tion in certain limiting situations. This will be done in the 
form of a sequence of definitions, lemmas, and theorems. 
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Definition 1: The composite particle creation operators 
A as t and A (3/ are said to be completely orthogonal (denoted 
by A as t lA (3/) iff the following two conditions are satisfied: 

A as·A (3) =0 

[C as.asA (3/J =0. (42) 

HereA as·A (3s.t is the graded Lie bracket (7) occurring in (6). 
Thus (42) requires the vanishing of the operator C as,(3, if 
A as t and A (3/ are to be completely orthogonal; however, it 
does not require the vanishing of C as.as' Note also that if 
A <1, t lA (3/, then (as I (1s')=O where the states I as) are de­
fined by (4). However, the converse need not be true; for 
example, if composite species sand s' contain different num­
bers of any constituent species II then I as) and I (1s') will be 
orthogonal, but nevertheless A as t and A (3/ may not be com­
pletely orthogonal. 

Definition 2: tf; tcx (j) andA as t are said to be complete­

ly orthogonal [denoted by tf; t(x (O)lA as t] iff 

tf;(x(j))-Aast=O, (43) 

where the expression (43) is the graded Lie bracket (12) oc­
curring in (10). Thus (43) requires the vanishing of the oper­
ator C in (x (j). 

Lemma 1: A as t lA (3/ if the composite species sand s' 
contain no common constituents, and tf; t(x (j)lA as t if the 
composite species s does not contain constituents of speciesj. 

Proof Under the hypotheses of the lemma the operators 
C ns,{3s' and Cas (x (j) vanish, since Wick's-theorem con­
tractions can only occur between constituent field operators 
of the same species. The commutator [C as,as,A (3/} vanish­
es for the same reason, 

Definition 3: cP as and cP (3s' are said to be nonoverlapping 
iff 

(44) 

for every argument x which refers to a constituent species 
common to cP as and cP (3,' Note that this must be true as an 
identity in x and in all the other arguments of cP as and cP (3.,' 

Note also that cP as and cP (3s' can be nonoverlapping even 
when different constituent species in cP as and cP (3, occupy 
the same region of space, If cP as and cP (3s' contain no common 
constituents, then they are trivially nonoverlapping, by 
definition. 

Definition 4: x (j) and cP as are said to be nonoverlapping 

iff 

(45) 

where one or more arguments of rp as referring to thejth 
constituent species have the particular value x (j) , If!p as does 
not contain constituents of species j, then x (j) and rp as are 
trivially nonoverlapping, by definition. 

Lemma 2: A as t lA (3/ if cP m and cP (3.<' are nonoverlap­
ping, and tf; t (x (j))lA as t if X (j) and cP as are nonoverlapping, 
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Proof: Recalling that the term with v( 1 ) = V{ 2) = '" = 0 is 
omitted from the sum (8), one sees that all of the exchange 
kernels K as./3s" and hence the operator C as,pi' vanish if (44) 
is satisfied. The commutator [C as,as,A p/] is also propor­
tional to products of the form (44) and hence also vanishes. 
Similarly, it follows from (11) that the operator Cas (x V)) 

vanishes if (45) is satisfied. 

Definition 5: f{! as and f{! Pi are said to be strongly ortho­
gonal iff 

(46) 

for every argument x which refers to a constituent species 
common to f{! as and f{! {3s" Note that this must be true as an 
identity in all of the other arguments of f{! as and f{! Pb which 
are not integrated over. Note also that if f{! as and f{! {:Js' are 
nonoverlapping, then they are strongly orthogonal, but that 
the converse need not be true. If f{! as and f{! (:Js' contain no 
common constituent species, then they are trivially strongly 
orthogonal, by definition. 

Lemma 3: A as t lA p) if f{! as and f{! IN are strongly 
orthogonal. 

Proof: The proof is only a trivial refinement of that of 
Lemma 2. One need only note than in the expression (9) for 
the exchange kernels, the product f{! as ·( .. ·x ... ) f{! (:Js.(-"X"·) is 
integrated over x. Hence (46) is sufficient to ensure vanish­
ing of C as,{:Js': (44) is not necessary. The same integrals (46) 
occurin the expression for the commutator [ C as,as,A (:J,.t] as 
a result of Wick's-theorem contractions between the con­

stituent t/Jfield operators in C aS,as and the corresponding t/J t 
field operators in A (:J); hence this commutator also 
vanishes. 

Theorem 1: If the A as t belonging to different composite 
species s are completely orthogonal, then 

(47) 

Proof: By (20), (5), and (6) one has under the given 
hypothesis 

FA as t 1 0)= Ia (:Js,tA INA as t I 0) 

Similarly 

{:Js' 

= Ia (:Js t<5 a{310)=a as tIO). 
fJ 

Fa as tIO)= - IA (:J/a fJs,a as tIO)= -A as tIO). 
fJs' 
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(48) 

(49) 

The desired result (47) then follows!2 as in the simpler case of 
two-fermion composites. Note that the hypothesis of the 
theorem was required becausell C {3s' ,as 10) need not in gener­
al vanish for s=j=s'; on the other hand C (:Js,as 10) vanishes for 
all a,f3. Complete orthogonality of different A as t and A ps t 
belonging to the same composite species s is not required for 
validity of the theorem; however, orthogonality of the differ­
ent wavefunctions f{! as and f{! Ps (for each given s) is assumed 
[Eq. (3)]. 

Theorem 2: 

(50) 

Proof: Every composite species contains more than one 
constituent particle. Then by (10), (11), (14), and (20) 

Ft/Jt(x V)) 10)=0. (51) 

The desired result follows immediately. 

Theorem 3: Suppose that all of the different A as t occur­
ring in the Tani transformation operator (20) are mutually 
completely orthogonal and suppose that (a,s,) .. ·(a nS n) are 
any discrete set selected from these (as). Then 

UA t .. ·A tIO)=a t···a tIO). (52) a(si a"s,~ (lISI a"s" 

Proof: The proof is a straightforward generalization of 
that give previously. 14 Under the hypotheses of the theorem 
one finds that 

[A t F] =(-1) rnA t +D (2m) 
a , .'I ~, 2fn a J... S J.. a J... S I. ' 

[A a " s ,t ,F ] 2m _ I = ( - I) m a a ,s , t + D a ,s , (2m - 1) , (53) 

for m = 1,2,3, .. ·, where []m denotes the multiple commutator 
of order m and where the D as (m) satisfy '5: 

D (m) 10)=0 
a/..5/.. ' 

D (m)'a =D (m)·a t =0 k=l=l 
a"s" a,s, a"s/., a,s, , , (54) 

Then" 

UA tU-I 
a 1..5 J.. 

=a a , t Sin(!!...)+A a s t cOS(!!...)+D ". /... 2 " I.. 2 Cl"S" 

(55) 

where D a ,s, satisfies the same conditions (53) as do the 

D a ,s, (m), Then, noting that VI 0)=1 0), one has 

UA a,s,t".A a"s"tIO) 

=( UA a,s,tu- 1
) ... ( UA a"s"tu-I) 10) 

=(a a,s,t +D a,s}"( a a"s"t +D ans) /0) 
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Note that in contradistinction to Theorem 1, complete 
orthogonality of different A as t belonging to the same com­
posite species s is required for the validity of this theorem if 
n> l. 

Theorem 4: Let Ul··j m I be any selection of constituent­
species labels such that neither this set nor any of its subsets 
exhaust all of the constituents making up any of the compos­
ite species s, i.e., such that it is not possible to construct any 
of the composite species from constituents of types jl··j m' 

Then 

Proof By (20) and (14) 
Flpt(x/j'»"'lpt(x m (j",) 1 0> 

(57) 

=IPa/Aas1pt(x/j,»···tPtcxm(j,» 10>. (58) 
as 

Under the given hypothesis, it is not possible to form a 
Wick's-theorem contraction between all of the tP operators 
in any of the A as and the given tP t operators. Hence some of 
the tP operators in every A as will always commute and/or 
anticommute through all of the tPt factors so as to annihilate 
the vacuum. It follows that 

(59) 

The desired result then follows immediately upon expansion 
of the exponential in (20). 

Theorem 5: Assume the validity of the hypotheses of 
Theorem 3 and suppose in addition that !XI(j,) ···X m (j",) I is 
some set of constituent-particle arguments which are all 
nonoverlapping with all of the fjJ as occurring in the Tani 
transformation (20). Then 

=a t···a t./,t(xl(j,» ... ·/,t(x U",» 10>. (60) 
alS I a "s" If/ If' m 

Proof By the proofs of (55) and (50) one has 

= (a a,s,t + D u,s)"'( a a "s" t + D a "s.) 

Under the hypotheses of the theorem the D as will commute 
or anticommute with all of the tP t(x (j) in (61) and will 
annihilate the vacuum. [j The desired result then follows 
immediately. 

Let us now discuss the physical interpretations and im­
plications of these theorems. "Asymptotic scattering states" 
are states in which all of the particles present are well-sepa­
rated in the sense that they are described by nonoverlapping 
wavepackets. Consider such a state of the type 
A t···A t tP t .. ·tP t I 0> occurring on the left side of Eq. (60), and 
suppose that all of thse particles, both composite (described 
by A t operators) and elementary (described by tP t opera­
tors) are mutually nonoverlapping in the sense of Definitions 
3 and 4. Then with Lemma 2 one sees that the hypotheses of 
Theorem 5 will be satisfied, so that the Tani transformation 
will redescribe the state in the form a t .. ·a t tP t .. ·tP t I 0). This 
verifies that the transformation (20) has the desired effect of 
redescribing composite bound states in terms of the elemen­
tary-particle operators a as t. In fact, the hypotheses of the 
theorem are somewhat weaker; Definition 5 and Lemma 3 
show that Theorem 5 is valid in some other cases as well. Of 
course, in applications to the theory of chemical and nuclear 
reactions the interacting composite and constituent particles 
will overlap (and more generally will be nonorthogonai) dur­
ing collisions; indeed, such collisions are essential for the 
reactions. Nevertheless, the limiting cases described by 
Theorem 5 and the preceding theorems are essential for the 
physical interpretation of the various terms in the trans­
formed Hamiltonian U-'HU in terms of scattering and reac­
tion processes with various incoming and outgoing particles 
(asymptotic states) in one-one correspondence with the cor­
responding a, at, 0, and 0 t operators in the corresponding 
terms of U-1HU. The explicit evaluation of such terms, by 
methods used previouslyH in some special cases, will be de­
ferred to subsequent publications. 

Theorems 2 and 4 bear on the interpretation of the 0 
and 0t operators in the transformed Hamitonian. They 
show, together with the other theorems, that in U-IHU, 0 
and tPt describe unbound constituents, whereas in H they 
describe both unbound constituents and all of the constitu­
ents bound in composites. Again, the sharp distinction be­
tween bound and unbound constituents and between com­
posites of various species breaks down in the transient 
overlapping configurations formed during reaction pro­
cesses, for which the hypotheses of the theorems fail. Never­
theless, the theorems set the framework of the physical inter­
pretation through their connection with the asymptotic 
states. 
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It is shown that any polynomial invariant of the SU(2) Yang-Mills field is a polynomial in a basic set of 
ten invariants, although only nine of them are functionally independent. Polynomial bases for the self-dual 
and anti-self-dual Yang-Mills fields are also presented. 

I NTRODUCTI ON 

The physically significant quantities associated with 
any gauge field must be both Lorentz invariant and 
gauge invariant. We shall refer to such quantities as 
invariants. For electromagnetic theory the invariants 
which depend only on the field strengths at a point 
(rather than on their derivatives as well) are functions 
of two independent invariants 

11 = PILvFILV , 

where 

* F /.LV == ~flJ.vpa· 

Moreover it can be shown that1 any invariant which is a 
polynomial in the components P ILV is also a polynomial 
of 11 and 12 , 

For non-Abelian gauge fields the situation is more 
complicated. The tensor F~v (i is the internal symmetry 
index) is not gauge invariant, but transforms acco1.'ding 
to the adjoint representation of the gauge group. More­
over, not all the gauge-invariant information is con­
tained in F~v' since there are2 gauge-inequivalent fields 
ri~ which give rise to the same F~v' Nevertheless, as a 
fi rst step towa)-d understanding the invariants of a non­
Abelian gauge theory, one of us 3 studied the invariants 
which could be formed from the field strengths F~v of an 
SU(2) gauge theory. It was shown that there are nine in­
dependent invariants, and nine independent polynomials 
of lowest degree were exhibited. It was then claimed, in 
analogy with the electromagnetic case, that these nine 
polynomial invariants formed a polynomial basis, that 
is, that any invariant polynomial in the P~v could be 

written as a polynomial of these nine invariants. This 
claim is not correct. 

In this paper, we shall show that although there are 
nine functionally independent invariants, a polynomial 
basis must consist of ten elements. We exhibit a choice 
for these 10 basis elements, and present a reduction 
algorithm for reducing any polynomial invariant to a 
polynomial in these ten invariants. We shall also show 
that for self-dual or anti-self-dual fields, the polynomi­
al basis consists of three independent polynomial invari­
ants. 

There is also an elegant group-theoretic approach to 
this problem which we learned from Professor Louis 
Michel. We have a basis (}~vl for a particular represen-

alWork suppurted in part by NSF Contract No. PHY-77-08287. 

tation of a group (L x SU(2), where L is the Lorentz 
group). The problem is to determine the number of in­
dependent polynomial invariants (and their degree) 
which can be formed from this basis. We also wish to 
ascertain whether these independent invariants of lowest 
degree form a polynomial basis, and if not, what must 
be added to form the desired polynomial basis. The 
general theory and its application to our special case is 
presented in the Appendix. 

1. A SIMPLE EXAMPLE 

Before plunging into the details of the Yang- Mills 
case. we illustrate by a simple example how a poly­
nomial basis can have more elements than the number 
of functionally independent invariants. Suppose we are 
given three vectors w, y, and z, and we want to con­
struct the lowest degree independent rotationally invari­
ant quantities which can be formed from the components 
of w,y, and z. The result is the six scalar products 

ui, ') ') 

Y-, Z'. W' y, w' z, Y' z. (1) 

But these do not form a polynomial basis since w' y x z 
is a polynomial invariant, but is obviously not a poly­
nomial in the above invariants. Functionally w' y x z is 
not independent, since 

(w' Y XZ)2 

= W2y 2z2 _ w2(y" z)2 _ y2(W" Z)2 _ Z2(W'y)2 

+2w'yw'zy'z. 

A general polynomial invariant can be written as 

P1 +W"y X Z}J2' 

where P 1 is a polynomial in the six invariants of (1). 

2. SU(2) YANG-MILLS THEORY 

(2) 

(3) 

To review terminology, lei F~v be the Yang- Mills 
field at a point [i=1,2,3 being the SU(2) or 0(3) index 
and J.l,lJ=0,1,2,3 are the Lorentz indices]. An invari­
ant of F~v will mean from now on an algebraic function 
of F~v which is unchanged by Lorentz or gauge trans­
formations, for all values of F~v' A polynomial invari­
ant of F~v is an invariant which is a polynomial in F~v' 
To study the invariants of F~v' it is convenient to de­
fine3 

(4) 

where F*ILV=~fILvPcrFp(J(E0123=1). The Lorentz invariant, 
symmetric 3 x 3 matrices J and K, transform under 
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gauge transformations as 

J- OJOT, K- OKOT, (5) 

where () is a 3 x3 orthogonal matrix representing the 
gauge transformation. A set of nine independent invari­
ants which are polynomials in ~v' of the lowest degree 
are3 

Tr(J), Tr(K), t, t', Tr(J2), Tr(JK), Tr(K2}, 

Tr(J3) , Tr(K3). 
(6) 

We define a polynomial basis to be a minimal set of 
polynomial invariants such that an arbitrary polynomial 
invariant can be written as a polynomial in these invari­
ants. A polynomial basis for the SU(2) gauge field is (6) 
together with Tr(JKJK). This follows from 

Theorem 1: Any polynomial invariant of the SU(2) 
Yang- Mills field can be written as 

Pi + P 2 Tr(JKJK) + P 3 (Tr(JKJK»2, 

where Pi are polynomials in the nine invariants (6). 

(7) 

The proof is a constructive one which proceeds in 
several steps. First we show for all gauge groups how 
to reduce every Lorentz-invariant polynomial in the 
Ff..v to a polynomial in a finite set of Lorentz scalars 
[see below, Eq. (17)]. Using properties of the gauge 
group SU(2), we show that every gauge-invariant poly­
nomial of the Lorentz scalars is a polynomial in t, t', 
and the elements Kij and J,j defined in (4). Finally we 
show how all gauge invariant polynomials in Kii and J1j 
can be written as in (7). 

Slep 1: Every Lorentz -il'll'ariant polynomial in F~v is 
a polynomial in (1 finitc set oj Lorentz scalars. The 
proof is more easily presented in the spinor formal­
ism.4 Define the matrices O~A' by 

a~A' ==[~ ~l ala ==[~ ~J. OiA' ==[~ -OiJ. 

O!A I == [~ ~ J ' 
and let 

From the reality and antisymmetry of F~v it can be 
shown that,4 

if iB .A' B I == <P iB E A' H' + E AB (ji i, 8' , 

(8) 

(9) 

(10) 

where EAB is the Levi- Civita alternating symbol in two 
dimensions, <PiB is symmetric in A, 15 and (jil is the 
complex conj ugate of <Pi. The E tensor is used to raise 
and tower indices and in this respect is analogous to the 
metric in tensor calculus. (10) just expresses the well­
known result that F" v belongs to the (1,0) + (0,1) repre­
sentation of the analytic continuation of the Lorentz 
group to 0(4). 

Any Lorentz scalar built from the IPiB,AIBI must arise 
by contracting the unprimed and primed indices sepa­
rately. Hence it must be formed from products of ten­
sors of the form 

RiJoool _ ,hiB ,hIe 0 " ,h' A R~.···~ - A;l'B';+:'·C' " , A;"A' (ll) 
- '+"A '+"B '¥D, - "PA' 'f"B' '-PE' • 

This is obvious group theoretically- to obtain scalars 
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from a product of tensors belonging to (1,0) + (0,1) one 
must couple the (1,0) pieces and the (0,1) pieces sepa­
rately to form scalars. 

The power of the spinoI' formalism arises because 
the indices A, B , • 0 0 take only two values. It follows 
easily that 

,h(iB,hJ)C _lLii6 C (12) 
'+"A '+" - 4 A, 

where5 

Vi =- 2rfJ;B <p~D ==Kii + iJiJ (13) 

and ( ) denotes symmetrization. Also 

<PiiB <p~e </>~ID == 1,6 AD Tiik, (14) 

where 

TiJk==4<P1iCq{/<p~B, (15) 

[ 1 denoting complete antisymmetrization (over the gauge 
group indices only). Now given a tensor RiJklooo with 
more than three indices, we can write it as a sum of 
R[ilk11o

" ,K(ilkll.
oo and two other tensors which are sym­

metric in the pairs of indices i,j, and j, k, respectively. 
It follows then from (lll, (12), and (14) that 

(16) 

It follows from a repeated application of (16) and its 
complex conjugate that any tensor which is a product of 
Rii'" and RP.· .. defined in (11), can be written as sums 
of products of the Lorentz scalars 

(l7) 

Hence every polynomial invariant is a gauge invariant 
polynomial in the Lorentz scalars (17). 

S tel> 2: Fur lite group SU(2), gauge invariant poly­
IlUliliais oj Ihe Lorel1tz scalars are polynomials in t, ,', 
JiJ,Kii. For SU(2), the indices i,j,k take only three 
values so that since Tiik is completely antisymmetric 

(18) 

where T is a Lorentz-gauge defined by 

(19) 

where t and (' are defined in (4). It follows from (13) and 
the statement below (17) that every polynomial invariant 
of the SU(2) gauge field is a polynomial in I, t' ,Kil and 
J ij · 

Step 3: Every gauge im.(/rianl polynomial in Kli and 
J ii can be writtcn as in (7). 

We notice first that a polynomial in J and K has an 
even number of gauge indices in each term. Since a 
gauge invariant must be formed by contracting with the 
invariant tensors 6jj and Eiik' it is clear that there must 
be an even number of t tensors in such an invariant. But 
an even number of t tensors can be expressed in terms 
of the Kronecker deltas using the relation 
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TABLE I. Inequivalent strings modulo relations (22) and (23). 

Degree Strings 

J, K 1 

2 

3 

4 

5 

6 

.fl, K2, JK, KJ 

,JK,J, .flK, J[(I., KJK 

J 2KJ, KJKJ, JKJK, .flK2, KJx2 

JKJKJ, J2KJK, KJKJK, JKJK2 

J2KJKJ, .flKJK2, KJKJK2 

7 or more None 

0/1 e,m 0jn 

~iJk~/1ftn= 0JI 0Jm 0Jn (20) 

0kl 0km 0kn 

It follows that any invariant which is a polynomial in J 
and K can be written as a sum of products of invariants 
of the form 

(21) 

where a, f3~ 000 are nonnegative integers. We now show 
by an explicit reduction algorithm that (21) can always 
be written in the form (7). 

The key identities for this reduction are obtained from 
the Cayley-Hamilton theorem, According to this theo­
rem, the 3 x 3 matrix K + >-..J for any >-.. must satisfy its 
own characteristic equation. That means that (K + >-..J)3 
can be written as a polynomial in K and J of lower de­
gree, with coefficients involving traces of various pow­
ers of (K + AJ). 

These traces (apart from the factor >-..) are polynomi­
als in the invariants in (6), since3 Tr(J'lK) and Tr(JK2) 
are expressible in terms of tt' ,t,2 - t2, and the remain­
ing invariants of (6). By equating coefficients of >-.., we 
then have 

K 3 -O, 

J3-0, 

K2J- -JK2 -KJK, 

KJ2 --J2K -JKJ, 

(22) 

TABLE II. CoeffiCients in the minimal polynomial relation (27). 

where A - B means that (A - lJ) is a polynomial in J ,K of 
lower degree than the degree of (A - lJ), and whose co­
efficients are polynomials in the invariants of (6). 

Two more useful identities are obtained by applying 
the Cayley-Hamil ton theorem to JK and KJ. This yields 

(JK)3 -0, 

(KJ)3 -0, 
(23) 

if we adjoin Tr(JKJK) to the set of allowable coefficients. 
Note that Tr((JK)3) is not an independent variable since 

det((JK)3) = (det(J)det(K))3, ( 24) 

and det(J) or det(K) is a polynomial in the invariants of 
(6). 

It is now straightforward to show that the complete set 
of matric es of the fo rm Jot K JY KG 0 0 0 (01, f3, Y, 0, ' • 0 non­
negative integers), which are inequivalent under identi­
ties (22), and (23), is given in Table I. Consequently 
any invariant string of matrices can be written as a lin­
ear combination of the strings of Table 1. The coeffici­
ents of this polynomial are polynomials in (6), and 
Tr(JKJK) , which are themselves traces of elements in 
Table I. Thus traces of elements of Table I form a poly­
nomial basis fo r invariants constructed from J and K 0 

Those of degrees less than or equal to 3 are polynomials 
in (6). In degree 4. only Tr(JKJK) is independent of the 
previous ones. There are no new invariants of degrees 
5 and 6. To reduce Tr(J2KJK2) , we need in addition the 
property that J and K are symmetric. We conclude then 
that the only new invariant is Tr(JKJK) [or Tr(J2~)J so 
that a polynomial basis for Yang- Mills invariants are 
the ten invariants 

Tr(J), Tr(K), t, t', Tr(J2) , Tr(JK) , Tr(K2) , Tr(J3), (25) 

Tr(K3) , Tr(JKJK). 

We note that only nine of the above ten invariants are 
independent,3 so that there must be a relation between 
them. If we define 

J' =J - }Tr(J)I, K: =K - }Tr(K)I, (26) 

then the relation is 

Tr3(J'K'J'K') + a Tr2 (J'K'J'K') + b Tr(J'K'J'K') + c= 0(27) 

b =-2*K2*J2K**2t2*JK**4t2*JK*J2K*K2JtJ2**2*K2**2/4-2*J2*K2J**2 
-3*J2*JK**2*K2/2t2*K3*J2*J2Kt2*J3*K2*K2J-2*J3*K3*JK 

c =t2*J2K**2*K2J**2-JK**6/2-2*JK**3*J2K*K2.Jt2*JK**2*K2*J2K**2 
-J2**2*JK**2*K2**2/8tJ2*JK**4*K2/2t2*J2*JK**2*K2J**2-J2*JK*K2 
*J2K*K2JtK3**2*J2**3/9-S*K3*J2K**3/3tK3*J2**2*K2*J2K/3-2*K3 
*J2**2*JK*K2J/3-2*K3*J2*JK**2*J2K/3tJ3**2*K2**3/9-2*J3**2 
*K3**2/3-8*J3*K2J**3/3-2*J3*JK**2*K2*K2J/3-2*J3*JK*K2**2*J2K/3 
tJ3*J2*K2**2*K2J/3t4*J3*K3*J2K*K2Jtl0*J3*K3*JK**3/9--J3*K3 
*J2*JK*K2/3 

W@ have used the followins s~mbols above 

J2=Tr(J'**2) , K2=Tr(K'**2) , J3=Tr(J'**3) , K3=tr(K'**3) 
JK=Tr(J'K') , J2K=Tr(J'**2*K') , K2J=Tr(K'**2*J') 

where J' and K' are the traceless parts of J and K defined in (26), 
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where a. b, and e are given in Table II. Using (27), any 
power of Tr(JKJK) , greater than two, can be expressed 
in the form (7). Since we have shown above that any 
polynomial invariant can be expressed as a polynomial 
in (6) and Tr(JKJK), this completes the proof of Step 3 
and Theorem 1. 

Equation (27) is also the polynomial relation between 
Tr(JKJK) and the nine invariants (6), of the lowest de­
gree in Tr(JKJK). Hence it is not possible to express 
Tr(JKJK) as a polynomial in (6). Also, since the invari­
ants (7) are a set of independent, lowest-degree poly­
nomials in Ftv, it follows that there is no polynomial 
basis with less than ten invariants. 

Consider now the self-dual or anti-self-dual fields 
(Fi =±iF*i) which have the spinor forms "¢i'B' and <piB JJ.II ,",y 

respectively. It follows from the above proof that any 
polynomial invariant formed from <piB (without complex 
conjugation) is a polynomial in 7 and Vi. But since the 
3 x 3 matrix L satisfies its characteristic equation, it 
follows that any polynomial in L can be expressed as a 
polynomial in 

detL, Tr(L), Tr(£2). (28) 

However, it can be shown thatS 

detL = - 7 2 • (29) 

We therefore have the following theorem: 

Theorem 2: Any polynomial invariant of the anti-self­
dual SU(2) gauge field <piB is a polynomial in 

7, Tr(L), Tr(£2) , (30) 

whereas a polynomial invariant of the self-dual SU(2) 
gauge field "¢i, B' is a polynomial in 

T, Tr(L), Tr("f2). ( 31) 

Unlike in the case of the real Yang- Mills field, the 
polynomial basis for self-dual and anti-self-dual fields 
consists of independent invariants. 

So far our discussion has been confined to gauge fields 
defined on Minkowski space- time. It is of course pos­
sible to define Ftv on a four-dimensional Euclidean 
space- time E 4 • Using the isomorphism between 0(4) 
and SU(2) XSU(2), the spinor form (6) can again be ob­
tained for F;'v; but in this case <piB and ;Pi'B' are real 
and independent (not complex conjugates of each other) 
and transform under each of the two SU(2) groups men­
tioned above. Also (9) must be replaced by L =K +J and 
(15) by 7 = ( + t'. It is clear that Theorem 1 and 2 are 
then valid for an SU(2) gauge field on E4 as well. 
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APPENDIX 

In this appendix we sketch the general theory6 of the 
polynomial invariants formed from the basis elements 
of a given representation (not necessarily irreducible) 
of a compact group G. In particular we show how many 
independent elements there are and their degree in the 
original basis. (I f the group is semisimple but not com­
pact. its representations are analytic continuations of 
some compact group. We aJ;lply our results to this group 
and then analytically continue back to the semisimple 
group.) For concreteness one can focus on the F~v 
forming a basis for an 18-dimensional representation of 
0(4)xO(3), or the symmetric matrices J and K of the 
text forming a 12-dimensional basis of 0(3). 

Let E denote the basis elements of a representation 
lJ of G. G acts in the obvious way on polynomials in E. 
Homogeneous polynomials of degree 17 form the basis for 
a representation bIn} of G, namely the totally symme­
tric part of 

lJxDxoo'xD. 

n times 

The number of linearly independent polynomial invari­
ants of degree 12 is the number of times the reduction of 
D{n} contains the identity representation. If we denote 
this quantity by en' the orthogonality of the characters 
implies that 

(AI) 

where dfJ.(g) is the invariant measure on the group norm­
alized to 

(A2) 

It is straightforward combinatorics7 to show that the 
generating function 

~ 

f(t):;o,0 e tn 
n=O n 

can be written as 

j. dfJ.(g) 
f(t) =. det[l - W(g) 1 

If D is reducible. let 

D=D
1 
GD

2
,P·· o+D

m
, 

where Di is irreducible. Then define 

(A3) 

(A4) 

(A5) 

(A6) 

Then cn ooon represents the number of linearly indepen­
dent pofynoi'hials of degree 111 in the basis elements be­
longing to 1J1 .J1 2 in the basis elements belong to D

2
, etc. 

The Yang-Mills fields F~v form the basis for an 18-dimensional representation of 0(4)xO(3). i.e., of 0(3)xO(3) 
x 0(3). The representation is reducible. transforming according to (1, 0.1) + (0.1.1) where each index labels the 
angular momentum J of the corresponding 0(3) groupo (1,0,1) and (0,1,1) are respectively the self-dual and anti­
self-dual parts of F~v' It is then straightforward but tedious to evaluate (A6) for this case 
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(A7) 

where dll now denotes the invariant measure for 0(3) while D!l ) denotes the J = 1 representation. The integrals over 
gl and g2 can be done independently to give 

F(t t) - (1 - tJ + ti) (1 - t2 + t~) J dll(ga) 
l' 2 - (1 - t) (1 - t2 ) det(1 - tiD!!) (ga)) det(1 - [2~(1) (ga)) 

(AS) 

where 

g(tl> t2) = 1 + t~t~ + t~t~. (A9) 

If one expands each of the denominators in (AS), the coefficient of t~t~ denotes how many linearly independent in­
variants can be formed of degree m in the self-dual parts of Fi"v and of degree n in the anti-self-dual parts. Ignoring 
the factor g(tl' t2 ), we see that invariants can be formed by combining arbitrary powers of two quadratic invariants, 
two cubic invariants, three quartic invariants, and two invariants of degree 6. (Here we have not distinguished be­
tween self-dual and anti-self-dual parts.) This agrees with the fundamental invariants listed in (6) of the text. How­
ever, the presence of g(t1' 12) indicates that these do not suffice. There is clearly one more linearly independent 
polynomial invariant of degree S and another of degree 16. These corresponds to Tr(JKJK) and Tr2(JKJK). The 
absence of a term like t~2W in g(t l' [2) means that Tra(JKJK) is not an independent invariant. 
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A new approach to the inverse problem 
c. E. Siewert8 ) 

Service d'Etudes des Reacteurs et de Mathematiques Appliquees, Centre d'Etudes Nucleaires de Saclay, 
B.P. 2, 91190 Gif Sur Yvette, France 
(Received 5 April 1978) 

The full-range orthogonality theorem concerning the elementary solutions of the equation of transfer is 
used to develop a solution of the inverse problem for a finite plane-parallel slab. 

I. INTRODUCTION 

The solution of the inverse problem given recently l 

for a finite slab is an improvement over previous in­
finite-medium results2

- 4 ; however, because the reported 
solution1 depends on spatial moments of the total flux, 
more improvement is sought, From an experimental 
point of view a solution in terms only of surface quanti­
ties is what is most desired. Here we wish to report a 
method by which the desired solution can be established. 

II. ISOTROPIC SCATTERING 

To study first the simplest inverse problem for radia­
tive transfer or neutron diffusion in a finite slab we 
consider the equation of transfer 

(1) 

where </J(x, J-L) is the angular flux, x is the position vari­
able measured in mean-free paths, and w is the single 
scattering albedo, Here for a transport problem de­
fined by the boundary conditions 

(2a) 

and 

(2b) 

we wish to find w in terms of II (jJ.) J 2(J-L) and the exit 
distributions </J(- a, - J-L) and </J(a, J-L), J-L > O. This problem 
was solved recently5 for II (J.t.) = J.t.B, /3 = 0,1,2,' •• , and 
12(J-L) = 0; however, here we intend to develop a solution 
to the general problem and to establish a procedure that 
can readily be generalized to the case of anisotropic 
scattering> 

We begin by expressing ~'(x, J-L) in terms of Case's 
elementary solutions, 6 i, e, , 

iJ,(x, J-L) = A(vo) <I> (vo' J-L)e-x / Vo + A (- vo)<I>(- vo' J-L)ex/ Vo (3) 

+ tA(v)<I>(v, J.t.)e-x / v dv, 
-1 

where 

<I> (v , J-L)= ~v Pv C! ,,,)+ ;\,(v)o(v- /J.), 

;\,(v)=1-wvtanh- 1 (v), 

and ± Vo are the zeros of 

(4a) 

(4b) 

(5) 

a) Permanent address: Nuclear Engineering Department, North 
Carolina state University, Raleigh, N. C. 27607. 

A(z) = 1 + ~z JI ..!!J!... 0 

2 -1 /J. - z 
(6) 

In Eq, (3), A(vo),A(- vo), and A(v) are expansion co­
efficients to be determined by the boundary conditions 0 

We shall not need them here. We can now use the full­
range orthogonality theorem6 

t<l>(~,J-L)<I>(e,J.t.)J-LdJ-L=O, ~*e, (7) 
-1 

to deduce from Eq 0 (3) that 

t<l>(-~,/J.)'jJ(±a,/J.)/J.dJ.t.=A(-~)N(-~)e±an, ~EP, (8) 
-1 

and 

f<l>(L J.t.)</J(± a, 11)J-L dl1 =A(~)NWeTaH, ~E P, 
-1 

(9) 

where N(± 0 are normalization constants and ~ E P = > ~ 
= Vo or ~ = VE (0,1). We can now eliminate A(± ~) N(± ~) 
in '8qs. (8) and (9) to find the equations used recently by 
Siewert and Benoist' to develop the F N method of solving 
llroblems in neutron diffusion, i. e. , 

(lOa) 

and 

t <I>(L 11)</J(a, 11) 11 dl1 - e-2a
f{ 

<1 (lOb) 

Equations (10) define a system of singular integral equa­
tions and constraints that can be used to deduce the 
exit distributions when w is given; however, we can use 
Eqs. (10) here to find w when we assume we can deter­
mine experimentally the exit distributions. Thus if we 
use Eq. (4b) in Eqs. (10) for ~=VE (0,1) we can solve 
immediately for w; from Eq. (lOa) and Eq, (lOb), re­
spectively, we obtain 

2 
w=k

1
(v)[iJ,(-a,-v)-<J;(a,-v)e"2a/v], VE (0,1), (lla) 

and 

2 
w = k

2
(v) [iJ,(a, v) -1jJ(- a, vk 2a / v], VEe: (0,1), (llb) 

where 

(12a) 

and 

(12b) 
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with 

T(/i, v) = Pv (_1_)+ 2 tanh- 1 (v)6(1l- v) ~ 
Il-V 

(13) 

Clearly any value of VE (0,1) can be used in Eqs. (11) 
to give an explicit result for w in terms of the exit dis­
tributions. The limit as v- ° is particularly interesting; 
we find 

W =2if:(- a,O) [['~(- (I, - /1)d/l + r\ (1-,) d/l] -1 (14a) 
'0 '0 

and 

w = 2<J;(a, 0+) [.C<b«(I, Il) d/l +.c f 2 (/l) d/l ]-1. (14b) 

It is curious that Eqs. (Ha) and (14b) involve, respec­
tively, only the angular distribution at x = - a and x = a. 
It is also obvious that other expressions for w can be 
obtained from Eqs. (10) for ~ = VE (0,1); e,g" we can 
multiply Eqs. (10) for ~=VE (0,1) by "arbitrary" func­
tions, say C1(v) and G 2 (v), and integrate ove'" v to ob­
tain 

w = 2fC1 (v)[i/'(- (/, - v) - J'«(I, - v)e- 2a
/

v l dv 

fGl(vlk1(v) dv 

"I. ANISOTROPIC SCATTERING 

(15a) 

(15b) 

Let us now consider the extension of the method dis­
cussed in Sec. II to the general case of anisotropic 
scattering We start with 

o 
/l ;-i/'(x, /l) + i/'(x, /l) 

uX 

N 

= ~ fo (21 + 1 )f,p , (Il) J
o

// (/l')i/!(x, Ii') d/l' , (16) 

(17a) 

and 

(17b) 

Here fo = 1 and we seek to express w.J1 .J2 , ••• .IN in 
terms of the surface quantities ~(± (I, I-c). Following the 
notation of McCormick and Kuscer, B we can write 

~ 
<b(x, /l) = .0 [A(Va) <jJ(va , /l)ex/v a +A(- va)i/J(- v"" /l)ex

/
v",] 

a=O (18) 

+ tA(V)i/J(V, /l)e- x
/

v dv, 
-I 

where now we have K± pairs of zeros (± v o) of 

(19) 

We noteS that 

i/J(v",,/l)=~vag(VCi,/l) C"'~ /1)' (20a) 

¢(v, /l )=~Vg(v, J1)Pv (_\}. A(v)6(v - {L), (20b) 

and 
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W [1 dl-' 
A(v)= 1 +-2 vP g(J-L, J-L) --, 

. -I Il - v 
(21) 

where 
Ii-. 

g(v, Il) =0 (2l + l)fl g/(V)Pl(ll). (22) 
1=0 

In addition, Pr(ll) is used to denote Legendre's polynom­
ial and the polynomials ,!{/(J-L), of order l, are those in­
troduced by Chandrasekhar. 9 Our task of determining w 
and the coefficients fl would be extremely simple were 
it not for the fact that the ,!{I (v) depend on 

hi = (21 + 1)(1 - wJ); (23) 

e.g. , 

and, in general, 

(1 + 1),!{1+1 (v) == vh,g,(v) - 1,!{1_1 (v). (25) 

The full- range orthogonality relation concerning the 
elementary solutions is of the same formB as for the 
isotropic scattering case, i. e. , 

.1 I rjJ(~,Il)rjJ(e,J-L)J-Ldl..i=O. ~*e, 
. -1 

(26) 

and thus we can readily generalize Eqs. (10) to obtain 

t rjJ(~, /l)ij(- (I, - /l) J-L dll- (,-2al{ t rjJ(~, J-L)Ij!(a, - 0) J-L d/l = 0, 
. -I '-1 

~c P, (27a) 

and 

t ¢(~, 1l)J:(a, J-L) 0 dll- ('2al< C rjJ(~, M)i/'(- (I, /l) jJ. dll = 0, 
. -1 . -1 

~cP, (27b) 

for the general case. Here ~c. p=> ~F{V",}U (0,1). If 
we now enter Eq. (20b) into Eqs. (27) we obtain 

(28a) 

and 

(28b) 

where 

(29) 

with 

(30) 

It is clear that N + 1 values of v E (0,1) can be chosen to 
generate, from either Eq. (28a) or Eq. (28b), N+1 
algebraic equations involving the N + 1 unknowns; how­
ever, the equations are nonlinear I If we let 

(31a) 

and 

(31b) 
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then we can write Eqs. (28) as 

N.. 
L.i(2Z+1-hl )g,(II)R:ll(II)=2l\111(1I,1I), liE (0,1), 
I-a 

and 
N 

~ (2l + 1 - h,)g, (II)R:2) (II) = 2M2(1I, II), liE (0,1), 
1=0 

where the known functions are 

R:CJ<) (II) 

(32a) 

(32b) 

= f [P, (/J.)Pv (/J. ~ II) + 2Q,(II)1i(j.< - II~Ma(/J.' 1I)/J. djJ. 

rl d/J. 
+(-1)I .Jo

P ,(/J.)M a(-Jl.,II)J.l Jl.+II' (33) 

We can consider Eqs. (32) evaluated at selected values 
of liE (0,1), say {liB}, or multiply the equations by a 
sequence of convenient functions, say {GB(II)} , and in­
tegrate over II to generate equations to be solved for the 
h" It is rather easy to see that it is sufficient to solve 
2N, for N> 0, linear algebraic equations to establish 
the desired h" Although the inversion of a 2Nx 2N 
matrix is required here, it is clear that the inverse 
problem can be solved in this manner. One serious 
limitation to this solution is the fact that N must be 
specified before finding the various h" The solution 
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given in Ref. 1 did not suffer from this fact, but it did 
require the flux at all x. Clearly what is desired here 
is an orthogonality relation that could be used with Eqs. 
(32) to extract the coefficients h" To date, such a re­
lation has not been found. 
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SU2 monopole harmonics 
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Institute for Theoretical Physics, State University of New York. Stony Brook. New York 11794 
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For a particle of I -spin I in an SU, monopole field in five-dimensional Euclidean space. the monopole 
harmonics are found, They belong to the irreducible representation (P.q), where p = q +21. They form 
a complete set of wave sections. 

1. INTRODUCTION 

It was pointed out two years ago that the "wavefunc­
tion" of a charged particle around a Dirac magnetic 
monopole should be a wave section. 1 The angular part 
of wave sections were called monopole harmonics. They 
have been extremely useful for studying electron­
monopole interactions. 2 Now Dirac's monopole has been 
generalized3 to an 8U2 monopole, In this paper we de­
velop the corresponding 8Uz monopole harmonics. We 
shall concentrate on the 8Uz monopole field {3 of Ref. 3. 
(The result for the other 8Uz monopole field, field CI', 

is easily obtained from the results of this paper. ) 

To be more specific we study the angular part of the 
wave sections of a particle of 8U2 spin I in field {3 in 
five-dimensional space. The angular momentum opera­
tors L"v (Il, v = 1,2,3,4,5) have been given explicitly 
in ReL 3, 

L,," = - LVj1. = xj1. (;\ + Ykb~) - x"(i1j1. + Ykb~) -/-f~"Yk . 

(10 1) 

They satisfy the commutation rule 

[L"v, LaS 1 = 0va L j1.S - oj1.O'. L"$ - o"B Lj1.a + oj1.$L"O'., (1. 2) 

which are the commutation rules for the infinitesimal 
operators of the group 805 

There are ten generators Lj1.V_ Of these, six are those 
of the subgroup 804' We follow the standard method of 
decomposing them into two SU2 algebras: 

-i 
J 3 = '"2 (L 12 + L 34 ), 

Kl = -2
i 

(L 23 - La), K2 = -2
i 

(L 31 - L 24 ), 

(L 3) 

They form two sets of commuting angular momenta J 
and K: 

Furthermore, they are all Hermitian, since iYk is 
Hermitian. 

We have thus the following five operators 

5 

A o=~ ~ (Lj1.Y, J2, K2, J 3 , K3 , (15) 
u Iv::.1 

which are all Hermitian and mutually commute. The 
problem we want to solve is to find the Simultaneous 
eigensections of these five operators, if Lj1.V is given 
by (1. 1). 

2. MATRIX REPRESENTATION OF (1.2) 

We find in this section all irreducible matrix repre­
sentations of (10 2), ignoring (10 1), with LjJ.v being rep­
resented by anti-Hermitian matrices. That is, we find 
all irreducible representations of the covering group of 
S050 We first diagonalize all five operators (1. 5). Be­
cause of (1. 4) the irreducible representation must con­
tain blocks, each with (2j + 1) (2k + 1) states, where j 
and k are defined by 

diagonal element of J2 =.i0i + 1), (; = 0, t 1,0'0), 

diagonal element of K2 = HI? + 1), (1, = 0, ~, 1,00'). 
(2 1) 

Each such block will be denoted by (j, k)4 and forms an 
irreducible representation of the subalgebra of Lj1. v, 

Il, v = 1, 2,3,4. 

Each irreducible representation consists of a collec­
tion of such blocks {j, 1;)4 of states. Some examples 
are given in Fig, 1. We use the + signs to indicate the 
collection of blocks. 

Theorelll 1: Each irreducible representation (p, q)5 
is designated by two integers p, q so that p -. q -.' O. For 
this irreducible representation, A of (1. 5) is diagonal 
and all diagonal elements are equal to _ ~p2 _ ~q2 
- q - 2p. The states of (p, q ls are a collection of blocks 
(j, ")4, 

(2,2) 

where 

r=}(p - q), ~(p - q) + 1, ... , ~(p +q), 

s =1(q -I)~, ~(q - p) + 1, ... , Hp - qL 

lNo (j, /;:)4 occurs more than once in (2.2).1 The dimen­
sion of the representation is NX!V where 

(2 3) 

The proof of this theorem is somewhat tedious and 
will be omitted. Examples of the sum (2.2) are graphi­
cally given in Fig. 10 

We notice that the states with the highest eigenvalue 
of J3 in (p, q)5 are in the right-most circle in Fig. 1, 
i.e" in (~P,lq)4o This highest eigenvalue is }p. For 
states with this eigenvalue for .'3 there is one and only 
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FIG. 1. Examples of the decomposition of irreducible repre­
sentations (p, q)5 of the covering group of S05 into sums of 
(j, k)4 which are irreducible representations of the covering 
group of S04. p?: q?: 0 are integers. Each ci rcle represents 
one U. k)~. The leading state belongs to the right-most circle, 
which is always (~p, ~q)4. The circles form a rectangle with 
the left-most corner at (0, ~p - ~q)4. 

one with the highest eigenvalue ~ q for K 3 • This state 
will be called the leadillg slale of (p, q)s. 

In our notation here, p and q are related to that of 
Ref. 4 by 

(2.4) 

3. SOs ORBITAL HARMONICS 

The generators LI"v consist of an "orbital" part L .. v 
and an isospin part involving Y k : 

o a 
L .. v=-Lv .. =x .. ov-xvo ... 

These orbital operators are L .. v when Y =0. We de­
fine J and K in the same way as (1. 3L By straight­
forward evaluation we find 

The operators LI"v operate on angular functions in 
the five-dimensional space These angular functions 
decompose into blocks, each belonging to one irreduci­
ble representation of 805 0 We shall find in this section 
these irreducible representations and the angular func­
tions that belong to them, The main result is 

Theorem 2: The linearly independent homogeneous 
polynomials of xl. x2, x3, X4,.\5 of degree p transform 
into themselves under a rotation 805 • The transforma­
tion matrix Alp forms a representation of 805 Mp de­
composes into a sum of irreducible representations, 

Alp = (p,p)s + (p - 2,p - 2)5 + (p - 4, P - 4)5 

+, 0' + [(0,0)5 or (1, 1}s]. (3.2) 

The homogeneous polynomials of degree p belonging 
to (P,P)5 will be called 80s harmonics, The collection 
of all S05 harmonics, for p = 0, 1,2, ' , " forms a com­
plete set of angular functions. 
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Proof: (a) We first choose as independent homo­
geneous polynomials of degree p, 

(Xl +ix2 )a(X1- iX2)b(X3 +iX4)C(X3 - iX4)d~, 

a+h+c+d+e=p, 
(3.3) 

where a, b, c, d,o and "0 are integers:> O. (3.3) is an 
eigenfunction of J 3 and K3 with eigenvalues 

l(a- lJ+ c - d) and ~(a- b - c + d), (3.4) 

respectively. Thus the largest eigenvalue of ~ is ~p, 
for states with a + c = p, b == d == e == 00" A mong these, the 
one with the largest e~envalue for K3 obtains for the 
case (" = 0, for which [(3 has eigenvalue ~p. Thus the 

1 1 0 0 
leading state of Mp has eigenvalues zp,zP for J 3 , K 3 , 

This state is contained in Mp exactly once, By Theo­
rem 1, Mp contains (p,p)s exactly once. Furthermore 
Alp does not contain any (p', q/)5 for which p' ' po 

(b) We write 

Mp = (p, Pl5 + Op • 

Now (2:~x~) times the homogeneous polynomials of 
degree p - 2 form a subspace (of 1\Jp ) that transforms 
into itself. Thus NIp contains M p_2 • But }vlp_2 contains 
no (p', q') with p' :-.. p - 2, according to (a) above 0 Hence 
NIp_2 is contained entirely in Opo The dimension of Mp 
is easily seen to be C!+P_1. The dimension of (p, P)5 is 

{(p + l)(p + 2)(2p + 3). Hence the dimension of Op is the 
difference of the two, which is exactly C;:~p-2 )_1 == dimen­
sion of M p_2o Thus 

Alp = (p, P)5 + lHp_2 • 

We thus obtain (3.2) by iteration. 

(c) The completeness of the 805 harmonics follows 
from the completeness of the polynomial functions. 

Theorcm 3: The 805 harmonics Z (which are poly­
nomails) of degree p defined in the last theorem satisfy 

(3,5) 

Proof: In a straightforward way we find 

( 

5 0 ) 2 
A=~ ~ L ltv 

J1. ,11=1 

= ~ [x~ a~ - (ovxv)(x .. o .. )] 
It~V 

(3.6) 

Now 

(rJr)Z =pZ" 

Using Theorem 1 which shows that AZ == (_ p2 - 3p) Z, 
we arrive at (3,5). 
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TABLE I. 805 harmonic functions for p=O, 1, 2. These func-
tions have not been properly normalized. 

(p,p)s j k mj m k Z (unnormalized) 

(0,0)5 0 0 0 0 1 

(1,1)5 1 l ~ l XI +ix2 li 2 2 

~ -! X3 + ix4 
1 .! X3 - ix4 -2 2 

-~ -.! XI - ix2 2 

0 0 0 0 X5 

(2,2)5 1 1 1 (xI +X2)2 

1 0 (xI + ix2)(x3 + ix4) 

1 -1 (x3 + ix4)2 

0 1 (xI + ix2)(x3 - ix4) 

0 0 xI + x~ - X! - xi 
0 -1 (xl - iXz) (X, + iX4) 

-1 1 (x3 - iX4)2 

-1 0 (xI - iX2)(x3 - ix4) 
-1 -1 (xI - iX2)2 

1 1 1 1 X5(XI+ ixz) 2 2 "2 li 
1 -~ X5(X3+ ix4) 2 

1 1 
X5(X3- ix4' " 2 

1 -~ x 5(x l -ix2) -2 
0 0 0 0 5xg - r2 

Theorem 4: A homogeneous polynomial of Xl, .,., Xs 

of degree p that satisfies (3,5) is a SOs harmonic as 
defined in Theorem 2. It belongs to (p,p)s under SOso 

Proof: Let Z· be a polynomial belonging to 
(p - 2, P - 2)5 in the decomposition (3.2). 

(rcy)Z' =pZ', 

By Theorem 1, 

AZ'=[-(p-2)2_ 3(p-2)]Z', 

Thus (3,6) gives 

(V6 il~)Z' =[_ (p - 2)2 _ 3(p _ 2) +p2 + 3p]Z' 

=(4p+2)Z' 

Thus Z' is an eigenfunction of v= a~ with eigenvalue 
4p + 2' O. Similarly, we find the decomposition (3.2) 
is a decomposition into different eigenvalues of 
(v L: a~). The theorem follows. 

The (unnormalized) harmonics for p = 0, 1,2 are 
tabulated in Table 1. 

4. ANGULAR VARIABLES 

It is convenient to introduce the angular variables 
Y, e, ~l, ~2' ~3 defined by Eqs. (18) and (22) of Ref. 3, 
We can express the operators 1 .. " in these variables 
in a straightforward evaluation, We obtain 

(4.1) 

(4.2) 
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6 ~ ~2 aa~) , 
(4.3) 

where all i, j = 1,2,3. The Laplacian operator L: 5 a~ can 
be expressed in the angular and radial variables by 
combining (3.6) with (4.2), and agrees, of course, with 
the standard expression obtainable from the metric 
given in Ref. 3. 

The homogeneous polynomials of degree (2j) of 
xl, X2, X3, and x4 (without xs) form a representation of 
S04 rotations of these four coordinates. Breaking the 
representations into irreducible ones, (a, (3)4, one ob­
tains 0'= {3 through the use of (3,. 1L The largest one is 
obviously (j, j)4. The states of this irreducible repre­
sentation are thus equal to 

(r sine)2
i Wi ,mj'''''' Ul, ~2' ~3)' 

where W will be called azimuthal functions, which are 
generalizations of the usual azimuthal functions 
exp(im¢). They satisfy 

o 

J3 Wj ,mj ,mk = 111 i IVj .mi' mk ' (4,4) 

Notice that the operators J and K are dependent only on 
~i and ?/a~i' as is obvious from (4,1). We shall further 
define the W's with phases and normalization factors 
such that the usual formulas 

are valid. Under an S04 rotation in Xl, X 2 , X 3 , x 4 , the W 
function transforms under the irreducible representation 
(j,j)4 

The harmonic functions of Sec. 3 are thus 

Using (4,2), (4,3), (4.4), and Theorem 1 we find 

or 

2 0 1 ~('3a) (- p - 3p) Z =AZ = sin3e iI8 sm e ae Z 

4 
~ j(j+ l)Z, - sin e 

(4.6) 

(4.7) 

This can be solved using Jacobi polynomials. We shall 
not go into it here since (4, 7) is a special case of a 
more general equation to be solved in Sec, 6 below. 
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5. EVALUATION OF J AND K 

We have by definition 

L12 = 112 + Yk[X1b~ - x2 b11- 1)/i\Yk . (5.1) 

The field strengths f and the potentials b have been 
given explicitly in Ref. 3, and in Eqs. (3713) and (34'/3), 
but in coordinates r, e, ~o We want now to evaluate L12 
in Cartesian coordinates. The evaluation is a straight­
forward tensor transformation. One obtains, after 
some algebra, for3 region (I, 

Yk (x1b~ - \2h~) 

= _ 4\~ '/~~~2e) [~(1- ~2)(!;1Y2 - !;2 Y1) + !;2Y3 - ~3(~' V)}, 

})rt2 Y k = (above) + Y 3 · 

Thus we obtain the simple formula 

L12=L12-Y3' 

Similarly, we start from 

L14 = 114 + Yk[Xl b: - x4l!t] - ~/ik4Yk 

(5.2) 

(5.3) 

and evaluate the terms" After some algebra we obtain, 
for region (I, 

Y k (\1b~ - X4bn 

4(1-COS&)[l( 2)(y t Y t) «to}T) 
= (1 + ~2 )2 2 1 - ~ 2 ~3 - 3 ~2 + "1 s 

+!(1- ~2h'll, 

1)f1~Yk = (above) - Yl. (5.5) 

Thus we obtain the simple formula for region (I, 

L14 = 114 + Ylc (5.6) 

Cyclically permiting 1,2,3 in (5 3) and (5.6) and adding, 
we obtain 

TheorclI1 5: 

Notice that iY = 1 is the isospin of the particle moving 
in the monopole field (30 Similarly we obtain 

ThcorclJI 6: 

(5.8) 

Is the extremely simple form for J and K given above 
surprising? It is really not, since the operators J and 
K are in the "azimuthal" plane, and the corresponding 
azimuthal problem for the Dirac monopole results in 
the very simple formulas (20) of Ref. 1. 

It will be proved in Appendix A that in the overlap 
between regions (I and b, 

J + iY =r1 JT, K=.r1(Ib-iY) T, (5.9) 

Le. , 

where T is the representation, for the isospin 1 in ques­
tion, of the transition function ToT has been explicitly 
given in Ref. 3, Eq. (2413). Thus the wave sections in 
regions (/ and b are related by 
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(5.10) 

which is as it should be. 

Equation (5.9) is the generalization of 

(- iO<t> +q) = exp(- 2iqcjJ)(- iC<b - q) exp(2iqcjJ) (5.11) 

for the gauge transformation between regions ([ and b 
in the discussions of Ref. 1 for the Dirac monopole. 
Compare Eqs. (20) in that reference 

6. EIGENSECTIONS X 

Consider a simultaneous eigensection X for all five 
operators (1. 5). Since L,.v satisfies the commutation 
rules (L 2), we consider an eigensection belonging to 
(p, q)s, and satisfying 

J2X =j{j + l)X, K2X =11(k + l)X, 

,J3X=lII j X, K3X = I1IkX, 

In region (/, Theorem 5 and (3.1) thus show that x(a) 

belong to eigenvaluoe .i{j + 1) for 32 = K2, and to eigen­
value !?(k + 1) for (K + 1)2. Consider for fixed j and ni j 

the states 

I), iJl j , mL 111]) = (Wj,mj,mk) XmI(s), (6.1) 

where s is the isospin coordinate, 111] denotes the third 
component of I, and X is the spin wavefunction. W is 
the azimuthal function defined in Sec. 4. Using Clebsch­
Gordon coefficients for combining states with different 
mk and 11/], we define linear combinations of (6.1) to 
obtain an eigenstate U of (K + 1)2 and 1<3 + 13 with eigen­
values I?(l? + 1) and IJIk The state will be written as 
UJ' k m m • Thus 

, I j' k 

(6.2) 

We have 

(6.3) 

To determine Ga(&) we need to evaluate the operator 
A of (L 5), resulting in, in region ([, 

A - _1_ ~ ( . 3&~) 4J
2 

2(1- cos&)[K2 J2 12] 
- sin3e ae ,sm oe - sin2e - sin2e --

_ (l-co:~~~&+cose) 12 (iY=I). (6A) 

The details will be given in Appendix B. Since we have 
assumed that X(a) belongs to (p, q)s, the eigenvalue of 
A is, by Theorem 1, _ ~p2 _ ~ q2 _ 2p _ q. Those of J2, 
K2, and 12 are j{j + 1), !?(k + 1), and 1(1 + 1), respective­
ly_ Thus 

(t,p2 +t,q2 + 2p + q) G 

= - S-%(S3de G) + [4j{j + 1) + 2(1- C)[W1 + 1) 

- j(j + 1) - 1(1 + 1)] + (1 - c)(3 + c) 1(1 + 1)] Gs-2
, 

(6.5) 

where c = cose, s = sine. Putting 

(6.6) 
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one obtains 

'YH = --=-l d ( . e dH) + [j - k + (j + II + 1) cosey H 
sine d8 sm de sin28 ' 

(6.7) 

where 

- 'Y = U + 1? + 1)2 - 2 + 1(1 + 1) - ~/ - ~i - 2p - q. (6. 8) 

Equation (6.7) is of the form of Eq. (22) of Ref. 1. It 
has no allowable solution for 0 ~ e ~ 11 unless 

1'~i+l?+1, (6.9) 

which follows from the usual indicial equation-poly­
nomial expansion treatment. Now we concentrate on 
the leading state of (p, q)s so that p = 2j, q = 2k. This 
state must exist if (p, q)s exists. Equations (6.8) and 
(6,9) then become 

1(1 + 1)~ [±(p - Q)lU(p - q) + 1l. 

Thus I "" ±(p - q). 

Combining with (6.3) we obtain 1 =±(p - q). Thus we 
have 

Theore11l 7: The only SU2 monopole harmonics are 
those for which 1= ±(p - q). 

We notice that for 1 = 0 this reduces to what was al­
ready known for orbital harmonics: p:= q. 

Putting p - q = 21 into (6.8), (6.7) becomes identical 
to Eq, (22) of Ref. 1 with l =[ + q + 1. Thus we can 
read off the solution from Eq. (28) of that paper, 

H = (1- cos8)oo!2(1 + cose)S /2 p~ ,Il(cose), (6.10) 

where p~ ,8 is the Jacobi polynomial and 

a=2j+l, 13=-2"-1, and II=I+q+l+!?-j 

(6.11) 

are all integers (n, 11 + a, n + J3, )'l + a + 13 are all " 0). 

We have thus proved 

Theore11l 8: The SU2 monopole harmonics are 

which belongs to the representation (p, q)s where 
p=q +21, The integers a,J3, II are defined by (6,11), 
Equation (6,12) is valid in region n. In region Ii, X tb

) 

is obtained from (6. 12) by operating on it with the rep­
resentation T of the transition function. [Compare 
(5, 10L 1 Since T operates only on U, the 8 part of (6.12) 
is unchanged, Equation (6.12) has not been normalized. 

The condition p = q + 21 means that all SU2 monopole 
harmonics belong to irreducible representations 
(q + 2/, q)5 which in Fig. 1 consist of (j, l?)4'S lying along 
21 + 1 parallel lines running from the lower left corner 
to the upper right. The smallest such representation 
is (21,0)5' 

2626 J. Math. Phys., Vol. 19, No. 12, December 1978 

ACKNOWLEDGMENT 

The author acknowledges partial finanCial support 
from the National Science Foundation under grant No. 
PHY -76-15328. 

APPENDIX A 

(AI) 

For the case of 1 =l. by Eq. (2413) of Ref. 3, 

T = (1 + ~2)-2l1_ e - 2i ~. 0-]. (A2) 

Using this we can evaluate explicitly the righthand side 
of (A 1) obtaining 

(A3) 

Now the second and third terms on the rhs of (A 1) 
for the general case (i. e., any 1) must each be linear 
homogeneous in Y j , because T is the representation of 
the gauge group with Y as the infinitesimal operators, 
Thus the validity of (A3) for one case, the case of I cd, 
is enough to show that it is valid in general. 

Similarly we can prove 
_1 n 0 

T (L;4+Y j )T=L j4 - Y i • 

Equation (5.9) then follows easily. 

APPENDIX B 

To prove (6.4) we first evaluate ~L:iL~v by separating 
out the terms of degrees 0,1 and 2 inf,,". The degree 1 
terms vanish because off~v\" =0. The degree 0 term 
can be further separated according to the powers of h" 0 

We thus obtain 

A =?(?~ + (b v y)2 + 2bv YCl v + bv,vYl 

- (yay - 3Yor + ~ r 4 ~ (t~vY)2, (131) 

where we have suppressed all i indices. For example, 
bvY =b~Yio 

Now we use the explicit expressions (34' Ii) and (37/3) 
of ReL 3 for b" and f"v to evaluate (Bll, resulting in, 
in region II, 

A = Si~38 :8 (sin
3 :4) + ~ ~S~3 ?a~j (1hz a~j) 

_ 2(1- cos e) (j3~Y ~_) 4(1- cose)(3 + cos e) (t3ky )2 
sin2e I k ()~i + (1 + {'Y sin2e i" 

where 

J3; =0 (1 + ~2)2 fJ; / (4 sin e) 0= ~; ~j + } (1 - 1;2) 0i; - E Uk I:;, 

(133) 

andfe~ isf8j~ as defined in ReL 3. Now (133) and (4.1) 
lead to J 
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Hence 

where 

which follows from (5.7) and (3.1). Furthermore 
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o 
Now (3,1) and (5.7) show that (4.3) is equal to - 4J2 

=_4J2
• Using this fact and (B4), (B6) we obtain (6.4). 
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Neutron stars: Analytical continuation of the ingoing 
gravitational wave amplitudes and asymptotic eigenfrequencies 
distribution for even modes 

P. Cazzola 
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L. Lucaroni 
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With reference to a hot perfect fluid neutron star with an equation of state whose behavior is polytropic 
near the surface and in the framework of an arbitrary multipole of even order I;:: 2, the "ingoing" 
gravitational wave amplitude of frequency w is analytically continued to the region Imw < 0, This is 
performed by suitable rotations of the integration paths in the multiple integrals expressing the successive 
iterations for such amplitude, The analytical continuation allows us to successively obtain the asymptotic 
eigenfrequency distribution for w---+ co. This differs in some cases from that obtained in a previous paper on 
the basis of a conjecture regarding the analytical continuation of the ingoing amplitude, although it 
maintains the same qualitative features. 

I. INTRODUCTION 

In a previous paper, 1 hereafter denoted by I, with 
reference to an even mode of given frequency w, belong­
ing to a multipole of order l :> 2 and in the framework of 
general relativity, we constructed systems of integral 
equations for amplitudes describing coupled sound and 
gravitational waves in a hot perfect fluid neutron star 
with an equation of state whose behavior is polytropic 
near the surface. This was achieved, among other 
things, in view of obtaining the eigenfrequency distribu­
tion for u) - if'. 

This, in its turn, may be useful to establish the 
completeness (if any) of eigenmodes with respect to a 
small arbitrary perturbation of the star and of the 
surrounding gravitational field. 

If lV(w) denotes the Wronskian constructed with the 
physical internal amplitude and the ingoing one for a 
given w, any eigenfrequency wn is a solution of the 
equation W(- «.,) = 0 and vice versa. 

Now, for 1m,",' 0 and W_ Xl the above equation is 
never satisfied, as can be deduced from Sec. 7 of 
Ref. 2, hereafter denoted by IL 

On the other hand, the analytical continuation of the 
ingoing solution IIj- u!) for Imw 0 is necessary for 
the determination of the eigenfrequencies in this region. 
Equivalently, one has to continue IIjw) to the region 
Imu." O. 

Indeed in such a case, the multiple integrals ex­
pressing the successive iterations for the ingoing 
amplitude diverge. 

In the present context suitable rotations of the inte­
gration paths in the Gauss plane for the integration 
variables are performed; by means of them, new inte­
gral representations are obtained for the iterative 
terms, which hold both for Imw" 0 and Imw" O. 

We observe that in Paper II we obtained an asymptotic 
expression for W(- w) holding for 1mw < 0; the same 

expression was used also for Im'"-" 0 on the basis of 
two assumptions on the analytical continuation of the 
ingoing amplitude to the region Imu.' " O. 

Such assumptions, however, turn out to be verified 
only for distances larger than the star radius and for 
particular values of the polytropic index. 

The correct eigenfrequency distribution obtained in 
this context differs in some cases from that obtained 
in Paper II, even if it maintains in any case the same 
qualitative features. 

The plan of this paper is the following. 

In Sec. 2 the analytical continuation of the ingoing 
amplitude is performed. 

In Sec. 3 the general asymptotic eigenfrequency dis­
tribution is determined. 

In Sec. 4 we compare such distribution with that ob­
tained in Paper II. 

2. ANALYTICAL CONTINUATION OF u 

For the symbols appearing in this context reference 
is made to Paper I; moreover, as in Papers I and II, in 
the following C, Cu, C1, C2,'" will denote positive w 
independent constants. 

As seen from (1. 5. 3) the (II + l)th iteration for 11_ 

reads 

x II~U)(rn+l; w) rlrn+I' (2.1) 

where, for the moment, 1"i are real nonnegative varia­
bles and II~O) is given by (1. 5. 3), (1. 3. 20). As stated 
in Sec. 1, the above expression does not define 112n

+
l

) 

for 1m,",'" 0, since the integral over rn+1 diverges. 
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Therefore, the analytical continuation of u~n.l) for 
Im,,-' <: 0 is required and this will be achieved by means 
of a new integral representation of u~"+I), which is 
equivalent to the above one for Imw? O. In order to 
obtain it, we first choose the integration variables to 
be Wi = Wg(') instead of r i , Wg being defined by 
(1. 3. 6), and then we perform suitable rotations of the 
integrations paths in the Wi complex planes. The con­
venience of such new representation lies in the fact 
that the integrals involved in it are convergent also 
for Im,,-' O. 

In order to carry out the above program, an inductive 
procedure will be adopted by means of the expression 

/(~n+I)(Wg; w) 

= t Wg gl(W" WI; w)[Vl1/(~n) exp[(v - A)/2J)wl ;w dWt, 

(2.2) 

which is equivalent to (2.1). 

Consider the region D in the Wg complex plane con­
sisting of the real interval t. defined by 0 ~- Wg,c Wg(1'O) 
plus the domain Do defined by O,c: arg(Wg - Wg(ro)) 
~ 11"/2, ro being the star radius. 

For r -. 1'0 the function W/r), as obtained from 
(1. 5. 18), reads 

where Jl is the star mass. 

(2.3) 

In the following we allow r to assume complex values, 
and it is understood that the logarithmic function 
appearing in the above expression is defined by 

lnz = In I z I + i argz, - 11" ~ argz ~ 11". (2.4) 

Equation (2.3) defines an implicit function r =f(Wg) in 
the Wg complex plane, which may be many valued; when 
r spans its complex plane completely, the whole Wg 
complex plane is correspondingly mapped. Indeed, sup­
pose that this is not the case. Then some boundary 
lines should exist dividing the mapped and unmapped 
regions. Consider then a point r different from 2A1 
such that Wut(:r) belongs to a boundary line. In a small 
neighborhood 6 of r we can write from (2.3) 

_ ( 2}V1) '" (y- v) 1 + -_--. 
y- 2lvl 

(2.5) 

So, when r varies on the boundary of 6 in such a way 
that 

O~arg(r-r)~211", (2.6) 

correspondingly, also the nonvanishing vector Wg(Y) 
- W,er) makes a rotation of 211" in its complex plane. 
But this fact contradicts the assumption that Wext (1") is 
a point of a boundary lineo 

For Wg=oo we have 1'=00 and r=2M. More generally, 
there is no one-to-one correspondence between yand 
Wg; this implies that some regions of the Wg complex 
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plane may be mapped more than once. Clearly, for 
Wg '" 00, r is finite and '* 2M. 

Moreover, from (2.3) we obtain 

dr _ (dWut\·1 __ r_ (2.7) 
dW g - d1' ) - l' - 2M . 

Now, on the real axis for Wg ? Wg(ro) a one-to-one 
correspondence can be established between Wg and r 
since Wexl(r) is monotonic. 

Then we choose the determinations of r=j(W.) to 
satisfy such correspondence together with the condition 
j(oo) =00 in Do. 

The rhs of the above differential equation is an 
analytic function of r in such region since r* 2M; So 
its solution is univocaUy determined and analytic in 
Do for IWg I ... :oo. 3 

As seen from (2.5), the correspondence f(oo) = 00 

implies 

Now we observe that in the region Dof(Wr) never 
vanisheso Indeed, for y= 0 Eq, (203) furnishes 

on the other hand, for all the reasonable models of 
neutron stars which have been proposed, the real part 
of the rhs of the above equality can be verified to be 
negative. 

By summarizing the results, we can state that 

(i) ((Wg ) is analytic in Do for I Wr 1/ 00; 

(ii) f(Wg ) never vanishes in Do; 

(iii) it obeys (2.8). 

We complete the one- to- one correspondence between 
rand Wg in D, as regards the real interval 0 < We'" Wr(ro) 
by means of the monotonic Wg(r) given by (I. 3. 6), where 
v, A are determined by the equilibrium equations for the 
star. 

Let us go back to Eq. (2.2), where the functions 
VI! exp(v - A), gl, II~") are involved in the integrand. 
From (i)-(iii) and (I. 5. 6)-(1.5.10) one deduces that 
exp(v - A) Vll is completely analytical in Do. 

Moreover, for I w! large enough, in Do it obeys the 
inequality 

(2.10) 

for 0" Wg <' Wg(ro) we observe that VU , given by 
0.3.10) tog'ether with (1. 3. 9) and (1.18) of ReL 4 is 
proportional to terms containing v'" or A", which, in 
their turn, are proportional to p' [see Eqs. (1. 2)-(1. 4) 
of Ref. 41. 

For stars whose behavior near the surface is poly­
tropic, we have Pr :ro (ro - r)N. Then for noninteger 
values of N, we have 
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~1~m[eXp«V--A)Vll~ "" Rm(ro-r)N_I-m+const (nz"O), 
( I 'J T 'T 0 

(2. 11) 

(2" 12) 

The kernel gl deserves particular attention. For 
0- Wg ' WI .' Wg(ru) it satisfies [see (1. 3.17), (1. 3. 20), 
(1. 3. 23), (1. 3. 28) and (3.10) of Ref. 51 

!

¢(WI ) " 1 

qJg(W"J ,.,1
1 

<' C [ " ] (L( I wWII »/+1 
TWl exp 1 Imw I (WI - W,,) (L( I wWg 1»)1 

L(z)"'~-. 
l+z 

(2.13) 

When both Wg and WI belong to Do, it is suitable to ex­
press gl in terms of lI?)(z), given by (1. 3. 22), accord­
ing to (1. 5.4) which is reported for convenience: 

1 ¢ (W 'w) 
glOVg, H'I; w) = 2iw (exp(v - A)I 2)w j ¢:(lV;;' '"-,) 

x [ilt)( ,"-'We) lli-)( <.<.'W I) -l1l(-)(,"-,W g) IIt)( wWI ) J, 
(2.14) 

where Clg is defined by (1. 3. 20), (1. 5. 6), (1. 5. 7), 
(1. 5.10) whereas hz'±)(z) can be written as 

h;±)(z) =Pz'±)(l;z) exp(± iz), (2.15) 

pj±)(1/z) being polynomials in liz. As verified by 
inspection, for i w i large enough PI"") in Do are 
majorized and minorized by a constant C. Then defining 

dlg(Wg; w) G (') TT [, (W W lJ Og(WI;w) =expv-A YueXP1W 1- g, (2.16) 

we have 

(2.17) 

We observe that for Imw c· 0, Wg fixed in Do and WI 
varying in DI (belonging to Do) defined by 0 ~ arg(WI - Wg ) 

< 1T /2, we have 

I exp[Uw(W1 - We) 11 
= exp[ - 2 \ w 1 I Hil - We I sin(')", +')1) 1 ~'. 1, (2.18) 

where 'lw =argw, 91 =arg(WI - Wgl. 

Suppose 112n
) is defined in Do and analytical in such a 

region and that for - 1T/2 ~ 'lw < 1T/2 it can be written as 

(2.19) 

where 

1 F(n) I' col 1TC I / 1 Wg(ro) 11n
, (2.20) 

C I being the constant appearing in (2.17). 

Then we want to prove that 1I~1) can also be defined 
in Do and has properties quite analogous to those of 
lI~n) • 

For the moment let us fix w in the region 0.,-:: 'lw < 1T/2; 
so we can define lI~n+l) (W., w), as given by (2.2), also 
for complex values of W" in Do by assigning the integra-
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tion path for WI, Indeed, let us allow WI to go from 
W. to infinity along any line belonging to D I ; the integral 
converges and is independent of the choice of such line, 
since the integrand I is completely analytical in DI and 
vanishes for WI - 00 in such a way that I I i <: C / I W112, 
owing to (2.17)-(2.20). Then as an integration path 
we choose the line arg(WI - W,) = 1T/2; this allows us to 
extend the definition of u~n+l) in Do also for Imw -: O. 

Indeed, with the above choice, for any w such that 
- 1T/2' 'lw ~ 1T/2 the inequality (2.18) holds altogether. 

Then for any W, in Do the integral in (2.2) converges 
also for - 1T/2"' ,'lw <' 0 and I w: large enough. In addi­
tion, U~rr+l) (W,; w) is analytical in Do, owing to the fact 
that the integrand is analytical for W, and WI in the 
same domain. 

Now from (2.2), (2.16), (2. 19) we can write 

(n+l) exp(iwWg ) (n+l)( 
II. =-- -wn.r~ ¢gF WI; w), (2.21) 

F(n+I)(w,; w) = .e' G(Wg , WI; w) F(n)(w1; (L:) dWI • 

Then from (2. 17)-{2. 20) we get 

I WI - Wg 12 + I W.12 

the third step proceeds from the fact that 
Ref (WI - Wg)*WgJ > O. 

We note that (2.21) and (2. 23) are completely 
analogous to (2. 19), (2.20). 

(2.22) 

(2.23) 

In order to treat the case 0, Wg .,' Wg{ro), we assume 
that in such interval 

u(n) = exp{iwwg ) + F(n)(W 'w) (lmw' 0) 
- w" '+' g 1 g' , 

(2.24) 

(2.25) 

where 

(2.26) 

C2 being a constant which majorizes the expression 
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c[ I V ll exp(V - A) 11~ Wc(ro) ~~:O) +[t I wl 1
2 

X (I Vll exp(v - A) l)w I 

[L(lwWcl)Y{/Pt) (w~J 'P 1(-) C~J 

+ Ip1(+)( w~J P;-) (w~) I }lo' (2.27) 

where C appears in (2.13) while the notations Cl., Do 
mean that WI belongs to the respective domains. 

We want to prove that quite analogous properties hold 
for lI~n+I), which is defined by choosing the integration 
path in (2.2) to coincide with the interval Wg ~ WI 
,,; W,.(ro) plus the boundary line of Do for 
which arg(WI - Wetro» = 1T/2. 

Then let us write (2.2) as a sum of two parts A, B: 

rW,.(ro) ( ( ~ 
A = Ju I We' WI) dWI, B = J, [(Wg, WI) dWI . we WgtrO) 

(2.28) 

As regards the first part we take WI to be real, so 
that (2.13) can be applied together with the relation 
I Vll exp(v - A) I < C. Then in the case Imw < 0, for ex­
ample, by making use of (2.25) we obtain 

IA 1<\ exp{iw [2;i}ro) - Wen II cp,.1 C 0C2C 3[L( I wWg I)] -1, 

(2.29) 

where C3 is a constant which majorizes the first term 
of (2.27). 

As regards the second part, taking into account 
(2.14), (2015), and (2,19), we can write the integrand 
in the form 

(2.30) 

where a and {3 do not contain exponentials. For Imw' 0 
[(W,., WI) is analytical for WI in Do and for WI - co along 
any line in the same domain. 

Then we shall choose the line arg(WI - Wg(ro» = 1T/2 
as integration path. In this way u~n+I) can be analytically 
continued to the region ImlL'" O. In this case indeed we 
can write 

exp{iw[2W,(ro) - W,]} . 
[= wn+1 (aexp{2zw[W,.-Wg(ro)]} 

+(3exp{2iw[WI -Wg(ro)J}), (2.31) 

where the exponentials involved in the curly brackets 
are majorized by unity. Furthermore, taking into ac­
count (2.10), (2.19), (2.20), we get 

IB I,,; I eXP{iw[2:%+\ro) - Wi]} \ 

x ICPclco(~~:o») nC4 [L(1 wW,. 1)]-1 , (2.32) 

where C4 majorizes the last two terms in (2.27). Qb-
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serving that C2 ? CI/W,.(ro) and C2 ? C3 + C4, we obtain 

IA+BI,,;IAI+IBI 

,,; I exp{iw[2~(+\ro) - WE]} II <1>,.1 C
0
C2+1[L( I wW,.I) )-1, 

(2.33) 

so that our statement is proved. 

3. ANALYTICAL CONTINUATION AND ASYMPTOTIC 
EVALUATION FOR /w/+ooOF THE WRONSKIAN 
W (u,u_l 

We want now to obtain the continuation to the region 
Imw <: 0 of the Wronskian W(u, u) where u is the physi­
cal internal solution. This is given by (n. 7. 1), (II. 7.2), 
(n. 7. 3), (n. 7.5). Introducing (n. 7.5) in (n. 7.3), one 
can write for Imw? 0 

r(w) = 2: exp(v- A)}I(WW,.) Vu!!::-. dW,. 
~ (J W,(r o ) (n) 

n=O 0 1>, 

1 f~ u(n) 
- 2i exp(v - A) li,'-)(wWI ) -"- V I1 dWe 

wg(ro) 1>,. 

1 f~ + 2i exp[2iwW,(ro)] [exp(v- A)]h";+)(wWI ) 

<f {exp[- 2;ww,(r~:;~HdW,) . (3.11 

An alternative definition of r (w) for Imw~' 0 is ob­
tained by rotating the integration path for the third 
integral just in the same way as that used for U~n+I) 
in the previous section, in the case W,.=W,.(ro). The 
proof is quite similar to that given for U~n+l) and will 
be omitted here. The new integration path lies in Do, 
where it is specified by the condition arg(Wg - Wg(ro» 
=1T/2. With such a choice also the third integral in (3.1) 
converges for Imw <:.9. As regards the second integral, 
we note that, since I hi-) u~n) I < C / I win, the above path 
rotation can be performed altogether. In this way we 
obtain 

F(")=exp(v-A)}IVuujCP,. (3.2) 

This provides the desired analytical continuation of 
r(w). 

We want now to obtain a majorization for the remain­
der R(m) of r(w), defined by an expression Similar to the 
above one, where 11 runs from m to infinity. 

To this aim we recall that 

(i) IP;<) I, which appear in (2013), are majorized by 
C; 

(ii) 2:'::'mx"=xm/1-x (Ixl< 1). 

Then let us introduce in the first integral Eq. (2.22) 

P.Cazzola and L. Lucaroni 2631 



                                                                                                                                    

or (2.23) according to the case and (2. 17) in the other 
two integrals; taking into account (2.24) together with 
the relation I Vll exp(v - A) I < C, (2. 18) together with 
(2. 10) and recalling the points (i) and (ii) with x = CzI w 
or \ = 1TC1/[ tA! WE (Yo)] according to the case, we obtain 
straightforwardly 

C m+ 1 

jR(m) j < wm exp(- 2ImwW,(ro))' (3.3) 

As specified in Sec. 1, in order to obtain the eigen­
frequency distribution it is necessary to evaluate r(- w). 

In order to do this, consider the first term in (3.2) 
[where 1(2°) = rP,llt)(w, W,)j 

r (O)- (0) (0) 0 rw,(ro) ( ) ":"-(+)d 
-rlnt +r.xt , r 1nt =.Io exp ll- A VllJzh l WI" 

r (O) __ !,wg(ro)+i= ( A)F ":"'-(+)fW 
oxt -. w,(ro) exp ll- vuh II ( ,; 

(3.4) 

the evaluation of r ;~i can be performed by means of the 
integration techniques given in Paper II. These allow 
us to develop it into the successive approximations for 
w - 00 according to (II. A 7); the nzth approximation reads 

m 

r ~~l == 6 [a~~f],Tzt) + b~:lJI+1 itt) + c~;L"i,TzI:l 
n=O 

where R~;t) is the remainder expressed by 

R;;t) factorizes at least L wm as can be seen by 
inspection. 

(3.5) 

(3.8) 

The above approximation method cannot be used up to 
calculate r i~i when the polytropic index N, appearing in 
(2. 11) is in the interval 0 < N.' 1. The reason lies in 
the fact that, in such case, for 1'- Yo, Vu behaves as 
-(Yo- 1').'1-1, so that the remainder Ri~i analogous to 
that appearing in (3.5), would diverge. 

For 0 N· 1, ri~i(w) is calculated according to the 
method developed in the Appendix. The result is 

(0)( (- 1)1 [. (.)J r(N) r int - w) '" 2i ko exp - 2ZWWE ru (_ 2iw)N 

where "u is defined by (2.11) and r (N) is the Euler 
function. 

(3.9) 

FUrthermore, the explicit asymptotic evaluation of 
r ;~i with 111 = 0 together with a straightforward majori­
zation of R!~i shows that r ;~i« r i~i, so that 

(3.10) 

In the case N' 1, r i~ 1 may be calculated in the same 
way as r ;~i 

2632 J. Math Phys., Vol. 19, No. 12, December 1978 

m 
r i~l = f) [a (n»), k,(O) + b(n) )1+1'W) + c(n) ),n,(O) 

n=O 

(3.11) 

(3.12) 

however, the apprOXimation procedure can be applied 
only up to the largest m == iii such that 

0< N - 1 - iii '. 1; (3.13) 

indeed, owing to (2.11), (3.7), and (3.8), 

B(m+1) '" (r r)N _1_(2m+1) 
r -ro 0 -

so that the integrand in Ri:t) diverges. However, Rl:t) 
can be asymptotically evaluated with the method already 
used for r l~l in the case 0 ': N <.1. So we obtain 

R (m)( ) ~ (_1)1+1" l- 2' W ( )J r(N) 
jnt -w w-~--2z-'- h'oexp- lW ,ro (_2iw)N 

(3.14) 

Note that the above expression is independent of }n. 
We are now in position to calculate r (O)(tA») in the case 
N - 1. We observe that the upper limit of the summa­
tion appearing in (3. 11) cancels the corresponding one 
in (3.5) since the coefficients are continuous in 1'0 up 
to the order in. On the other hand, no contribution 
arises from the limits WE = 0 and W, = Wr(ro) + i 00. 

In this way we are left with the remainders only, so 
that 

(3.15) 

With a straightforward procedure similar to that which 
leads to the inequality r ;~i« r i~l in the case 0 ---:: N· 1 
one can show that Rl;?(- w)« RI(~)(- w); so we have 

r(O)(_ w) w=:'= Ri~)(- w). (3.16) 

Moreover, let us denote with Tk the contribution of 
the kth iteration I(~k) to the second term T in the rhs of 
(n.7.1). 

In Paper Il, on the basis of the assumption (II. 7.4), 
in the limit w - 00, we could deduce that 

(3.17) 

so the asymptotic contribution to T arises from the 
lowest order iteration u(O). On the other hand in the 
present context, a direc-t analytical continuation of 1I~) 
has been achieved and the above assumption is avoided. 
However, making use of (2.25) and (2,26) (with a pro­
cedure quite Similar to that followed in Sec. 7 of Paper 
II) one can see that the inequality (3.17) for)' = ro holds 
altogether. So the contribution to the Wronskian arising 
from T, for r == ro, is asymptotically the same as in 
Paper n Collecting the results, for W(- w) we have 
[see (n.7.1), (IL7.2), (IL7.5)] 

[ 
r(- w) [., J D' ] x 1- --- + exp - 21W"'r(ro) ~, w tW 
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(3. IS) 

where c¥ is given by (II. 7.13), N is noninteger, r(N) 
and ((x) are respectively the Euler and the sign function. 

4. FINAL REMARKS 

The equation W(- w) = 0 which gives the eigenfrequen­
cies, in the present context has an additional term in 
comparison with (n. 7c 12). As seen from (3. IS), the 
results of Paper II remain valid if N' 10. 

If N· 10 the second term in (3. IS) is the leading one; 
so in this case the asymptotic eigenfrequency distribu­
tion depends on the self-coupling term V ll of the gravi­
tational field [see (2. 11)] rather than on the coupling 
terms V12 and V21 between the matter and the gravita­
tional field [which are contained in the constant a 1. 
However, such distribution is qualitatively the same 
as in the case N < 10. 

(2n + ~ ) 7T + arga 
Re~'n "" 2W

r
(Yo) , (4.1) 

(N + 1) InlRewnl-lnlal 
Imwn '" , 

2Wr(yo) 
(4.2) 

_ I (_1)1+1 
a=zE(N -1) 1=2ir ko['(N); (4.3) 

in particular we note that the zeroes of W(- w) are in 
any case simple. 

Finally, we want to point out that the above method to 
obtain the analytical continuation of the external solu­
tion to the lower half w plane is probably extensible to 
the Kerr metric. 

APPENDIX 

A simple majorization of r(_ w)/w, of the same type 
as those already used in Papers I and II, shows that 

1

['(- w)l. c exp[2ImwW,(ro)] (ImwO). 
w I Iwl 

(AI) 

So the second term in the rhs of (3. IS) may be signifi­
cant for w - 00 only if 

Imw:' 2W~(Yo) In 1 w I. (A2) 

Since we are interested in a possible modification of 
the eigenfrequencies distribution obtained on the basis 
of (n. 7. 12), we will consider values of w for which the 
above inequality is verified. 

In order to evaluate r(- w), for w-oo and N·· 1, let 
us split the first integral in (3.4) as follows: 

(A3) 

( . ) _ _ W,(ro) 
Wr 10 - A - ~ - I I . In w 

(A4) 
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Since ~ vanishes in the limit w - 00, in the second 
integral on rhs of (A3) we can replace for the integrand 
I its asymptotic expression 10 for r-ro and w_oo. So, 
retaining the exponential terms only in the product 
11hr), we have 

~ ko exp(- 2iwWI ) 

1- 10 = tWr(ro) _ Wr y_N' 
l?o being defined by(2.11); then 

rWg(ro) 1 dW c- rWg(r o ) I dW . 
JA g. 0 r' 

1 . 1 
= (_ 2iw)N 'Y(N, - 21W~) w~~ (_ 2iw)N r(N), 

(A5) 

(A6) 

(A7) 

y(x, y) being the incomplete gamma function; the last 
step is justified by the fact that wI). ">">1, owing to (A4). 

As regards the first integral of rhs of (A3), we can 
use up (II. A22) since in the integrand, in the interval 
(0, A), the coefficient of Bessel functions is finite, to­
gether with its derivative with respect to W~. By 
straightforward majorizations one can see that, for 
w - OC), such an integral can be written as 

(AS) 

where 

(A9) 

So the leading contribution, for ~,- 00 to the given inte­
gral (A3) arises from the interval (A, Wl'(Yo») as seen 
by comparing (AS) and (A9) with (A6) and (A7). 
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Stochastic systems and integral inequalities a) 
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A stochastic control system of the form 
dx = F(I,X)dt+G(t,x)d/3(t) +{\(t)dt+{2(t)d/3(t), 
tERt=(O,cc). x,F,{\fR n

, 

G and {, are n X p matrix-valued functions, and f3( t) is a p-dimensional Brownian motion process, 
is investigated. Utilizing stochastic Lyapunov functions and the theory of stochastic integral inequalities, 
conditions are stated under which the above stochastic control is integrally stable in the mean and 
asymptotically integrally stable in the mean. Conditions are also developed for the stochastic differential 
system in finite time to be mean stable, uniformly stable in mean, quasiexpansively stable in the mean, 
and quasiconIractiveiy stable in the meal!. 

I. INTRODUCTION 

The obj ect of the present study is to consider the 
stochastic control system of the form 

where 

(il I c. R. '" [O,X) J, 

(ii) Z, F, 1;1 ~ Rn, 

(iii) G and i;2 are II x p matrix valued functions, 

(iv) p(t) is a standard p-dimensional Brownian motion 
process, 

The function i;l (I) can be construed as a control vari­
able and !;2(t)d(3(1) a stOchastic noise. The aim of the 
present investigation is to obtain sufficient conditions 
under which the system is stable in a probabilistic 
setting, These type of problems have been considered 
in a deterministic setting by Bellman, 1 Barbasin, 2 

Liberman,3 Kayande and Muley, 1 Lakshmikantham and 
Tsokos,5 among others. Our results are natural ex­
tensions to the systems in their probabilistic behavior, 

The necessary preliminary mathematical assumptions 
will be stated along with the definitions of the types of 
stabilities to be investigated in Sec. 2. In particular we 
will consider criteria for the stochastic differential 
control system to be inte,!.,'"rally stable ill Ihe mean and 
aSYll1plolicalll' il1te~r(/lly stavle in Ihe m(,(111 in Sec. 3. 
In Sec. 4 we will present criteria for the stochastic 
differential system to be (illil e lim C 11/ eml sf aM c, uni­
formly stable ill meal/, ql/asiexponsil'ely slable ill Ihe 
mcaJ/, and qlUlsicOIIIYllclil'cly slablc ill Ihe mcal/. 

2. PRELIMINARIES 

We shall consider the stochastic control system 
(1.1) subj ect to the following conditions: 

(a) There exists a probability measure space (n, A, p) 
with sample points wand a set of a-algebras {At} in A 
such that: 

(i) As CAt for s < I, 

a)This research was sponsored by the !;nited States Air Force 
Office of Scientific Research, Grant No. 2711. 

(ii) f3(t;w) is measurable with respect to At and 
[(j(t + h;w) - i3 (t;w) 1 (ll > 0) is independent of At. 

(b) F(t,x) and G(t,x), 1:1 and i;2 are continuous and 
IIF(t,x)-F(t,y)11 +IIG(t,x)-G(t,y)II-sKllx-yll for some 
constant K> 0; here II 0 II denotes the Euclidean norm of 
a vector or a matrix. 

Under the above conditions, it is known6 that the 
system (1.1) has a unique random solution which is a 
separable second-order random process and that the 
random solution is almost surely continuous. 

Corresponding to the stochastic differential system 
(1.0, we shall have need to consider the comparison 
scalar differential equation of the form 

1/' (I) = ~(t, It + ~ (I», uUo) = uo' (2.1) 

We shall assume that Eq, (2.1) has global solutions and 
g(t, 0) '" 0, 

The function g(t, uk C[R. xR, R 1 is said to belong to 
the class r if, for each fER., ~ is monotone increasing 
and concave in u. 

We shall utilize the following stochastic stability 
definitions in presenting our main results. 

Definition 2.1: The stochastic differential control 
system (1.0 is inte~rall.v stable in Ihe mean if for any 
0' >0, loER., T>O there is j3={3(0'»0 such that, for 
any solution z (t) with control !;! of the stochastic con­
trol system (1.1), the inequality 

EIIz(t)1I < 0' 

holds for I 'E [to) to + T), whenever 

IIz olI<(3 and rto·T(II1:1(s)II+II~2(s)1I2)ds P. 
Oo to 

Definition 2.2: The stochastic differential control 
system (1.1) is asymptolically inle~rally 5/al>Ze in the 
mean if it is integrally stable in the mean and if for 
every solution z (0 with controls !;I and for every ( > 0, 
to E R+, there exists two numbers T = T(O' ,El and 
>c = A (01 ,c) such that the inequality 

Ellz(1)1I <E 

holds for t:- to + T, provided 

IIzolI<O' and r~(Il!;I(s)II+II!;2(s)II+II1:2(s)lJ)ds/ A . 
. to 

We now introduce the following functions. Let V be 

2634 J. Math. Phys. 19(12), December 1978 0022-2488/78/1912-2634$1.00 © 1978 American Institute of Physics 2634 



                                                                                                                                    

a map from R. x Rn into R •. Define 

D' EtoJV(t, z)] '" lim sup(l/h)E{[V(t + h, z + hF(t, z) 
h .. 0+ 

+ G(t,z)({3(t + h) - (3(t))] - V(t,z) /z}, 

(2.2) 

subject to the condition that there exist constants K j and 
K 2 , positive, such that 

V(t,z) ~Kjllzll +K2 1IzI12
• 

In what follows we shall use the notation that 
F={tE: R.: tE: [lo,to + T) and T > O}, and we shall denote 
F={IE:R.:tE: [ta,ta+T] and T>O}. We shall further use 
the following notation: 

B(a) = {z(w): Ell z(w)11 < a}, B(a) = {z(w): Ell z(w)11 ~ a}. 

A function V is said to belong to the class A if, for 
each tE i, V= V(t,z):C[FXRn,R] is continuously dif­
ferentiable in z such that 

V(t ,z J - V(t ,Z2) < ~: (t ,Z2)(Zj - Z2) + <t>(t)llz 1- z2 11 2
, 

where <t>(t)E: C[P,R] and zj,z 2 E:B({3) -B(c!) (O';Q' <(3). 

We shall also let 

V"(t) = inf E[V(t,z)], 
m {z(t;W)~EIIZII::CX} 

V~(t) = sup [()] 
(z<t;w):EIIZII="jE V t,z , 

V,,(t) = sup E[V(t,z)], 
(z(Hw) :EIIZII("j 

V~(t)= _ sup E[V(t,z)], 
zEB (" )-B (6) 

with 15 < QI. 

The following definitions will be needed when we con­
sider stability properties in finite time for the random 
differential system (1. 1). 

Definition 2.3: The stochastic differential control 
system (1.1) is said to be mean stable if, for y>O, 
ta E R., T > 0, there exists a and t j where 0< a ~ y and 
tl (t) E C[F ,Rn] such that 

liz (to)11 < Q' 

implies 

Ellz(t)ll<y forallt?ta, tEF, 

for every solution z (t) with control t j (t). 

Definition 2.4. The stochastic differential control 
system (1.1) is said to be uniformly stable in mean if 
for y>O, toER., T>O, there exist a and t j where 
0< Q' ~ Y and tl (t) E C[F, Rn] such that 

liz (tl)1I < Q' 

implies 

Ellz (t)1I < y for all t? tl> t, I j E: F, 

for every solution z (t) of the stochastic control system 
(1, 1) with control tj (tL 

Definition 2.5: The stachastic differential control 
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system (1.1) is said to be quasiexpensively stable in 
mean if for {3 > 0, ta E R., T > 0, there exist Q', tl> and 
tl> where 0< Q''; {3 and SI (t) E C[F ,Rn] such that 

liz (to)11 < Q' 

implies 

Ellz ([)II < {3 for t E (t j , to + T) 

for every solution z(t) of the stochastic control system 
(1. 1) with control tj (t). 

Definition 2.6: The stachastic differential control 
system (1.1) is said to be expmzsiz'ely s table in mean 
if for {3 > 0, Y> 0, toE: R., T > 0, where (3 < Y, it is 
mean stable and quasiexpansively stable in mean with 
Q'~{3<y, 

Definition 2.7: The stochastic differential control 
system (101) is said to be quasicontractively stahle in 
mean if for {3 > 0, to E: R+, T > ° there exists Q', tp tv 
where Q' > {3 and Sj (t) E C[F, Rn] such that 

liz (to)11 < QI 

implies 

EIIz(t)11 < {3 for t E (tl> ta + T), 

for every solution z (I) of the stochastic control system 
(1.1) with control t l , 

Definition 2.8: The stochastic differential control 

system is said to be contractit'ely stable in mean if for 
/3>0, Y>O, taER., T>O, where {3<y, it is mean 
stable and quasicontractively stable in mean with 
(3<Cl'Cr', 

The following notation will be used when we consider 
the finite time stabilities. The function g(t, Ilk c[i 
XR,R] is said to belong to the class r' if, for each 
t E i, g is monotone increasing and concave in II, and 
it is smooth enough to insure a maximal solution of the 
scalar differential equation (2.1), where ~ (I) is a con­
tinuous function over F. 

We shall now state a lemma which will be used in 
presenting our results. 

Lemma 2,1: If 

(2,3) 

where gc r, u(t) and ~(t) are continuous for t::=: R., then 

(2.4) 

where r(t,to' 110 ) is the maximal solution of (2.1) through 

(to, u(to)). 

The proof of the Lemma 2. 1 can be found in Ref. 7, 

3. STABILITY PROPERTIES OF THE STOCHASTIC 
DIFFERENTIAL SYSTEM 

We shall now present a theorem concerning the in­
tegral stability in the mean and the asymptotic integral 
stability in the mean of the stochastic system (L 1), 

Theorem 3.1: Suppose that there exists functions 
fi, V, a, and b satisfying the following conditions: 
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(i) g(t,uk C[R+xR,Rj and g is concave in u for each 
t. 

(ii) V(t,zlE: C[R+xR",R+j continuously differentiable 
in z for each t such that 

where M[ is a positive constant. 

(iii) Let a v /az = W(t ,z). Then 

lim sup(l/h)x{EII W(t,z + hF(t,z) + G(t,z) 
h~O+ 

(iv) For IrcR., liz (t;w)II <p, 

lim sup(l/h) 
h. 0, 

XE[W (t, z(t) + hF(/, z (t» + G(t ,z (t»)({3(t + il) - p(t») II 

II (13 (t + Ii) - (3 (t) II z (t ) 1 ~ f'v1 2 , 

where M2 is a positive constant and 

sup II W(t,z)11 <: /v13 , where M3> 0 
IIZ1KP 

and for liz II > p there exists K1'K2 > 0 such that 

v(t,z) <:K1llzil +K211z112. 

(v) Let ~(t) in Eq. (2.1) be such that 

~(t) = M<l1 s[ (Oil + II S2 (t)Il + Il s2 (t)1I 2) 

with 

(vi) D+ E toz{ V(t, z)} <: g(t, V(t, z» - WL 

(vii) There exists functions a and b ~ K such that 

b(IIzlI) <: V(t,z) <: a(llzll). 

(viii) V(ta,zo) =u(to)' 

Then 

(1) the uniform-integral stability of (2.1)5 implies the 
integral stability in the mean of (1.1); 

(2) the quasiasymptotic uniform integral stability of 
(2. 1)5 implies the asymptotic integral stability in the 
mean of (1.1). 

Relilark. It has been shownG that if V is twice con­
tinuously differentiable such that 

I V I + I V t I + IIzII IIV,II + II z l121IVz.lI .. - K(1 + IIzW) 

In this case it can be shown that V, Vt' and ~rz satisfy 
the condition of the theorem. 

Proof: we shall first prove (1). For notational con­
venience denote 

dp(t) = p(t + h;w) - p(t;w). 
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Let z (t) be any solution of the differential system (1.1). 
Then using the assumption (ii), we have 

V(t + h,z (I) + hF(t, z (t)) + G(t ,z W)d{3(t) + h!;[ (t) 

+ (:2(tld{3(t» - V(t + h,z(t) + hF(t,z(t» + G(t,z(t)d{3(t» 

;: W(t + lz, z (I) + hF(t, z (t» + G(t, z (t»d{3(t))(h!;[ (t) 

In view of our assumption (iv) we obtain 

lim sup (l/h)E[V(t + h, z (0 + hF(t, z (t) 

+ G(t,z(t))dp(1) + h?:[(1) + (:2(t)dP(t» 

- V (I + h, z (t) + hF (t ,z (t» + G (t ,z (t) )dp (t» I z (t) 1 
.; M311 s[ (t)Il + (M[ll s2 (t)1I +M2)11?:2(t)II 

- AI[II s[ (t)Il + Il s2 (t)lIlI s2 (t)1I2] = W), 

Hence 

qim sup(l /h)E[V{t + lz, z (I) + hF(t, z (t) 
h .. 0+ 

= lim sup(Lh)E[V(t+h,z(t)+hF(/,z(t) 

+ G(t,z(l)dp(t) + hs[(t) + s2(t)d{3(/» 

- V(t + h, z (t) + hF(t ,z (0) + G (t, z (0)([13(/» I z (0) 

+ lim sup(l/lz)E[V(t + h,z (t) + hF(t ,z(t» 
h ... 0+ 

+ G(t,z(t)d{3(O) - V(t,z(t»lz(t»). 

Now using Eqs. (2.2) and (3.2) above, we have 

D+ Et,JV(t ,z) ][.[ '" W) + D 'E t.z(V(I, z», 

and, by condition (vi), (3.3) becomes 

D+E t )v(t,z)11.l "'g{!, V(t, z». 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Hence from the inequality (3.4) we obtain the integral 
inequality 

And since /.{ is concave in 11 for each t by condition (0, 
we have, taking the expected value which exists by (iv), 

El V(t, z) 1- V(ta,zo) 'c: E f g{s, V(s ,z»ds. 
a 

·.([(s, E(V(s ,z»)ds. 
o 

Now by lemma (2.1) and by condition (viii) it follows 
that 

(3.5) 

where r(i, 10 ,110 ) is the maximal solution of (2.1) with 
~(i) ~ 0 through (/".11(10»' Now by assumption (vii) of the 
theorem, the above inequality (3.5) implies 

(3.6) 
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Let 0' > 0 be given. Choose 

I}'l < b(a). (3.7) 

Since the system (2.1) is uniformly-integrally stable, 
there exists a Al = Al (a) such that for any to E R+ and for 
any solution r(f, to, uo) of (2.0 the inequality 

r(t, to, uo) < a l (t;, to) 

holds, whenever 

(3.8) 

(3.9) 

for each T> O. By assumption (vii) there exists func­
tions a and bE K such that 

(3.10) 

If we are given the condition 

(3.11) 

then it follows from condition (viii) and Eq. (3.10) that 

Ilzoli < b-1 (Al ). (3.12) 

Hence, if tl=max(b-l(Al ), Al/M), we can conclude that 
the first part of inequality (3.9) follows 0 

Also, if we let 

,~:O+T (111:1 (s)1I + II 1:2 (s) II + II 1:2(s )112) ds < A/M 

then by directly using assumption (v) we have 

(3.13) 

Hence we have shown using (3.7) that the second part 
of inequality (3 0 9) follows from (3.13). 

From Eqs. (3.5) and (3.8) we obtain the inequality 

E(IIz(tlll) < b-l(a
l

) < a, 

provided 

(3.15 ) 

We have thus shown that the uniform-integral stability 
of (2.1) implies the integral stability in the mean of 
(1.1). 

To prove part (2) of the theorem, we let E > 0, a> 0 
be given and we set 

(3.16) 

Then the quasiasymptotic uniform stability of Eq. 
(2.1) implies that there exists a Al =A1 (al'€) and a Tl 
=T1(al'€1) such that 

r(t, to, Un) < € 1 (t;, to + T 1) 

whenever 

If we let A> All M, we have that 

is implied, using condition (v) in the theorem that 
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(3.17) 

(3.18) 

(3.20) 

which is the right-hand side of (3.18). 

In addition, if we consider the condition 

(3.21) 

coupled with condition (vii) in the theorem, we have 

b(llzolJ) < V(to' zo) < a(lIzolJ) (3.22) 

Using condition (viii) and Eq. (3.16), we have that 
(3.22) yields 

Ilzoli < b- l (A 1 ) < A, 

which is the left-hand side of inequality (3.18) 

From inequalities (3.18) and (3.16) we have 

E(Jlz(t)II) '" ,,_1 (E) <£ 

provided 

(3.23) 

(3.24) 

Ilzoll <a and ( (111:1 (s)11 + 111:2(s)111I1:2(s)112)ds < A. 
a 

Thus the quasiasymptotic uniform integral stability 
of (2.1) implies the asymptotic integral stability in the 
mean of (1.1). 

4. STABILITY PROPERTIES IN FINITE TIME OF A 
STOCHASTIC DIFFERENTIAL SYSTEM 

We shall consider various types of stability for the 
stochastic differential system (1.1) over a finite time 
interval and employ the concept of stochastic 
Lyapunov like functions and the theory of integral in­
equalities to study the problem in a unified manner by 
characterizing the controls in different ways. 

With respect to the aims of this section, we first 
state the following lemma. 

Lemma 4.1: Let there exist function V A, g': r' , 
and 1:1 (t) defined by (1.1) such that: 

(i) For all t E F and z E 13(tl) - E(a) we have 

(4.1) 

(ii) Let 1:2 (1) defined by (1.1) and choose the function 
U(t) so that 

U(t) =M!/<II 1:1 (s)1I + 1I1:2 (s)IIIIi:"2(s)112)ds, IE P, (4.2) 
a 

where 

(iii) For liz II -0;. p, let 

and 

(a) sup II av (t,z)II-o;.llcil' where /'vI, >0, 
IIZII~P oz 

(c) l~~+sup (llh)E[ /I ~; (t,z(t) + hF(t,z(t» 

+C(I,z(t»dtl(t)11 /I d!3(t)llz(t) ,,;M,. 
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2637 



                                                                                                                                    

Then letting ZI E B(f3) -B(a), z(t, t1 ,zJ any solution of 
the stochastic differential system (1.1), and 

(4.7) 

we have 

(4,8) 

for t"?o tl as long as z (t, t11 Z 1 ) E S(f3} - B(rt), where 
r(t, t1 , u1 ) denotes the maximal solution of the scalar 
differential equation 

u' = get, u+ U(t) 

through (11' uJ. 
(4.9) 

Proof: Let z 1 E H (j3) - B(a) and z (t, t1' zlhe: B(f3) - B(a), 
then for sufficiently small h>O, z(t+h,t1 ,ZI)Eb(fJ) 
-H(o.). Denoting z(t,tl'zJ by z(t) and m(t)=E t •z 
x[V(t,z(t»] [(1.1)], we have 

met + 11) - m(t)= E[V(t + 11, z (t) + hF(t ,z (t» + G(t, z(t))d{3(t) 

+ 11f:l (t) + f:2(t)d{3(t)) - V( t, z ([) I z (t)] 

=E[V(t + 11,z(t) + hF(t,z(t» + G(t,z(t»dp(t) 

+ htl (t) + f:2 (t)df3(t» 

- V(t + h, z (t) + hF(t ,z (t)) + G(t, z (t»df3(t)) 

+ V(I + h, z (t) + hF(t ,z (t)) + G(t, z (t»d{3(t» 

- V (I , z (t)) I z (t) J . 

Thus, 

1
. m(t+h)-m(t) 
1m sup I 

h ~ 0+ 1 

(4.10) 

= lim sup E[V(t+ h,z(t) + hF(t,z(t) + G(t ,z(t»di5(t) 
h ~ 0+ 

+ lIf:l (I) + f:2(t)d{3(t)) 

- F(t + /1, z (t) + hF(t, z (t» + G (t ,z (t) )d{3 (t» I z (I)] 

+ lim sup E[V(t + 11, z (t) + hF(f, z (I» + G(I ,z (t)d{3(t» 
h .... O+ 

- F (t , z (m I z (t)]. (4.11) 

Using (2.2) and the fact that V E A, we obtain 

r In (t + h) - m (t) 
l~a~UP h 

~ lim sup XE[II o~v (t + h,z(t) + hF(t ,z(t)) h~a+ II uv 

+ G(t ,z(t»df3(t»llhf:1 (0 + f:2(t)dS(t)11 + cp(t)lIhf:1 (t) 

+ f:2(t)dA(t)IIJ+D+Et,.[V(t,z)]. (4012) 

As a result of Eqo (4.3) and condition (iii) of the 
theorem we have 

l' m(t +17) - met) -s JJ+Et •• [V(t,z)] +M(IIf:
1
(t)11 

l~a~UP 17 

Using condition (i) from the lemma, we have 

lim sup m(t+~)-m(t) "'g(t, V(/,z))+M(IIf:1 (t)11+ 11f: 2 (t)11 
h .. 0+ 

x 11f:2 (t)1j2). (4014) 

Now inequality (4.14) can be integrated to yield results 
in 
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met) $, met) - u(t1 ) + u(t) + t g(s, V(s,z»ds 
tl 

Now by applying Lemma 2.1 we obtain the desired 
result. 

Theorem 4.1: The solution of the stochastic differ~ 
ential control system (1.1) is mean stable if there ex­
ist functions V E A, gE r', and f:l (t) such that 

(i)fortEF, zc=B(Y),-B(a), conditions (i), (ii), and 
(iii) of Lemma 4.1 hold, and 

(ii) the maximal solution r(t, to, u(ta» of (4.9) with 

u(ta) = va (to) - U(ta) 

satisfies the condition 

r(t, to, u(ta)) < V~(t) - U(t), Ci < r "" p, 

for all t? la' 

(4.16) 

Proof. Assume the solution of the stochastic control 
system (1.1) is not mean stable. That is, for some 
solution z (t) of the stochastic control system (1.1) and 
some f: 2 (t) , there exists a{3;'r>a, torR" andT>O 
where for all ~ , f:l such that 

liz (to)11 < Q'; 

then 

(4,17) 

Ellz(t)11 =Y (4.18) 

for some I > 10 , I r F. That is, for I> to the solution of 
the stochastic system (1. 1) reaches the boundary y. 

However, by hypothesis (i) and Lemma 4.1 we have 

(4.19) 

for all I -. to' Now in view of inequalities (4.16) and 
(4 19) it follows that 

E[ V(t, z (J))] < V~ (t) 

for all I· 10 

This is impossible because we have shown in (4.18) 
that 

E[V(/,z(t»j· ~(t) (4 21) 

for all t - to' This contradiction completes the proof of 
the theorem. 

Theorem 4.2: The solution of the stochastic differ­
ential control system (1.1) is uniformly stable in mean 

if there exist function V <c: A, g E r', and I: 1 (l) such that 
such that 

(i) for all t (, F and z c B(Y) - H«(';) , conditions (1), 
(ii), and (iii) of Lemma 4.1 hold, and 

(ii) the maximal solution r(/, 11' 1/(11» of (4.9) with 
initial condition 

O'<r~p 

at any tl (~ F satisfies the condition 

r(/, t11 lI(t 1» < V ~(t) - U(il (4.22) 

for all t> t1 , t co: F, 
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Proof: Assume that the solution of the stochastic 
differential control system is not uniformly stable in 
mean. Then the re exists some y> 0, to E R. for all a 
and controls 1:1 such that when 0 < a ~ y the condition 

(4.23) 

implies 

Ellz WII ? y (4.24) 

for all t)o '1' t, tl E F. That is, for every control 1:1 and 
time t > 11 for this solution of the stochastic control 
system, z (0 will reach the boundary. However, by 
hypothesis (i) and Lemma 4.1 have 

(4.25) 

for all t E F. Hence, by assumption (ii) for all t> '1' 
I(=C F we have 

E[l'(l,z(t»] < l'~(t), (4.26) 

where l'r(t) is the smallest expected value over all z 
when z r~ac hes the boundary y. That is, 

v; (t) ,; E[l'(t, z (t) j < l';(t) (4.27) 

for all I ~ '1' which is clearly a contradiction. 

Theorem 4.3: The solution of the stochastic dif­
ferential control system (1.1) is uniformly stable in 
mean if there exist functions V E A, gc r' ,1:1 (t) and 
positive numbers a, 0, where 0 < a such that 

(i) for all t~ F, Z E B(a) -B(O), conditions (0, (ii), 
and (iii) of Lemma 4. 1 hold, and 

(ii) the maximal solution 1'(/,11' U(ll» of (4.9) with 
initial condition 

u(tt> = V~(tl) - U(lI) 

at any Il'c F, satisfies the condition 

1'{t, I" ltVI » < l'~ (I) - U(t) 

for all IEF, I>t l . 

(4.28) 

Proof: Assume that the solution of the stochastic dif­
ferential conb:ol system is not uniformly stable in 
mean. Then there exists for some solution z(tl of the 
stochastic control system (1.1), a y > 0, 10 (=C R. for all 
a and controls sIU) such that when O<a,~ Y, the 
condition 

Ellz(I)II-' y 

is implied by 

Ilz(t)11 < a 

(4,29) 

(4.30) 

for some I,' t" t, tiC F and some 1:2(1). However, by 
hypothesis (i) and Lemma 4.1 we have 

E[l'(/, z(t)] " 1'(1, t l , 11(11» + u (t) (4.31) 

for all I ':C F. Now it follows from assumption (ii) that 

E[l'(1 ,z(l»j < l'~(I) (4.32) 

for aU IE F, I> II' Clearly from inequalities (4.29) and 
(4.32) it follows that 

V: (t) < V: (I) 
for all tE F, t>tl • Hence a contradiction. 
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Theorem 4.4: The solution of the stochastic differ­
ential control system (1.1) is quasiexpansively stable 
in mean if there exist functions V E A, gE r', 1:1 (t), 
and a positive number i3' such that 

(i) for all t E F, z i. B({3), - B«(3') conditions (i), (ii), 
and (iii) of Lemma 4.1 hold, and 

(ii) the maximal solution r(t,f"u(t 1» of (4.9) with 
initial condition 

at any f I EO F, satisfies the condition 

r(t, I" u(t1» < V! (t) - U(t) 

for IE (t" to + T). 

(4.33) 

(4.34) 

Proof: Assume that the solution of the stochastic dif­
ferenti~l control system (1,1) is not quasiexpansively 
stable in the mean. That is, for some solution z (t) of 
the stochastic control system (4.6) and some S2 (t) 
there exists P' > 0, 10 r= R., and T > 0 such that for all 
a.,/" and 1;1(1), where O<a. < I:J such that 

(4.35) 

then this implies 

E/lz(l)" > (3' (4.36) 

for some Ie (iI' 10 + T), This implies by the definition of 
F~(t) that 

l'~(!)o<:;E[V(t,z(t»j (4.37) 

for the Ie:: (iI' 10 + T), However, by Lemma 4.1 and con­
dition (i) of the theorem we have 

(4.38) 

for alllc:. (tl'lo+T). Therefore, from (4.33) and (4.34) 
we obtain 

l'!(I) , E[F(/,z(t»] < r(t,II'II(I» + U(t) < V~(I) (4.39) 

for the t (c;: (I \0 '0+ 1'), which is a contradiction. 

Theorem 4.5: The solution of the stochastic differ­
ential control system (l.ll is quasicontractively stable 
in the mean if there exist functions V. A, g'. r', and 
1:1 (t) such that 

(i) for all tfcC F and z B(j3'), conditions (i), (ii), and 
(iii) of Lemma (4 1) hold, and 

(ii) the maximal solution r(I,II.II(tl» of (4.9) with 
initial condition 

(4.40) 

at any tl 'Co F satisfies the condition 

(4.41) 

for aU t (-c (lI'to + T). 

Proof: The solution of the stochastic differential con­
trol system (1.1) will fail to be quasicontractively stable 
in the mean if there is some solution z(l) and some 1:

2
(1) 

such that for some (3' > 0, 10 cR., and T > 0, then for 
all a., II' 1: 1 (1), where a. > j3 and 1.:1 (t) ~ C[Un , to + T),R"] 
such that if 

(4.42) 
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then 

Ellz (t)11 >- f3' (4.43) 

for some I r= (t1> to + T). Using condition (0 of the theo­
rem and Lemma 401 in conjunction with (4.42) and con­
dition (ii), we have 

V~ (I) < V~ (L) 

for all t c (! l' 10 + T), which is a contradiction. 
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Direct-inverse problems in transport theory, the inverse 
albedo problem for a finite medium a) 

Madhoo Kanal b) and Harry E. Moses 
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In this paper we deal with the inverse problem in radiative transfer, which is equally applicable to the 
neutron transport, for a finite homogeneous medium. We give a methOd for computing the scattering 
function and the albedo for single scattering. The solution is given in terms of Legendre expansion of the 
scattering function. A decomposition of the equation of transfer is also given in which the relation between 
the direct and the inverse problem is exhibited via the principles of invariance. A relation of this work 
with Case'S method of approach is outlined. This work should be of practical value to the problems 

associated with remote sensing of the terrestrial atmosphere and the neutron piles. 

1. INTRODUCTION 

In an earlier paper by Kanal and Moses, 1 an inverse 
problem in neutron (Dr radiative) transport theDry was 
solved for an infinite medium containing a plane source 
emitting neutrons (or photons) in a direction whose 
angle's cosine was fixed arbitrarily at {J. = {J.o. The 
objective was to reconstruct the scattering kernel 
f (/1' -/1) (or the phase function) from the information 
obtained from the experiment which measured the 
neutron (or photon) column density for all angles; which 
is the zeroth moment of the angular density (or the 
specific intensity of the radiation field). In contrast the 
object of the usual direct problem is to find the distri­
bution function (angular density of neutrons or the 
specific intensity of radiation) for a given scattering 
function. In this paper we wish to treat the inverse­
albedo problem of radiative transfer in an atmosphere 
which is finite in the total optical depth scale. The 
direct-albedo problem for a finite atmosphere is de­
fined as follows: We are given an incident radiation 
field at x= 0, where x is the optical depth. Also given 
are the phase function, the albedo for single scattering 
and the reflection boundary condition at x ==Xo, where Xb 

is the total optical thickness of the atmosphere. The 
problem is to determine the radiation field everywhere 
and, in consequence, the reflected component at x = 0 
and the transmitted component at x =Xb' In contrast, the 
inverse-albedo problem for the finite atmosphere in­
volves the construction of the phase function and the 
albedo for Single scattering from the results of an ex­
periment which measures a certain minimum set of 
suitable quantities. We discuss the nature of measure­
ments that are required for the present treatment below. 

In an earlier paper, Case2 gives an elegant solution 
of an inverse problem for an infinite medium containing 
an isotropic plane neutron source and constructs the 
scattering function from the spectral data of the trans­
port operator. He requires measurements of the neutron 
density for all relaxation lengths, and relates the density 
to the spectral function. He then proceeds to show by 
different routes (including the discretized version of the 

a)Research supported by the Office of Naval Research. 
b)Now at PhYSics Department, Clark University. Worcester, 

Mass. 01610. 

Gel'land-Levitan equation) how one may construct the 
coefficients in the Legendre polynomial expansion of the 
scattering function. In our treatment of the albedo-in­
verse problem, which physically differs from the in­
finite medium problem, the measurements that we re­
quire are different from the ones t'equired by Case. In 
parallel with the infinite medium problem, t we require 
the measurements to give information on the finite 
integral of the specific intensity, i. e" we require 
knowing 

X2 J dxl(Y,!l) 
Xl 

and l(x1> /1), I{Xt, jl), where Xl and -'2 are two arbitrary 
paints in the optical depth scale. We shall then see how 
that quantity is related to the infinite medium problem 
via the prinCiples of invariance. 3 We shall also demon­
strate how one may actually construct the spectral data 
for the Case model from our experiment and in con­
sequence generate Case eigenfunctions from that 
experiment. 

A final remark is due here. In our previous problem, 1 

we used two different bases [or the expansion of the 
phase function. One was the Legendre polynomia and the 
second was the complete set of Case's eigenfunctions! 
of the transport operator for the ;so/ roj)ir scattering 
medium. Both expansions have their inherent advantages. 
In the Legendre polynomial expansion, the inverse prob­
lem is exactly soluble and is particularly useful when 
the medium is not too anisotropically scattering. On the 
otller hand, if the medium is highly anisotropically 
s.;;attering, then the eigenfunclion expansion is particu­
larly suitable. For in that case we have a maximum 
variational l)rinciple which can be used (and in fact we 
have used l

) to obtain a bounded estimate of the expansion 
coefficients. However, the primary aim of this paper 
is to relate the infinite medium solution to the inverse­
albedo problem for a finite atnj()sphere by an alternate 
formulation of the principles of invariance. We shall 
address the albedo problem in radiative transfer. 

2. INVERSE-ALBEDO PROBLEM FOR A FINITE 
ATMOSPHERE 

Consider a finite medium optically bounded between 
X = 0 and x =xb as shown in Fig. 1. For the one-dimen­
Sional, rotationally invariant case, the standard equa-
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INCIDENT RADIATION 

REFLECTED RADIATION 

REFLECTED RADIATION 

X TRANSMITTED RADIATION 

FIG. 1. Configuration for the inverse-albedo problem. 

lion of radiative transfer is,3 

cI(x, 11) I( ) C J 1 (' ) ( ) Il----;:lx--+ X,1l ="2 _Idfl'fll -11 Ix,Il' , (2.1) 

where 11 is the cosine of the angle corresponding to the 
unit vector pointing in the direction of propagation of 
radiation, x is the optical depth, I(x, 11) is the specific 
intensity of the radiation field, C is the albedo for single 
scattering and f(fl' - 11) is the phase function. The phase 
function is normalized to unity so that 

I 

~ I dv.'f(Il' - 11) = 1. (2.2) 
_I 

Now imagine the finite medium, under consideration, 
imbedded in an infinite medium with the same scattering 
properties. Further, imagine a plane source of radia­
tion at x =xo in the infinite medium emitting photons in a 
direction }J = jJ-o. The equation of transfer for that case 
is 

+ o(x - xo)o(1l - 110)' 

Let us consider the column density of the radiation 
field for the infinite medium so that, 

(2.3) 

M o(Il,llo)=J dX'l1(x,/l-xo,llo). (2.4) 
_00 

Also, let us define the total emission term by 

I 

80(fl,1l0)=j d/l'j(}J' -fl):v1o(}J-',/l0). 
-1 

With the appropriate boundary conditions at x = ± 00, 

(2.5) 

'l1(±OQ,Il-xo,llo)=O, (2.6) 

we find from Eq. (2.3) that 

tV/o(ll, 110) = o(/l- 110) +%80(/l, 110)' (2.7) 

By multiplying Eq. (2.7) on both sides withj(/l - 110) and 
integrating with respect to 11, we find that the total 
emission term So(jJ-, jJ.o) satisfies the integral equation of 
the Fredholm type, 
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This is an integral equa tion for So (/l , V. 0) for the infinite 
medium whose solutions are discussed in Ref. 1. In the 
same manner as above, consider the measurement of 
the column density for the finite medium between any 
two pOints XI, x2, 

X2 

Alf (v.,V.llxl,X2)=j dxI(x,jJ.), (2.9) 
XI 

where V.I refers to the cosine direction of the incidence 
beam at X = O. Integrating Eq. (2. 1) from X I to X2, we 
obtain 

Nlf(jJ., /ljIXI>X2) = jJ.I(xj, /l) - v.I(xz, jJ.) 

(2.10) 

where 
I 

Sf {v. , /1j!Xj,xz)=.f dfl'j(fl' - J.l)Mj(r'J.lllxl1X2) (2.11) 
-I 

is the emission term for a slab of the atmosphere be­
tween x =xI and x =xz. The question we ask is, what is 
the relation between the total emission term So(J.l, flo) 
and the emission term Sf(fl, J.lI IXI> X2) for the slab, if we 
know the specific in tens ity I(x, J.l) of radiation at the two 
points x =XI and x =xz? And from that knowledge, how 
do we construe the scattering properties of the finite 
medium? Answers to these questions are readily 
provided by the principles of invariance, 3 stated as 
follows: "The law of scattering by a finite homogeneous 
atmosphere must be invariant to the addition (or sub­
traction) of layers of arbitrary thickness to (or from) 
the homogeneous atmosphere. " 

Let us see how we may apply this principle to solve 
the inverse albedo problem. Consider Eq. (2.10) and 
multiply it by f(J.l - flz) on both sides. An integration 
with respect to J.l then yields 

Sf{fl, jJ. 1 I xi> X2) = / dfl' jJ. '!(v.' - jJ. )lI(XI, fJ-') -l(xz, v.') 1 
-I 

where we have renamed the variables. As an inter­
mediate step, expand f(jJ.' - jJ.) in terms of Legendre 
polynomia, 

00 

f(/1 ' - jJ.) = L (2n + 1 )fnI-n (v. ')P n (11 ). (2.13) 
n;O 

fn f_:dfl l'n(v.)[21l ([(XI' fl) -1(x2, fJ» + c8f (jJ., jJ 1 IX1, x211 . 
(2.14) 

Now in Ref. 1 lsee Eq. (18) of that Ref. 1, we obtained 
the following relation for an infinite atmosphere: 

(2. 15) 
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where 
I 

qn(/lO) = I dIl' Pn(/l)So(/l, /lo), 
-I 

so that 

(2.16) 

(2.17) 

Now we apply the principles of invariance by equating 
the right-hand sides of Eqs. (2.14) and (2.15). Trans­
posing the denominator terms to the corresponding sides 
we obtain 

1 

I d/lP n(jJ )Si (jJ , /ll I x I> X2 )[2P n (/l 0) + cqn(/l 0)] 
-I 

I 

= I d/lqn(/l0)l'n(/l)(2/l(I(xl> /l)-I(X2, /l» 
-I 

+cSI(/l, /lIIXI> X2)]' (2. 18) 

Note that the second term in the bracket on the left­
hand side cancels the last term in the bracket on the 
right-hand side. Now multiply Eq. (2.18) by (2n + 1)/2 
and sum over n. Noting the completeness relation for 
the Legendre polynomia 

~. 2 + 1 E -T-Pn(/l)l'n(/lo) = o(/l- /lo), (2.19) 

and the definition (2.17) of So(/l, /lo), we get 

I 

:,j(/-Lo,/lIIXI,X2)=I d/l/-LSo(jJ,/-Lo)[I(xj,/l)-I(X2,/-L)]. (2.20) 
-1 

Equation (2.20) represents a mathematical form of the 
prinCiples of invariance relating the emission term for 
a finite slab embedded in an infinite atmosphere to its 
total emission term ~(/-L, /lo). Thus So plays the role of a 
kind of Green's function. The symbol /ll is reserved for 
the direction of the incident beam at x = 0 for the finite 
atmosphere. 

From Eqs. (2.14) and (2.10) we readily see that the 
expansion coefficients fn can be obtained from the mea­
surement ,H/(/l, /ll IXI> X2) of the column density between 
xj,x2' Thus, we have 

For later purposes we introduce the quantity 

where 

J.\d /J P n(jJ)/l (J(x I> /-L) - I(X2, jJ » 
L 1

1d/l Pn(/l)J'v!/(/J, /lllxj, X2) 

(2.21) 

(2.22) 

(2.23) 

For n= 0, fo = 1, we obtain the value of the albedo for 
single scattering c, 

c = 1 _ L\~/-L /l (I(XI, /l) - I(X2, jJ» 
Lld/l lVII(/l, /lllxl,X2) • 

(2.24) 

PrinCiples of invariance, represented by Eq. (2.20) 
give rise to an interesting decomposition of the equation 
of transfer (2.1). For in the limit XI - X2 (X2 =x), Eq. 
(2.20) becomes 
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while from Eqs. (2.10) and (2.9) we obtain, 

~ fI(x, /-Lo) + /lo OI(Xa'~) =lim Sf(/lO, /lj.lxj,x). (2.26) 
c \ x XI- X X-XI 

Hence from (2.25) and (2.26) we get 

i3I(x,/l)+I( )_ cI
l

d 'S( I ') I
i3I(x,/l/) /l-a-- x, /l - -"2 /l 0 /l ,/l /l i3x • 

X -I 

(2.27) 

Equating the right-hand side of this equation with the 
right-hand side of Eq. (2.1) we also obtain the relation 

I i3I(x ') I 
I dIl' SO(/l',/l)/l' a;/l + I d/llf(jJ' -/l)I(x,/l/)=O. 
-I -I 

(2.28) 

It is clear that Eqs. (2.27) and (2.28) are completely 
equivalent to the original equation (2.1) of radiative 
transfer. However, we remark that Eq. (2.28) is strict­
ly a relation between the direct and the inverse prob­
lems. Of course, one would desire a converse relation 
to Eq. (2.20) in which the infinite medium measurement 
is related to the finite medium. Such a relation is readi­
ly obtained from Eq. (2.18), which gives the expansion 
coefficients qn(/lo) of So(/l, /-La) [see Eq. (2,17)]. Thus 

( ) l'n(/lo)J_\d/l l'n(/l)S,(/l, /lllxl,X2) (2.29) 
qn /lo !.\d/ll'n(jJ)/l(l(xI,jJ)-I(X2,/l» 

or, in terms of JII , 

Comparing (2.30) with (2.21) we find that 

qn(/lO) =Pn(/lo) 1 :!;rn • (2.31) 

From this and Eq. (2,17) it clearly follows that 

~ f 
So(jJ, jJo) =E (2n + 1)~ l'n(/l)Pn(/lo), (2.32) 

where fns are obtained from the measurements as per 
Eq. (2.21). ThUS, relations (2.20) and (2.32) represent 
a reciprocity between the measurements of a finite 
medium relating to the measurements of the infinite 
medium. 

Next we shall consider the relationship between our 
process of measurement and the one considered by 
Case2 and actually see how one may generate Case 
eigenfunctions from the measurements and also see. how 
that leads to the construction of the spectral data. 

3. RELATION OF INVERSE-ALBEDO PROBLEM 
TO CASE'S MODEL 

For the sake of clarification some repetition of Case's 
work is essential here. In his model one has an infinite 

Madhoo Kanal and Harry E. Moses 2643 



                                                                                                                                    

medium with a plane neutron source emitting neutrons 
isotropically at x = 0 0 The homogeneous equation of 
transfer is, then, 

()~, 00 2l + I . .1 
J.l-;- H' =cL -2-fzPz(J.l) J dJ.l' PI(J.l')~'(jJ'), (3. IC) 

r.x 1=0 -1 

where the scattering kernel has been expanded in terms 
of Legendre polynomia and we have suffixed the equa­
tions with C to acknowledge Case's work. Looking for 
infinite medium solutions of this equation in the form 
t/lv(IJ.) exp(-x/v) one finds 

(v- J.l)t/l)J.l)=t;:f'vl(jJ, v), 

where 

with 

and 

~ 

M(J.l, v) =L (21 + l)f l
P 1(J.l)h 1 (v), 

1=0 

1 

hl(v) = I dJ.l t/lv(jJ )P 1 (jJ) 
-1 

lzo = l. 

(3.2C) 

(3.3C) 

(3.4C) 

It has been shown that a complete set of eigenfunctions 
are 

(3.5C) 

and 

(3.6C) 

where 

A(V) = HN(v) + A-(vll, (3.7C) 

( ) 
I J.I Jl(jJ, v) 

A v =1- 2cv djJ----. 
-I v - jJ 

(3.8C) 

A(vi)=O, and + (-) represents the boundary value of i\ 
as the branch cut is approached from the top (bottom). 
Under the given assumptions, there are only a finite 
number of real, simple Vi with i Vi i' 1. They occur in 
equal but opposite pairs. 

These functions are orthogonal in the sense that 
1 

j dlJJ.l~~v(!J)dJv.(jJ)=A(v)o(v- Vi), (3.9C) 
-1 

1 
I djJjJ(!)i(J.l)(Dj(jJ)=i\o(i, n. 
-I 

(3. IOC) 

As an application of the orthogonality and complete­
ness properties one can calculate total density corre­
sponding to a unit plane source at x = O. This is the solu­
tion of Eq. (3. IC) when the inhomogeneous term 6(x)/ 

27T is added on the right. The result is 

f ~ dp(v) I / I q,(X)=27T -~-exp(- x v ), 
_~ v 

(3. HC) 

where 

(3. 12C) 

(3. 13C) 
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Then Case states that, given measurements of q,(x), one 
knows quite a bit about the spectral function p(v). 

The functions hl(v) obey a three-terms pure-re­
currence relation 

(3. 14C) 

Case's version of the inverse problem is thus reduced 
to the following: Given the information about dp(v) which 
Eq. (3.l1C) provides, whatisg(n)=l-cfn ? 

Now, Case has shown1 that the normalization coeffi­
cients 1'y(V) and hi in Eqs. (3. 9C) and (3. IOC) are re­
lated to the dispersion function A(v) by 

(3.15C) 

and 

(3. 16C) 

respectively. Clearly therefore, the knowledge of the 
dispersion function is all one needs to generate N(v), 
1'1 i and in consequence the spectral function, given by 
Eqs. (3. 12C) and (3. 13C) and all eigenfunctions. From 

Eq. (3. llC) it is not obvious as to how one may in 
practice actually obtain the information about the spec­
tral function from the knowledge of q,(x). However, in 
principle that is possible. Our main interes t here is that 
from the solution of the inverse-albedo problem we have 
presented in the earlier section, the values of fl are 
readily obtained from Eq. (2.21). Then, it is quite 
clear that all quantities in Case's model which involve 
t/s are explicitly calculable. In particular, the inverse­
albedo problem provides a method for constructing 
Case's eigenfunctions from (/// CXi)!' rillicni. Further, it 
provides an experimental test of the discretized version 
of the Gel'fand- Levitan" equation, and all equations 
given by Case which involve (I' become indentities. 

It would be of pedagogical value to find a relation be­
tween the direct-inverse problems which are analogous 
to Eq. (2.28) and involve Case's eigenfunctions. 

We make the ansatz in Eq. (2.28), I(x, 1)).0= ('-x/ v (I)v(ji) 

and obtain 

1 

I dlJ ' So(li', IJ)IJ'(!lv(IJ ' ) 
-1 

1 

= v J riIJ·' r(IJ' -!J )ddjJ ') 
_1 

(3.17) 

for all values of v. But these are nothing but the ex­
pansion coefficients of So(jJ', I)) and (p' .~ I)) in Case's 
eigenfunction base. More importantly, however, the 
invariance principles give this particular relation from 
which one can solve for /(,J ' - f.!), for a given So(jJ', I) ) 
and vice versa by use of the completeness relation of the 
eigenfunctions. 

It appears to us that Case's eigenfunctions may have 
a natural interpretation. In other words, couLd these 
eigenfunctions correspond to some pure state such that 
given a pure normal mode of radiation (or neutrons), 
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is there a scattering law which conserves this mode 
without dispersion? If so then one could construct a 
medium which will pass only one normal mode and not 
the others. In a sense that would be a filter. 

We close this paper with a remark that the inverse­
albedo problem for a finite homogeneous medium pro­
vides a very simple method of determining the scatter­
ing properties of the medium, which appears to be 
practical for both laboratory and space experiments. 
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A system theoretic representation of mechanical systems is proposed. It is shown that mechanical systems. 
classical or quantal. described by the Liouville equation. can be realized as a stationary linear 
input-output system. This state space representation of mechanical systems is then extended to 
decompose a mechanical system into a hierarchy of orthogonal stationary linear dynamical systems. 

I. INTRODUCTION 

Mathematical system theory is a highly developed 
sophisticated branch of mathematics which has seen 
applications in a variety of fields. But as far as physics 
is concerned, not much effort has been made to use 
this powerful tool in problems of theoretical physics. 
With the belief that mathematical system theory can 
playa vital role in theoretical physics, we propose here: 
as a first step in this direction, a system theoretic rep­
resentation of mechanical systems. 

In this paper, the first of a series, we will present 
the formulation of the theory that a mcchanical s.\'slcl1l, 
classical 01' qualltal, call be realized as a slaliOllar\' 
Ullear dynamical syslelll and extend it to establish a 
decomposition of the eqllatioll of mo/iril/ of a wec/wl/i-
cal syslem into a hiera1'c/zv of u1'lllOgOlWl slaliollari' 
linea1' dynamical systellIs. We will assume that the 
original dynamics of the mechanical system is formu­
lated in the appropriate Liouville space L, the time 
evolution of the dynamical variables a(c) L being given 
by the Liouville equation. To avoid any undue loss of 
generality, we will write the Liouville equation as an 
abstract Cauchy problem of the first order and then 
decompose the Liouville space [" as the direct sum of 
the orthogonal subspaces lK and lK

1
, using an appropriate 

projection operator, such that lK cpntains the SIOll' part 
of the mechanical motion, while lK contains a rapidly 
fluctuating part that resembles a random motion. Con­
sidering this decomposed equation of motion to be the 
input-output map of a causal dynamical system we then 
show that the mechanical system can be represented 
as a stationary linear dynamical system whose input is 
the fluctuating part of the decomposed motion and whose 
output is the set of dynamical variables whose time 
evolution describes the mechanical system. We call it 
the slate space represel/tation of the mechanical system. 

This procedure can be iterated and the motion in lK
1 

a)Work supported in part by the Swiss National Funds for the 
Advancement of Sciences. 

can once again be decomposed into a relatively systema­
tic part and a fluctuating part and a state space repre­
sentation of the motion in lKl. can be obtained in the same 
fashion. Following such an iterative process, we estab­
lish in the last section of the paper a decomposition of 
the mechanical system into a hierarchy of orthogonal 
stationary linear dynamical systems. 

In the following paper we will present a stochastic 
interpretation of the theory. In the third paper of the 
series we will apply the theory to a many-body system 
and discuss some of the interesting consequences. 

II. LIOUVILLE EQUATION AS AN ABSTRACT 
CAUCHY PROBLEM 

We will assume that the original dynamics of the 
mechanical system is formulated in an appropriate 
Liouville space [", the dynamical variables (I'" (.) c [", 
Cl = 1) 2, ... , Ill, satisfying the Liouville equation of 
motion. To avoid any undue loss of generality, we will 
write the Liouville equation as an abstract Cauchy 
problem of the first order 

*' d"(I) =L d'(t), 

where the Liou1iillian L is a slwu' adioint (not neces­
sarily bounded) lineay operator 

L--(L)* 

(1) 

(2) 

acting on a complex s!'j)avrrb{e Hilbert space [" called 
the Lioll!'illc 81)([CC'" 1 Accordingly, the dynamical varia­
bles a"(.) are IL-valued functions. Because of (2), the 
Cauchy problem is correctly set, that is, for any 
initial value d" (0) belonging to the domain lD(L) of the 
Liouvillian L Eq. (1) has an unique solution If' (t), 

(3) 

which depends continuously on the initial data. 2 The 
boundedness of all solutions of (1) permits the applica­
tion of a Laplace transformation 

a"'(z)~! r~rlfexp(-Iz)(ta(t), Re(z) , 0, 
• 0 

(4) 

2646 J. Math. Phys. 19(12). December 1978 0022·2488178/1912·2646$1.00 © 1978 American Institute of Physics 2646 



                                                                                                                                    

which is holomorphic in the half-plane Re(z) > 0 and 
converges absolutely. The integral 

fo~dtexp(-lz)exp(tL)gd~R(z)g, gEL, Re(z»O 

exists as an element of IL in the complex half-plane 
Re(z):> 0 for all gE L. The resolventR(z) of the 
Liouvillian L , 

(5) 

R(Z)=fo~ dtexp(-tz)exp(t[)d~r(z_L)_l, Re(z»O (6) 

is a closed operator with range ID(L) and satisfies the 
equations 

(z -L)R (z)g=g, gE L, 

R(z)(z -L )g=g, gE v(L), 

and commutes with exp(t L ) for t ~ O. With this, the 
Laplace transform solution of (1) is given by 

(7a) 

(7b) 

tia(z)=R(z)aa(O)EID(Ll, Re(z) >0. (8) 

III. TIME EVOLUTION OF A SUBSPACE 

Let IK be a r-dimensional subspace of the Liouville 
space L such that the Liouvillian L is defined on 1K, 3 

IK c ID([) C L, 

dim(lK) =r, 

(9a) 

(9b) 

and we denote by IKI the orthogonal complement of 1K, 

L =1K $lK
l

• (10) 

Let P and pI be the orthogonal projection operators 
onto IK and 1K1, respectively, 

p L=IK, pIL=lKl, 

P = (P)* = (P)2, pI = (r)* = (pl)2, 

(lla) 

(llb) 

(llc) 

With a proper choice of the projection operators P 
and pl, and therefore the subspaces IK and IKl, one can 
separate the dynamical variables into classes whose 
characteristic time constants are entirely different. We 
assume that the dynamical variables a(') and the pro­
jectors P and p1 have been chosen in such a way that the 
motion projected on IK exhibits a slOWly varying gross 
behavior while the complement IKl contains a rapidly 
fluctuating motion that resembles a random motion. 

With these projection operators we decompose the 
Liouvillian L as 

L =L"+Ll+V, 

L" d~f PL P, 
C ~f plLP1, 

V d~ PLpI + P1LP, 

(12a) 

(12b) 

(12c) 

(12d) 

and the relationIKCID(L) implies that both L" and L1 
are skew-adjoint, 4 

L" = - ( L")*, 
L1=_ ([1)*. 

(13a) 

(13b) 

Evidently, (L" + L 1) equals the maximal skew-adjoint 
part of L under which the subspace IK is stable. 
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Furthermore, the range of the "perturbation" is a sub­
space whose dimension does not exceed 2r. Hence V 
is an operator of finite rank 

rank(V) -'S 2r. 

Let kl, k2, ••• ,V, be an orthonormal basis of the 
subspace lK, 

1z"EIK, CY=1,2, .•• ,r, 
(kotlk~=6ot~ cy,t3=1,2, ••• ,r, 

(14) 

(15a) 

(15b) 

and we consider the time evolution of these elements 

va (t) d~f exp(tL) kot, a = 1, 2, ... , r. (16) 

Let R , R 0, and R 1 be the resolvents of the operators 
L, (L" +L \ and L 1, respectively, that is, 

R(Z)d~f(Z_L)_1 forzEp(L), (17a) 

Ro(z) d~ (z - L" - Ll)_1 for z E. p(L" + L \ 

Rl(z)~r(z_L 1)"1 for zc.p(L\ 

(17b) 

(17c) 

where p denotes the resolvent set. Furthermore, we 
define a generalized resolvent (j by 

(j(Z)d~f PR(z)P for z "-p(L). (18) 

The Laplace transform }~ot (z) of (16) is then given by 

and using the relationship 

R(z) P =(j(z) + (~l(Z) pl 
V(j(z), 

which has been proven in Appendix A, we get 

\~a(z)=(j(z)I/' +(~l(z)plVr;(z)ka. 

(19) 

(20) 

(21) 

On introducing the (rXr)-matrix G(t)={CaG(tl) and its 
Laplace transform O(z) ={CaB(z)} by 

CaB(z) ~f (JlI0(z) I ha) = (Ill (\(z) I ka ), 

CaB (!) = (~ I exp(t L ) I k"'), 

we obtain the unique decomposition of motion5 

y(t) = y"(f) + yl(t) '" L, 

y"(t) = G(t) k:. 1K, 

yl(t) = lot dt' G(t _ {') u(t') ~ IKl, 

where 

{(ot(t)d~f expUL") ua(O), 

/(a(O)d~ plV ha =P'L ka , 

and y, k, and u are r-dimensional vectors with ele­
ments ya, I?a, and zf, respectively, a = 1,2, ... , r. 

(22a) 

(22b) 

(23a) 

(23b) 

(23c) 

(24a) 

(24b) 

IV. STRUCTURE OF THE GENERALIZED RESOLVENT 

Let {{(A)} be the spectral family associated to the 
skew-adjoint operator L, 

L =i r~ Ad[(A), 
'-~ 

where [(A) are bounded operators on L satisfying 

[(A) = ({ ('\»)*, 

[(- 00) = 0, [(+ 00) = 1, 
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(26a) 

(26b) 
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c (>t + 0) =c(>t), 

C(>t)C(Il)=C(>t) if >t-'S Il. 

With these the resolvent I<.. (z) is given by 

/«z) =f~ dC (~) 
z -ZA 

-~ 

(26c) 

(26d) 

(27) 

and the generalized resolvent Cj defined by (18) is given 
by 

Cj(Z)=j" dJ(~! , 
z - ZI' 

-~ 

(28) 

where J(A) is the restriction of Pc (A) P to the subspace 
lK=(J L, 

J (A)/ d~ Pc (>t) P/ for all / cO 1K. (29) 

The generalized resolution 0/ the identil"o {J(A)} is 
a normalized positive operator valued measure, that is, 
a one-parameter family of bounded operators {](A)} 
acting on the Hilbert space lK and having properties 

](>'1 = (](>'»*, 

J(_oo)=O, ](+00)=1, 

}(>'+O)=J(>'), 

J(A)'; J(Il) if A- Il, 

(30a) 

(30b) 

(30c) 

(30d) 

but in contrast to C (AI, the operators J(A) are, in gen­
eral, no longer orthogonal projectionso 

We will use the following characterizations of gen­
eralized resolvents in the later sections of this paper7: 
A family of operators 9(z) on a Hilbert space is a gen­
eralized resolvent if and only if 

9-(z) is holomorphic in each half-plane Re(z) > 0 and 

Re(z) < 0, (3Ia) 

Cj(z*) = - (Cj(- z»*, Re(z) *0, (3Ib) 

9(z)+(9(2))*>0 for Re(z) '-0, (31c) 

w-lim xl/ex) = 1. (31d) 
x-~ 

It has been shown in Appendix B that the restriction of 
the generalized resolvent to the subspace lK = P L can 
be written as 

0(z) 
1 

(32) 

and it is convenient to write this important relationB in 
the orthonormal basis {k"}. Introducing the skew-adjoint 
(yXr)-matrix L={L"S}, 

v"a =<f! IL Ik"), 

we have from (32) 

O(z) = {zl- L - F(Z)-l, 

(33) 

(34) 

where 1 is the unit (rX y)- matrix and F(z) ={Fa<B(Z)} 
is defined by 

F"a(z) =- (r! IL P1< .I.(z) (J1L Ill') 

=<11 11<..1(z) lu"). 
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(35a) 

(35b) 

The inverse Laplace transform of (34) then gives an 
integrodifferential equation for G(t), 

:t G(t) = LG(tl+ f t dt' F(l - t') G(t') (36) 
o 

with F(t) = {F"aU)} defined by 

FaB(l) = (It IL pi exp(tL.l.) plL I k") 

= (,II exp(t L.l.) 111") 

= <d lu"(t» (37) 

We would like to point out here that with our choice 
lK c lO(L), the matrix elements U"s are all finite even 
when the Liouvillian L is an unbounded operator. 

V. A REMARK ON THE MARKOV APPROXIMATION 
AND SEMIGROUP EVOLUTION 

At this stage it is interesting to ask under what con­
ditions the motion in the subspace lK is governed by a 
semif{YOup. An often used heuristic argument proceeds 
as follows: Suppose that the orthogonal decomposition 
(23) is a decomposition into a slow collective motion 
y"(t) in lK and a rapidly fluctuating part u(l) in lK" as 
was explained in Sec. III. We then expect that the auto­
correlation matrix G(t) of the collective mode y", 

Ga~(f) =<y"~(0) I,,'l"'(tl), 

is a slowly varying function of t relative to the auto­
correlation matrix F(t) of the fluctuating part u, 

F'x~(t) =U(o) \11"(1»" 

If we assume that F(t) decays to zero in a time which 
is short relative to the characteristic time constant T 
of the motion y"(t), then we can approximate the integral 
in (36) by 

CdI' F(I - I') G(t') Z C dl' F(/') GU) for I ' T (38) 
. 0 ' 0 

which amounts to 

F(t) z F D6(t), 

FOd~} J~~ dIF(/hF(O). 

In this so-called A!arkol' approximation the reduced 
motion in lK is governed by the semigroup 
{Go(t); 0' I" oct 

GU) z GoU), 

Go(l) d~ exp[/(L + Foll, 

(39a) 

(39b) 

(39c) 

(40a) 

(40b) 

The question now is under what conditions is such an 
approximation valid. First of all, it is clear that F(t) 
cannot decay unless L 1 has a pllreil' COllti/lIIOIIS spec­

trulIl. Furthermore, it is easy to show that our assump­
tion (9al, that the subspace lK is contained in the domain 
D(Ll of L, is no! compatible with the semigroup prop­
erty of G(I). 9 This fact does not imply though that G(II 
cannot be reasonably approximated by the semigroup 
Go(l). However, if we require that in some limiting 
situation G(t) is approximated arbitrarily closely by 
Go(l), then there must exist some element k cO lK such 
that II L kll increases without limit, 10 that is, 
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if G(t) - Go(t), then II L kll- 00 for some k c:: IK. (41) 

This result serves as an important guide in choosing 
the subspace IK if we want an approximate semigroup 
behavior of a collective mode. However, we have to 
stress the fact that the Marko!' approximation is in­
consistent with our basic assumption IK c ID( L ). This 
warning applies to all commonly used projection 
methods which are derived under the assumption (ex­
plicit or implicit) of differentiability at time t = 0, and 
use of such methods together with a Markov approxi­
mation may lead to severe mathematical inconsistencies. 

VI. THE STATE SPACE REPRESENTATION 

Let us now rewrite Eq. (23) as 

y(t) = G(t) k + fat dt' G(t - t') U(tl), 0 ~ t < 00. (42) 

It has proven to be fruitful to consider equations of the 
form (42) as the input-output map of a dynamical sys­
tem and apply the powerful tools of mathematical system 
theory. 11 We therefore propose to regard Eq, (42) as 
a causal linear time-im'ariant input-output system. 
Following the jargon of mathematical system theory, 
we will call the r-dimensional vectors u(') the input, 
and y(o) the output. The input-output relationship is 
fixed by the initial condition 

y(O) =k (43) 

and the so-called impulse response matrix G(I), which 
in our case is a complex (rX r)-matrix, fulfills, the 
condition 

(44) 

The Laplace transform O(z) of the impulse response 
matrix G(t) is called the trallsfer fUllction matrix. Fol­
lowing Abel's theorem, Eq. (44) implies 

limxO(x) = 1. (45) 
x-~ 

By a slate space representation of a dynamical sys­
tem we mean a triple {A, B, C} connecting the input 
vector u('), the output vector y(.), and a state l'ecloY 
x(·) by the following relations, 

d 
dt x(tJ =Ax(tJ + Bu(t) , (46a) 

,,(I) =Cx(t), 0< t '. 00 • (46b) 

The input, the output, and the state are elements of 
topological vector spaces called the inplt! space U, the 
the output space Y and the slate space X, respectively, 

uc::U, yc::y, x.c:X. 

In the context of the present work, the spaces U, Y, 
and X are Hilbert spaces with the input space ur being 
equal to IK\ the output space Y being equal to the 
Liouville space IL which is a (proper or improper) 
subspace of the state space)(, that is, 

ur = IK\ Y = IL, IK" c IL ':- X . (47) 

For the Cauchy problem (46a) to be well posed, the 
transformation A ; X -)j{ has to be the infinitesimal gen­
erator of a strongly continuous one parameter semi­
group of operators TW, 
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T(t) = exp(tA), t? O. (48) 

Furthermore, B is a bounded transformation from the 
input space ur to the state space X and C is a bounded 
transformation from the state space X to the output 
space Y. Accordingly, the motion of the state xU) is 
given by 

xU) = T(t) x(O) + fat dt' T(t - t') BU(t'), (49) 

the impulse response matrix G(t) by 

G(t) = CT(t) B = C exp(tA) B, 

and the transfer function matrix O(z) by 

O(z) = C(z. 1- A)-l B. 

(50) 

(51) 

The state vector x is an abstract quantity and has a 
priori no direct physical meaning. Intuitively, the state 
of a system is the totality of information that is Ileeded 
to predict the fllture rcspOllse of the system to fulure 
inputs. That is, the state x(O) at time t = 0 summarizes 
all the past effects such that the future behaviour of the 
system does not depend upon how the system was 
brought into the state x(O). 

A crucial problem of mathematical system theory is 
the realization problem which is to deduce a state space 
model (46) from the input-output description (42). A 
given matrix G(o) is said to be realizable as the impulse 
response matrix of a linear time-invariant dynamical 
system if there exists transformations A, B, and C 
such that a state representation of the form (46) holds. 
The triple {A, B, C} is then called the realization of 
G(o). Evidently, if a given matrix G(o) has one realiza­
tion, then it has many. Let {A, B, C} be a realization 
of G(o) on the state space X and let X be any invertible 
bounded transformation, X; X - X to another Hilbert 
space X. Then the triple {X, B, C} defined by 

X~f X-lAX, 

B d~f X-1B, 

Cd~fCX, 

(52a) 

(52b) 

(52c) 

is also a realization of G(o) on the state space X. A 
system {X, 13, C} is said to be equivalent to the system 
{A, B, C} if there exists a bounded transformation 
X; fA, B, C} -fA, 13, c) fulfilling Eq (52). 

Let {A, B, C} be a state space representation with the 
state space X. Then two states X·c. X and x' cC X are 
called indistinguishable if they generate the same input­
output map, that is, whenever 

CT(t) x(O) + Cril' T(t - I') BUU/) 
• 0 

= CT(I) x' (0) + C dt' T(t - I') Bu(t') 
. 0 

for all inputs u "" ur and all I ..c. [0, 00). A state space 
representation {A, B, C} is called i rrcdllcihle if no 
distinct states are indistinguishable in iL Any state 
space representation can be converted into an irreduci­
ble one by throwing away the superfluous states, that 
is, the original state space X has to be replaced by 
the quotient space of X under the equivalence relation 
induced by the notion of indistinguishability. There­
with, the following important result follows easily: If 
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a causal time-invariant linear input-output system has 
a state space representation (whereby the state space 
may be infinite-dimensional), then there exists linear 
irreducible representations. All irreducible repre­
sentations of a given input-output system are equivalent 
and, furthermore, the state spaces of all irreducible 
representations are topologically equivalent. 12 

The state space X of an irreducible representation is 
finite-dimensional if and only if the transfer function 
matrix G(z) is rational. A finite-dimensional dynamical 
system with a p-dimensional state space X is always 
equivalent to a matrix representation {A, B, c1 where 
A, B, and C represent time-independent complex 
matrices of dimensions (pxp), (pXr) and (rXp), re­
spectively. A finite-dimensional realization of G(·) is 
minimal if its state space has minimal dimension and 
if {A, B, C} is a minimal matrix realization then there 
is no other realization having a matrix A of minor size. 
Any minimal realization is irreducible and is unique 
within an equivalence class defined by Eq. (52) where 
X is now a (pXp)-dimensional arbitrary nonsingular 
constant matrix. The dimension of the minimal realiza­
tion of a rational transfer function matrix is given by 

G(O) 0(0) 0(0) 

0(0) 0(0) ·0(0) 

minimum( p) = rank 
(;(0) ·0(0) 

(53) 

All finite-dimensional nonminimal realizations are re­
lated to the minimal ones via Kalman's canonical struc­
ture theorem. 1a 

It is to be noted here that the state x(t) is not uniquely 
determined by the input-output relationship. Equations 
(44) and (50) imply 

CB=l (54) 

and therefore 

CBC=C, 

BCB=B, 

(CB)* :=CB, 

(55a) 

(55b) 

(55c) 

so that B is the generalized inverse of C. 14 The general 
solution of the output map (46b) is then given by 

x(t) = ByU) + (1- BC) w(t), (56) 

where w(t) is arbitrary and the (p xp) matrix (1- BC) 
is idempotent. Therewith the initial state is given by 

x(O) = Bk + (1- BC) w(o). (57) 

This nonuniqueness of the state is quite convenient 
since it gives one enough freedom to define a Simple 
fictitious mechanical system that mimics the input­
output relationship. We plan to elaborate on this point 
in the third paper of this series. 

We will call the homogeneous part of Eq. (46) the 
free motion, 
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d 
dt Xo(t) = Axo(t) , (58a) 

xo(O) = Bk + (1- BC) w(O). (58b) 

We see then that the free molion generates I he projec­
tion of the true motion on the subspace lK, 

(59) 

and the motion in the complimentary subspace r cor­
responds to the effect of the input u(t) on the system 
in the zero state 

y(t)=Cfoldl'exp[(t-I/)A}Bu(t'), x(O)=O. (60) 

VII. RECURSIVE ORTHOGONAL DECOMPOSITION 
OF THE MECHANICAL MOTION 

The orthogonal decomposition (23) can easily be 
iterated in such a way that the whole subspace reached 
by the motion of the m dynamical variables considered 
is completely decomposed into orthogonal subspaces 
of IL of nonincreasing dimensions. In order to arrive 
at such a decomposition, we consider the time evolu­
tion of a set of mj dynamical variables u~ , 
0' = 1, 2, ... , mj' under the action of a skew-adjoint 
Liouvillian L j, 

1l~(t)d~exp(tLjh{j(O), (}'=1,2, .. o,IIl), (61) 

c = - (L})*. (62) 

We identify the original dynamical variables d' 
III and the original Liouvillian L with L 1> 

with 

111 (0) d~ d' (0), 0' = 1,2, ... , 1110 d~ III, 

L d~L 1 - , 

(63a) 

(63b) 

and we assume, for Simplicity, that the original dy­
namical variables d' (0) are analytic vectors for the 
Liouvillian L .15 The set Dan of all analytic elements of 
L is contained in the domain lD(L) of L, 

lDanC lD(L) c L, 

but is still dense in L and is invariant under L, 

L lDan =J)an. (64) 

Let lK j be the smallest subspace of L that contains 
the elements 1I~_1(0), a == 1, 2,0", /II l _l, 

dof 
dim(n<) = 11/ j ~ III j_l • 

We denote the orthogonal proj ection onto lKj by (J j' 

PjL=lK j 

and define a projector P~ by 

( )L d~ ()1 f) 
j - j _1 - j' 

P~ d~ 1. 

(65a) 

(65b) 

(66) 

(67a) 

(67b) 

According to the lemma of Appendix C, there exists an 
orthonormal basis {kf}, a = 1, 2, ... , /11}, of the sub­
space lKj, 

(kf!llf)=5as , kf-"lKj , a=1,2, ... ,lII j , (68) 
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such that 

k; = p;(S;)I!2 u;(O), 

Uj( 0) = (Sj)1 /2 Plk j' 

(69a) 

(69b) 

where kj is a JIIrdimensional vector with elements k~ 
and uj is a 111 j _I-dimensional vector with elements u~ • 
The (III j_1 x III j _I)-dimensional Gram matrix Sj ={S~a} is 
defined by 

~Bd~(/{fl/{~), G',J3=1,2, ... ,111 j _1 (70) 

and S} is its Moore-Penrose pseudoinverse. 16 The 
(111 j x 1J/ 1_1)- matrix P j is a partial isometry'7 of rank 
117 j ~ 111 j _I and has properties 

Pj P j = SjS} = S~Sj, 

P j = PjPjPj = Pj(SjS~)I!2 = Pj(S;S/ /2, 

(71a) 

(71b) 

(71c) 

with 1mj representing the nlrdimensional unit matrix. 
USing Eqs, (61) and (69b), the time evolution of u7 is 
given by 

Uj(t) = (S)I /2 PjYt(t), (72) 

where 

:vj (I) ~f exp(t L J) k~ . (73) 

If we now apply the orthogonal decomposition (23) to 
the motion of Yj with respect to the subspace IKj C IDa., 
we get 

Y j(l) = Gj(t) k j + lot ril' G,(t - t') Uj +1 (t'), (74) 

where we have introduced the (nijXmj)-matrix 
Gj ={G,,8}, 

Gr(t)d~! (kfl exp(tL,)lkt), G',f3=1,2, ... ,nij, (75) 

a 1J/ j-dimensional vector U j +1 with elements 

U~+I (I) d~ exp(t L j+l) U1+1 (0), 

" (0) de! P.l.L '" 1Ij+l = j jk j , 

and a skew-adjoint operator L j+1 by 

L . d~f L ~ d,!,! P.l.L ,p" ;+1 ,-, J J' 

(76a) 

(76b) 

(77) 

The skew-adjointness of the operator L j+l follows itera­
tively from that of L [compare Eq. (l3b)], 

L J+l=-(L j + 1)*, j=I,2,'o< (78) 

and it is to be noted that the domain of the operator L, 
is contained in the domain of L, that is, ID(L j) C ID(L L 

Evidently 

yi' (I) E: 1K~_I' 1K~ ~ L, 

kt E.lKj 

(79a) 

(79b) 

(79c) 

so that indeed we have achieved a complete orthogonal 
decomposition of motion 

~ 

a(t) = :0 bj(O, 
;=1 

(SO) 

with 
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11 (II 11
;-2 () bj(t)= odl lJo dl 2

oo
' 0 dl,_IH 1 1-1 1 

X H2(tl - '2) • •• H;(I j_l) kj , (Sla) 

where 

(8Ib) 

and the mutually orthogonal elements kt are given by 

(Blc) 

The orthogonal expansion (BO) corresponds to the ortho­
gonal decomposition of the space IL = span\. exp(t L ) JKI : 
0,,:; t < ao} spanned by the motion according to 

(82) 

with 

(83) 

and the dimensions 1111, ni2, ni3, ' .0 of the mutually 
orthogonal subspaces 1K1, 1K2, 1K3 , , 00 are nonincreasing 

m ? 1111 ? 1112 " 1n3: •• " 

d.! . (1K) 
11Ij = dim j. 

In analogy to Eq. (37c), we define a (mj_I X1IIj_I)­
matrix F /0 ={ Fr (I)} by 

(S4a) 

(84b) 

F;a(t) d~! (uf(O) 111;'" (1)). (85) 

Then using Eqs. (61), (69b), and (75) we get 

Fj(t) = (Sj)I/2pjGj (t) Pj(s;l' 12 (86) 

so that the integrodifferential Eq. (36) can be written 
as 

:1 Gj(t) = G/tl L j + f t d/' Gj{t _1')(Sj+I)I/2 
o 

X Pt+1 Gj.l(l') Pj +1(S}+1)1/2 (87) 

with the skew-adjoint matrix Lj ={L~e} defined by 

Lcre~ !!.-G~8(t)1 -(k 8 1L-IR"') (88) 
J - dt ) t=o - 'J ) J • 

Thus all matrices Gj(t) can be expressed in terms of 
the matrix G1 (I) = G(t). In particular, the orthogonal 
components bj(t) can be expressed in terms of the ma­
trix G(t) and the constant matrices SI' Sz, 0 •• , S, and 
Ph P2, ... , P j ' For example, using 

G2(f) k2 = Gz (I) P2(SD1 /2 U2 = G2(t) P2(S2)1 /2 S~Uz 

and Eqs. (81) and (8B), we get 

bz(t) = .fut dl'(SI)I/2 PtGl(t - 1')(S2)1/2 

x P{Gz(t') P2(S2)1!2S~U2 

= (SI)I /2 Pt (~ G(I) - G(I) L) S~U2 
= (81)1/2 Pt (; G(J) - G{t) L) (S~)1/2 P:ikz . 

With the state space representation (50) of the matrix 
G(t), 

G(t) = C exp(tA) B, 
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L=CAB, 

and noting that (1- BC) is idempotent and that (1- BC) B 
= 0, which follow from (54), we then have 

b1(t) "" (SI)I/2 prc exp(tA) Bkl, (89a) 

bz(t) = (SI)I/2 Ptc exp(tA)(l- BC) AB(S~)l /2 P:?"k2, 

(8gb) 

Following the discussions of the previous section, 
we propose to consider Eqo (74) as a causal linear 
tlme-invariant input-output system with input Uj +l(o), 
output Y k) and a transfer function matrix G; (r). The 
input- output relationship of the system is fixed by the 
initial condition Yj(O) = k j r compare Eqc (73)J. If the 
triple {A j , B j , C j } is a realization of the transfer func­
tion matrix Gj , 

Gj(tl = Cj exp(tAJ ) B j, 

then we have the state space representation 

d 
dt xj(t) =Ajxj(t) + B j Uj +l(1), 

Yj(tl =CjXj(t), 

with the state Xj given by 

xj(t) = BjYj (t) + (1 - B jC;l Wj (I), 

(90) 

(91a) 

(91b) 

(91c) 

where W /1) is arbitrary. Thus we have a decomposition 
of the mechanical motion into a hierarchy of ortllOjJona! 
stationary linear dynamical systems. 
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APPENDIX A: DERIVATION OF EQUATION (20) 

From the definition (18) of the generalized resolvent 
(/(z) and Eq. (llc), we have 

p"(z)p =(j(z) + pL/i.,(Z)[J (A1) 

which, with the second resolvent equation of Hille and 
Phillips, lB 

/\(z) =I<o(z) +I<o(z) V/~(z) for z <- p(Ll p(L" + L \ 
(A2) 

gives 

(~(z) P =g(z) + P'Ro(z)fJ + p~po<:<) V(\(z) fJ 0 (A3) 

Now with the definitions (12b) and (12c) of L I, and L 1 

we see that 

I P,{I )= 0, [P,L ']=0, 

[()',L"1=0, [PL,L~l=o, 

and therefore 
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(A4a) 

(A4b) 

(A5al 

(A5b) 

from which we have 

(A6) 

so that Eq. (A3) reduces to 

(~(z) fJ =g(z) + P~o(zlVf~(z) P. (A 7) 

Since P~L" p" = 0, it follows that pLpO(Z) pL = pLpL(Z) pL 
and therefore with the definition (12d) of V and (A6) we 
get 

Pl<o(z)V =P1<..o(z)P"LP 
= P7\~(z) P~LP 

=pit(z)p'VP, (A8) 

where we have used P~L P = p~V P. Inserting (A 8) into 
(A 7) and using the definition of the generalized resolvent 
g(z) we then have 

(<(z) P = g(z) +p'(z) P'vg'(z) 

which is Eq. (20). 

APPENDIX B: DERIVATION OF EQUATION (32) 

On iterating the second resolvent equation (A2) of 
Hille and Phillips, we have 

(<'(z) =Ro(z) +8 0(z) V[/~o(z) +Po(z) Vf\(zll 

so that 

Pf«z)P =P(<'o(z) P + mo(z) VPo(z) p 

+ (1(\o(z) PV(\o(z) V(<(z) P , (B1) 

Since Ko(z) commutes with P and PV P = 0, the second 
term on the right side of (Bl) vanishes. With PV 
=PLP" =PVpl and the fact thatKo(z) also commutes 
with p~, we have 

PV8o(z) =PVPLPO(Z) = PVKo(z) p
L 

and therefore 

PVR.o(z) V =PVPo(z)P~V =PVPo(z)PLVP, (B2) 

where we have used pLV = pLV P. On inserting (B2) in 
the last term of the right side of (B1), we get 

or 

where we have used (<'o(z) p" = 8'(z L Since pCP = 0, 
the first term on the right side of (B4) becomes 

Pf~o(z) P =PKo(z) = P(z - L II _ L.I.)_1 
=P(z - [,,)_1 =(z _ [,,)_1 P 

and we get from (B4) 

(z - L")r;;(z)=p+PVf<.\z)p"Vpr;;(z) 

so that 

r;;-(z) = [ /)(z - L") P - PVP"(2) p.l.VPI_l 

which is Eq. (32) 0 
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APPENDIX C: ORTHOGONALIZATION OF 
LINEARLY DEPENDENT VECTORS 

Lemma: Let uV
, lJ = 1, 2, ... , m, be the elements of 

a Hilbert space, with the inner product (" I"> defined, 
that span a r-dimensional subspace 1K, 

m 
der{ "" 'v v IK = 1': I' = LJ I\. U , 

v=l 

rd~ dim(K), r~m~OO. 

Then the r elements kat c: 1K, QI = 1, 2, ... , r, 

k" ~ t [p(Si)1/2]<:vvuv 
v=l 

form an orthonormal basis of 1K, 

(k'" I!?B>=o"B, QI,i3=1,2, ... ,r, 

(C1) 

(C2) 

(C3) 

(C4) 

where the (mXm)-matrix S is the Gram matrix of the 
elements /Iv, 

Sd~f{SV"}, SV"d~(u"luv>, /l,lJ=1,2, ... ,m 
(C5) 

and Si is its Moore-Penrose pseudoinverse. 16 The 
(r X m )-dimensional matrix P is a partial isometry17 
having properties 

PP* = 1r, 

p*p=SSI=SiS, 

P = PP* P = PSSi = PSiS = p(SSi)l /2 = p(Sis)1 /2, 

r= rank(S) = rank(P) =tr(SSi). 

(C6) 

The original elements U
V in this {k "} basis are given by 

r 
uV =6 [(S)1/2p*]v"1/'. (C7) 

'" =1 

Proof of the lemma: Let U ={VV~} be a unitary 
(m x 111)- matrix that transforms S into the diagonal 
form, 

USU*=D, D={Ov"8 v}, U*=U-1. (ca) 

If dim(lK) = r ~ III, then the r eigenvalues s v are non­
zero and we may arrange them in such a way that 

SV~·O for IJ=1,2, •.. , r, 

SV =0 for v=r+ 1, r+2, ... , m. 

The r elements !?a defined by 

"a_ ~ "m",\ V av y 
'<-aU ll, 

S v=l 

are orthogonal since 

QI = 1,2, ... , r 

(k" Ik B
)= r(8"'S~)]112 (USU*)Sa =O",B 

Let us define a (rXm)-matrix V={V av} by 

V"'v = 0, QI *v, 

V"''''=l, QI=l,2, .•• ,1', v=l,2, ... ,m, 

so that we can write 

k= V(DI)l /2 Uu, 

(C9) 

(ClO) 

(Cll) 

(C12) 

where k is the 1'-dimensional vector with elements !?"', 
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u is the m-dimensional vector with elements It, and 
DI is the Moore-Penrose pseudoinverse of D, 

(DI)vv = (8V )-1 for lJ = 1, 2, •. . ,1', 

otherwise. 
(C13) 

USing the relation Uf(Si) =f(DI) U we can rephrase the 
last result as 

k= VU(Si)1/2 u, (C14) 

and defining a partial isometry P by 

P~VU, (C15) 

we arrive at the polar decomposition 

k= p(Si)1/2 u, (C16) 

where we have used PP* = VV* = 1r • 

The inversion of the relation (C 16) follows trivially 
from the expansion of the vector {u V} in the ortho­
normal basis {k IX

}, 

r r 

uv=E <!?'" luv)!?a =6 [S(Si)1/2p*]V"'k a , 
'" =1 '" =1 

and with the relation 

(8SI)1/2 P* = U*(DD I)l /2 Uu*V* = U*(DD1)1 /2V* = U*V* = P*, 

we finally get the inverse polar decomposition 

u = (S)l /2p*k. 

From the relations given, it follows at once that 

PP* = 1" p*p=SSi =SiS, 

and 

Re1l1ar!?: For the particular case 1'=111, we have 
P = 1m, and!?l, k 2

, ••• , k m equals the unique orthogonal 
basis that minimizes the sum of the squared distances 
between each 1I

v and the corresponding basis elements 
T~ v 19 
f( , 

t (II v _ kV III v _ kV) = minimum. 
v=l 

Of course, in this case the Moore-Penrose pseudo­
inverse Sl equals the inverse S-l and S-I/2 is to be 
understood, as the inverse of the unique positive definite 
Hermitian square root Sl/2 of S, 

IGeneralizations are pOSSible, but can cause severe mathema­
tical difficulties. Nevertheless, many of our considerations 
can be extended to the more general evolution equation 
(d/dt)a(t) = L a(t) +fj b(t), where L is the infinitesimal generator 
of a strongly continuous semigroup of operators in a complex 
Banach space IL and 13 is a bounded operator from an input 
Banach space to IL. 
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In a previous paper by the authors it was shown that mechanical systems, classical or quantal, can be 
realized as stationary linear dynamical systems. In this state space representation of mechanical systems, 
the input space, the output space, and the state space are Hilbert spaces and to make a connection with 
the language of a mathematical system theory, in which the corresponding spaces are topological vector 
spaces, it is shown here that the input, the output, and the state of the dynamical systems representing 
mechanical systems can be interpreted as second order stochastic processes. An orthogonal decomposition 
of mechanical motion into a deterministic and a purely nondeterministic motion, suggested by the 
stochastic interpretation, is discussed and it is pointed out that by iterating the decomposition procedure 
one can obtain a simple model which approximates the true mechanical motion. 

I. INTRODUCTION 

In a previous paper, 1 to be referred to here as I, we 
presented a system theoretic representation of mechani­
cal systems. We considered a finite mechanical system 
whose original dynamics is formulated in an appropriate 
complex separable Hilbert space [, called the Liouville 
space. Using suitable orthogonal projection operators 
p and p~ we decomposed the Liouville space Liouville 
space IL into orthogonal subspaces lK and lK~, IL = lK d7lK", 
such that lK contains the" relevant" part of the original 
motion while the "irrelevant" part is contained in lK~. It 
was shown then that the motion \,a (I) E IL, 

va (t) d;j exp(tL ) lea, 0' = 1, 2, ... , Y, (1) 

where ",a, 0' = 1,2, ... ,Y, is an orthonormal basis of 
the Y-dimensional subspace lK and the Liouvillian L is 
a skew-Hermitian (not necessarily bounded) linear 
operator acting on IL, can be uniquely decomposed as 

y(t) = G(t) k +fot dt' G(I - t') u(t') r-:: .IL, 

G(t) k ElK, .fo t dl' G(t - I') U(t') ElK" 

(2a) 

(2b) 

where the above equations are to be read as matrix 
equations with y(t) and k being Y-dimensional vectors 
with elements "a (I) and l~a, G(t) is a (rx y)-matrix with 
elements C"'B(t), 

and u(f) is also a Y-dimensional vector with elements 
lla (t) defined by 

(3) 

1fCX (t) d~ exp(tP~L p"u'" (0), 

1('" (0) d~ P''L I?'" • 

(4a) 

(4b) 

ConSidering the decomposition (2a) of the mechanical 

a)Work supported in part by the Swiss National Funds for the 
Advancement of Sciences. 

motion to be an input- output map of a causal dynamical 
system, we had arrived at the state space representa­
tion of the mechanical system 

d dt x(1) = Ax(t) + Bu(t) , (5a) 

yet) = Cx(!), (5b) 

establishing that a mechanical system can be realized 
as a stationary linear dynamical system with input 
vector u(!), output vector yet) and state vector xU), 

x(!) = B,,(t) + (1- BC) w(t), 

where wet) is arbitrary, and whose impulse response 
matrix G(t) is given by 

G(t) = C exp(tA)B. 

In this paper we will present a stochastic interpre­
tation of this system theoretic representation of 
mechanical systems. In mathematical system theory, 
the input, output, and state vectors are elements of 
topological vector spaces called the input space, the 
output space, and the state space, respectively. In the 
context of the formulation presented in I, these spaces 
are Hilbert spaces so that the input, output, and the 
state are Hilbert space-valued functions. To make con­
nection with the language of mathematical system 
theory, we propose to show that the input, output, and 
the state can be interpreted as second order stochastic 
process and that the state space description (5) of the 
mechanical motion y(1) represents a stochastic d\'nami­
cal s1'stem. Since any stochastic process can be decom­
posed into a deterministic and a purely nondeterministic 
process, this stochastic interpretation suggests a de­
composition of the mechanical motion into a determinis­
tic motion and a purely nondeterministic motion. We 
discuss this decomposition in the last section of the 
paper and conclude that through such a decomposition 
one can arrive at a much Simpler model of the mechani­
cal system which approximates the true motion in an 
excellent manner. 
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In a later paper we will present the application of the 
theory, developed in I and here, to a quantal many-body 
system. 

II. STOCHASTIC INTERPRETATION 

In the language of mathematical system theory, the 
input u(·), the output y(.), and the state x(·) are ele­
ments of topological vector spaces called the input 
space U, the output space "If, and the stalc space X, 
respectively, 

UEU, YE'i, XEX. 

In the context of the system theoretic representation 
of mechanical systems presented in I, the input space, 
the output space, and the state space are complex 
separable Hilbert spaces with the input space U being 
equal to the subspace lKI., the output space 'i being 
equal to the Liouville space L which is a (proper or 
improper) subspafe of the state space X, that is, 
U = J( , "If = L, J( c Lc X, so that the input, the out­
put, and the state are Hilbert space-valued functions. 
In order to make connection with the language of math­
ematical system theory, we propose to interprete 
y(.), u(·), and x(·) as stationary second order stochastic 
processes. 

Such a reinterpretation can be done without any loss 
of generalityZ because any second order stationary 
stochastic process can be considered as a C1Irl'(' in all 

appropYiale Hilhcrl space and any curve in an abstract 
Hilbert space can be realized as a second order 
stochastic process. 3 

Consider a probability space (n, 6, il) where n is the 
sample space of elementary events wand il is a proba­
bility measure on the a-algebra 6, 

il(n) = 1. 

Let s = s(w) be a complex-valued random variable rela­
tive to the probability space (n,.G, il), 

5:n-([;, 

and let us denote the expectation value of a function q:,(s) 
by E{q:,}, 

E:{q:,} ~f .fn dil(w) ¢{s(U!n. 

We will restrict our attention to random variables with 
vanishing means and finite second order moments, that 
is, 

and if any two random variables 81 and 82 are 11-
equivalent, 

{
. '2, E: [51-521 r=O, 

we will regard them as identical. 

Now any second order random variable can be con­
sidered as an element of the Hilbert space L 2(n, il) of 
complex-valued quadratically il-integrable functions, 
endowed with the inner product 

(511 52) d~ €{5!SZ} = In dll(W) st(w) sz(wl. 

The convergence in the norm topology of L 2(n, il) 
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coincides with the convergence in the quadratic mean 
in the sense of probability theory. A stochastic process 
{sun is a family of random variables s(l) with I varying 
over the real axis, that is, IE lR. For every fixed I, 
the random variable sU) corresponds to a point in 
Lz(n, Il), and therefore the stochastic process 
{s(!), I" lR} describes a C1(r1"C in Lz(n, il). 

Given the abstract Liouville space L and the motion 
y(t), we can construct a Hilbert space Lz(n, Il) of an 
appropriate probability space (n, 6, il). With the defini­
tions (2), (16) and (22) of I, the elements of the impulse 
response matrix G(') can be written in the form 

C"'8(t-t l )=<l(t/)I,''''(t), (6a) 

C",8(/} = [C8
", (- I)J*, a, i3 = 1,2, ... , r. (6b) 

The matrix G(') is positive definite in the sense of 
Bochner, that is, for all (r x Y)-matrices R j , 

j ~ 1, 2, ... , 111 and all real numbers 11,12, ••• , 'm, the 
condition 

m m 

o 0RjG(lj-f1lRi>0, 111=1,2,'" 
jol 101 

holds. Using the spectral decomposition (25) or (2S) 
of I, we get the representation 

(;",E(t) = r: exp(iAt)dE"'E(A), (7) 

where 

~8(A) ~f (lll[(A) i h"') (Sa) 

=(It !J(A) II?"') (Sb) 

are complex-valued functions of bounded variation and 
~'" (A) are real nondecreasing functions. These results 
imply that y(.) can be considered as a s(,(,ond-order 
stafiOlwrl" sfocllaslic vccloy proccss ll'ith zero mean 
I'aluc 

E{ 1'''' un = 0, (9) 

with the cOl'ariallce matrix G(t) ={c",8(t)1 given by 

C",8(t - I') = €{ l (I')*\,'" un = <lU') h'''' (I» . (10) 

The matrix E(A) ={~a(A)} is called the speclral dish"i­
hulioll maln·x of y(t). Therewith, the CralJler yepre­
sentation of y(t) is given by 

,,"'(1)= J.: exp(iA/)r1z"'(A), (ll) 

where Z(A) is a uniquely determined vector process with 
orthogonal increments, 

z'" (- 00) = 0, 

E{Z'" (An = 0, 

(12a) 

(12]) 

E{[Z"'(t4) - Z"'(l3)]*[z8(12) - z8(t1)l}=0 for 14' 13> ' 2 ' /1 , 

(12c) 

(12d) 

With these remarks it is clear that the state space 
description (5) of the mechanical motion y(l) represents 
a slochastic dynamical system l!'ilOse impulse y('sponsc 
matrix G(·) equals thc covariance matrix o( the s('colld 
oyrier stochastic vector proc('ss y(t). This result is 
valid for quite general classical or quantal systems. 
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The essential prerequisties are that the original 
Liouville space is a Hilbert space, the Liouvillian is 
skew-adjoint, and that the initial conditions belong to 
the domain of the Liouvillian. 

III. ORTHOGONAL DECOMPOSITION INTO A 
DETERMINISTIC AND A PURELY 
NONDETERMINISTIC MOTION 

It is well known that any stochastic process can be 
decomposed into a deterministic process and a purely 
nondeterministic process. 4 Let us denote by rr..,(y, t) the 
closed subspace of rr.., which is spanned by the random 
variables \,1(1/), \,2(t ' ), ... , "T(t/), for all t' < t, 

T 

rr..,(y, I) d~ clos{f:f = B A",,"(I'), A" r= <C, I'·,: I}. (13) 
11=1 

Evidently, rr..,(y, 11) '- L(y, 12 ) whenever 11 < 12 , so that 
the limiting space !L(y, - 00) exists. A stochastic 
process s(·) with 

L(S, _00)= !L(s, +00) 

is called a detenninis/ic process. If 

rr..,(s, - 00) of. L(s, + 00), 

then s(·) is called J101/delerministic and if 

!L(s, - x) =0, 

(14) 

(15) 

(16) 

then s(·) is called pllrel\' nondeterministic. Any 
stochastic vector process can be decomposed uniquely 
into a sum of a deterministic process and a purely 
nondeterministic process by a projection. Let P _K be 
the projection operator onto the subspace L(y, _ 00) 
of rr.., and let us define for every I 

\'~.t(l) =P _~\,,, (I) EC L(\', 0, 

\'~nd(l) = (1- fJ _~) ,," (I) cc L(\', n, 
(17a) 

u = 1, 2, .. " ,ro (17b) 

Evidently, Ydet(') is a deterministic process and Yond(') 
is a purely nondeterministic process orthogonal to 
Ydet(' ), 

y(t) = Ydet(t) +Yond(t), 

Ydet(t) 1. Ypnd(t') for all I, t',~ JR, 

or 

E:b~et(t)* \'~nd(t/)} =(\'~et(t) !\'~nd(t') = 0, 

(17c) 

(18a) 

for all I, I' (c JR, a, f3 = 1,2, . " . , r. 

(l8b) 

With this, the Hilbert space rr..,(y, t) can be decomposed 
as 

(19) 

A related decomposition of the motion y(.) 
corresponds to the Lebesgue decomposition. The ex­
tension of Lebesgue' s decomposition to matrix-valued 
functions is due to Cramer5 which allows one to de­
compose the spectral distribution matrix E(A) into a 
decrete Ed(A), a singular Es(A), and an absolutely 
continuous Ea(;\) spectral distribution matrix, 

(20) 

Correspondingly, we can decompose the stochastic 
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vector process y(t) into three independent stochastic 
vector processes Yd(t), ys(t), and YaW, 

y(t) = Yd (I) + y s(t) + Ya(t), (21) 

having spectral distribution matrices Ed, Eso and Ea, 
respectively. The components Yd(') and Ys(') are always 
deterministic. If the absolutely continuous part Ya(') 
has maximal rank, it is pllreh nondeterministic if and 
only if 

i: 10g[detf(A)](1 + A2)_1 dA» - 00, (22) 

where f ={f,,$} and("B(A) = d~$(;\)/ dA . 

The Singular continuous component Ys(') is very 
pathological and has not been encountered in physics 
so far. It is evident then that if G(') possesses a finite­
dimensional realization, then y(.) is deterministic. 
The purely nondeterministic part is due to the continu­
ous part of the spectrum of the Liouvillian L . 

The stochastic state representation of a mechanical 
many-body system is a powerful tool for the develop­
ment of consistent approximative methods. Any COIl­

sistenl approximatil'e model for Ihe true mechanical 
molion can be rephrased in te1'lns of a relel'ant motion 
characlerized by a subspace of the Liou1'ille space and 
a prediclion problem (or the stochastic input process 
u(·). In order to pursue this problem it is necessary to 
iterate the projection procedure, in the fashion de­
scribed in the last section of I, until the new input is 
very erratic. The main question is what is to be under­
stood by an "erratic" function. We will call a slociwstic 
process "erratic" If if has s1Ich a high compulaliollal 
("o1llplcxil,,6 that, lI'illlin the p1"ohlel1l under discussion, 
il is Jzol feasible 10 dislinguish it froJII a completel" 
izoJ/deteYll'inistic stochastic process. Of course, the re­
placement of a deterministic but erratic stochastic 
process by a completely nondeterministic process 
amounts to making an approximation and it is our claim 
that every consistent approximation, that is, every 
approximation without intrinsic inconsistencies, is of 
this type. Consider a consistent model and let s(t) be 
the final input in its system theoretic representation. 
Then it is useful to consider s(·) as a filtered white 
noise so that s(·) has to be represented as the output 
of a causal and causally invertible linear filter with 
white noise input. The impulse response matrix H(t) 
of the filter involved fulfills the equation 

J: dt ' H(t - t') H(t/) = Gs(O, 

where Gs (') is the covariance matrix of the vector 
process s(·). 7 

(23) 

A very useful and consistent approximation can be 
obtained by changing the spectrum of the Liouvillian L . 
Letf E L be a cyclic vector for the maximum Abelian 
Neumann algebra generated by the spectral family of the 
Liouvillian L described by Eq. (26) of 1. We define a 
measure J..L by 

J..L(;\) ~ «((A), f), 

so that J..L(') is a distribution function in the sense of 
probability theory and it can be uniquely decomposed 
into a step function with a countable number of steps, 

(24) 
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an absolutely continuous part 11., and a continuous 
singular function. Since the continuous singular part is 
always absent in practical problems, ).1.(.) can be 
written as 

~ 

I1(A) = 0 I1v8(lI- lI,,) + Pal1aU,), 
vol 

where 

B I1v == Pd '" 1, iJ.v ? 0 
v:::l 

(25a) 

(25b) 

Pd + Pa = 1, (25c) 

and 8(') is a step function defined by 8(x) == 1 for x> 0 
and B(x> = 0 for x <: O. ln many practjcal problems, the 
discrete spectrum {AI, ~, ••. } of the Liouvilhan con­
tains a part, say {Ap.I, \.z, ... }, which is extremely 
narrowly spaced. The characteristic function ¢nd(t) of 
the narrowly spaced discrete part iJ.nd of the measure 
iJ. has an exorbitantly long recurrence time, 

( 
def _I';:" ( 

iJ. nd A) = Pnd U iJ.v8 A_ \), (26a) 
v=p+l 

(26b) 

(26c) 

and, typically, the characteristic function ¢"d fulfills 
an inequality of the type 

(27) 

Now if Tz >>> Tl where T2 is astronomically large and 
Tl is of the order of a relaxation time observable in 
the laboratory and if, furthermore, E is a very small 
number, 0 ,> E'" 1, then we can replace ¢n1 by a charac­
teristic function ¢na of an absolutely continuous dis­
tribution iJ.na . A convenient definition for ¢na is, for 
example, 

<bn.(t) ~ exp(- t2/2T2) ¢nd' (28) 

where T is some number satisfying the condition 

such that we have 

I <I>nd(t} - ¢na(t) I < € for 0 -: 1 ~', T 2• 

The above inequality implies8 that 

C I iJ.nd(A) - I1 na (A) i dA ";; IT/T, 

(29a) 

(30) 

and therefore the discrete measure iJ. nd is well approxi­
mated by the absolutely continuous meaSUre iJ. na , 

~ 

iJ.na(A) =p~ "0 iJ.v <p(T(A - ~), (31) 
v:.p ... l 

where ¢(x) == (21T)_1 12 f:~ exp(- ·tl) dy is the Gaussian 
distribution. It is reasonable in this case to replace 
the LiouviIlian L by a skew-adjoint operator I having 
the spectral decompOSition 

(32a) 
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with 

<f \E(A) \ f> = il(A), (32b) 

where f is the same cyclic vector as in (24) and il is 
the measure obtained from iJ. by replacing' iJ. n4 by iJ. na , 

(32c) 

This then suggests the replacement of the covariance 
matrix G(·) by a new covariance matrix Q(.) having the 
representation 

a. 6 (t)== r~ exp(£tA)dE-6(,\}, 

(33a) 

By such a procedure it is always possible to construct 
a new model in which the deterministic erratic stochas­
tic process s(t) is replaced by a completely nondeter­
ministic stochastic process a(l). If all the conditions 
stated are fulfilled, then for all practical purposes, 
that is, for all reasonable observables, one can obtain 
a much simpler model that approximate the true motion 
for 0 <; t c~ T z in an excellent manner, and rigorous 
bounds for such a consistent approximation can be found 
for many particular applications. 
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Using harmonic analysis techniques, we construct orthogonal polynomials on Minkowski's hyperboloid in 
order to interpret in the framework of the theory of group representation the tensorial polynomials 
introduced by Marie for the resolution of the relativistic Boltzmann equation by the Grad method. 
Calculations are performed in an adapted coordinate system by using zonal spherical functions on the 
hyperboloid of Minkowski, which as a matter of fact are Jacobi polynomials. Moreover, the homogeneous 
components of the Maxwell distribution function give an interpretation of Juttner's formulas and, 
consequently, of the thermodynamic quantities of the fluid. 

INTRODUCTION 

This paper on the relativistic Boltzmann equation deals 
with the Grad method of resolution] adapted by MarIe' to 
the relativistic case. 

Grad's method consists in trying to find a solution of 
the nonrelativistic equation as an expansion in a series of 
orthogonal polynomials in an N-dimensional space that, in 
the case when N= 1, reduces to Hermite polynomials. 

In the framework of general relativity, MarIe' has intro­
duced a family of orthogonal tensorial polynomials, 
H a I·

a 
.···0" such that the system of functions 

is complete in the space of square integrable functions on the 
Minkowski hyperboloid. v(p,) stands for the Maxwell distri­
bution function. 

MarIe's calculations are rather complicated and are of 
practical use only for the very first polynomials. StewartJ 

and Anderson' have given a construction for these 
polynomials. 

In our work, we have tried to look for the origin of 
MarIe's polynomials. Apparently, they can be obtained in 
the framework of the theory of group representation by the 
consideration of spherical functions on the Minkowski 
hyperboloid. 

Our work runs as follows: 

(l) The first part is essentially a brief summary of the 
relativistic Boltzmann equation and of the Grad method of 
resolution adapted by MarIe to the relativistic case. 

(2) In the second part, we construct orthogonal polyno­
mials on Minkowski's hyperboloid. 

In this paper, calculations are performed in a special 
coordinate system. Their covariant form will be given later 
and will be useful to give an interpretation of Marie's 
polynomials. 

(a) First of all, we notice that the distribution function 
of a Maxwell-Boltzmann fluid (as well as that of a quantum 
fluid ofbosons or fermions) is invariant under the action of 
the group SO(3) which leaves stationary the velocity vector 
u a of the fluid. This leads us to the consideration of the 

homogeneous space G /SO(3), G being the orthochronous 
Lorentz group that acts transitively on the Minkowski 
hyperboloid. 

(b) It is known that most of the special functions may be 
interpreted in the framework of group representations using 
the zonal spherical functions 3Y u as a starting point. Thus, 
with harmonic analysis techniques, we first study the zonal 
functions on the Minkowski hyperboloid. When a=n is a 
nonnegative integer, then these zonal functions 3Y n are 
polynomials of degree n, and we prove that when n is even, 
they coincide with the Jacobi polynomials. In particular, we 
obtain a Rodrigues formula and indicate the connection with 
Gegenbauer polynomials, precisely the special functions as­
sociated with the group SO(3). 

(c) Using the zonal functions .5)/", we determine the 
components of degree n, 9)(" , of the Maxwell distribution 
function. It is remarked that 9)~o and 9)(1 are J uttner's first 
two integrals. s Thus 9)(] corresponds to the density r of the 
fluid. As for 9)(" it is the quantity I/wherefis the index of the 
fluid introduced by Lichnerowicz. 6 

(d) With the homogeneous components 9)(", we can 
construct orthogonal polynomials on the Minkowski hyper­
boloid, which enables us to rediscover MarIe's polynomials 
in a special coordinate system. 

The main references concerning the relativistic Boltz­
mann equation used here are Refs. 7-16. 

I. THE RELATIVISTIC BOLTZMANN EQUATION 

Space-time is a four-dimensional manifold V" sup­
posed to be orient able (we also assume time orientability), 
and endowed with a hyperbolic metric ds' of class C h where 
h is sufficiently large, such that 

ds' = (wo)' - (w])' - (w,)' - (WJ)2. 

The Wa constitute a Pfaffian system of local, linearly inde­
pendent forms. In a system of local coordinates, we have 

ds' =g a/3d x (l d x /3. 

V stands for the covariant derivation defined by the metric 
connection and r ~y for the corresponding Christoffel sym­
bols. We denote by T x(V,) the tangent space at a pointxEV, 
and by T (V,) the tangent bundle, Lichnerowicz. 17 Let us con-
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sider a chart in V4 in which the local coordinates are x a (the 
Greek tensorial indices run for 0, 1, 2, 3 and the Latin ones 
for 1,2,3). In this chart, the local coordinates will always be 
such that the vector ao will be timelike and future directed, 
and that the tetrad (ao, aI, a" a1) will be positively oriented. 
(We write a" for alax a.) 

We consider a fluid composed of identical particles of 
proper mass m moving in the background gravitational field. 
We assume m=FO. The state of a particle is supposed to be 
entirely determined by its position XEV4 and its momentum 
pET A V.). The momentum being such that 

,,(3 2 
g rr(JP P =m , (I) 

the vector p" lies on the upper sheet fl x of the two-sheeted 
hyperboloid defined by (I). 

The phase space of one particle is the fiber bundle 

fl= ufl x 
XE' v~ 

over the base V4 with the Lorentz orthochronous group as 
the structural group. The elements of volume in V. and 
T x (V.) are given respectively by the forms 

v=lgI1/2(~dxa). w=lgII/2(~dpa), 
and the volume element in fl x by a form w satisfying the 
relation 

dF I\w=w F=!g ,,(3P "p (3. 

The form w may be written 

{/}= ~ Ig 1112(l\dPi), Pa =g a(3P (3. 
po I 

(2) 

Using a hyperbolic coordinate system, the P components are 
given by 

O<'P < 21T, 

pI =m sinh e simpsin'P, 0<1/; < TT, 

p' = m sinhesinl/;cos'P' 0< e < 00, 

pl=m sinhecosl/;, 

and the form w by 

w = msinh'esinl/;de 1\ dl/; 1\ dip. 

(3) 

(4) 

We suppose that the particles interact by collisions 
only. When the motion of a particle is free, its trajectory in 
phase space is a solution of the differential system 

dx" 
---;;;- = P a , 

d " _P_ = __ ra p(3pY 
(31' . 

ds 

The trajectory is a force line of the vector field 

X(x rr , -rZy p(3p1') 

on fl x' 

(5) 

The state of the fluid is described by a positive scalar 
function v(P) which is defined on fl x' v(P) is the momentum 
distribution function. The evolution law of the fluid is the 
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Boltzmann equation that v(P) must satisfy. It is written 

Y' xv=f(v), (6) 

where Y x is the Lie derivative by the vector field X,17 and 
,yr (v) is an integral operator representing the collisions. 18 

II. MACROSCOPIC DESCRIPTION OF A 
RELATIVISTIC FLUID 

In this paper, we adopt MarIe'sl8 and Synge'sl9 view­
point; i.e., all thermodynamical quantities of the fluid are 
scalars which must be evaluated in the rest frame of the fluid. 
The relativistic Maxwell distribution function is 

(7) 

where a and yare two scalars, U" a unitarity future directed 
vector representing the speed of the fluid. The temperature T 
of the fluid is related to the coefficient y by 

me' 
y= kT' (8) 

e is the speed of light in vacuum and k the Boltzmann con­
stant. The distribution function v corresponds to a descrip­
tion at the microscopic scale. At the macroscopic one, ten­
sor-valued functions are used: They are the moments of the 
distribution function. The moment of order n is defined by 

1",,,,"'0,,= ( vp<i'p"''''P''''w. 
Jfl, 

(9) 

Synge l9 has indicated how to perform the calculation of these 
moments: We have 

a"l 1",,,···,a"=(_I)" m n -----------

a(y U a )a(y u" )-.. a(y U a,) , 

the quantity I being defined by 

1= 1 vw. 
fl, 

Pichon and Marie have obtained the general formula 20 

(10) 

(1 I) 

X K" I 1 j(y) {en _ 2j)UJg }" "a '''''''', (12) 
yJ+l 

E (nI2) stands for the entire part of n12, K" (y) is the modi­
fied Bessel function of the second kind and order n (see 
Watson' I), 

K II (y)= L"exp( - y cosM)cosh nede. (13) 

The symbol ( (n - 2j)U Jg I a ,.a ,"'a" represents the symmetric 
tensor constructed by the symmetrized tensorial product of 
(n - 2j) times the vector U a and j times the tensor g 0.(3. 

Let us introduce the functions 'PI defined by 
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rp, = 1" exp( - y coshO)sinh20 cosh' OdO . (14) 

They satisfy the recurrence formula 

y (rp'+2 -rp,) =(1 + 3) rp,+ I -I rp'-l (15) 

so that we may write the Juttner formulas for a Maxwell­
Boltzmann fluid 

c" Ac2 

r=Arp" E= -(rp,-qJ,), P= -(qJ2-rpO)' (16) 
rp, 3 

whereA is a positive constant, E the proper specific energy, r 
the proper material density, and P the pressure of the fluid. 

Later on, it will be convenient to use the indexJofthe 
fluid which have been defined by Lichnerowicz," 

(17) 

Using (16) we may write 

Jrp,=lP, 

where 3lP=4rp2-rpO (18) 

III. APPLICATION OF THE GRAD METHOD OF 
RESOLUTION OF THE RELATIVISTIC 
BOLTZMANN EQUATION 

Marie has adapted the GRAD method to the relativis­
tic case: Let n(u (l) be the velocity distribution function. The 
method consists in trying to find a solution of the relativistic 
Boltzmann equation as an expansion in a series 

(
AI A ,L"'A ) n = n a + a ,H + .. , + - a A A , .• A HI. " + ... , o A I 1 2 I' 

p. (19) 

where no is the velocity distribution function at the thermo­
dynamical equilibrium, 

no=aexp(-yu"U a
). (20) 

The a are tensors which are functions only of the position 
XE V., and the Hare tensorial polynomial functions of P and 
of the parameters y and U a . 

By carrying the expression (19) into the Boltzmann 
equation, we obtain an infinite series of partial differential 
equations which lead to the determination of the tensors a. 

As far as the tensorial polynomials H are concerned, 
they are defined by the following theorem: 

MarIe's theorem": Let u a, U a be two unitary future 
directed vectors and y a positive constant. There is a unique 

set oftensorsH" I.A 
e

A 
P (p=0, 1,2,00', 00) entirely symmetric, 

and such that 

(a) the components HA IA 2· .. 
A 

P are polynomials of de­

gree p with respect to the four variables u a, where the term 

of the highest degree is u A Iu A, ... u AP. Conventionally, H = 1 
for p=O. 

(b) They possess the orthogonality property 
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(H A ,A, ... Ap,HJ.' IJ.',"·J.'q)= ( exp(-yuaUa ) 
In, 

XHA IA ,,,.A
'
·HJ.'IJ.'2·"J.' qOJ=0, 

(21) 

whenp=l=q. 

(c) The family offunctions 

L A A .... ,{ {y Ua}HJ.IJ., ... J. " I. I' = exp - - u 
2 " 

(22) 

is complete in the space of square integrable functions de­
fined on n x' 

IV. ORTHOGONAL POLYNOMIALS ON 
MINKOWSKI's HYPERBOLOID 

Preliminaries 

The orthochronous Lorentz group G acts transitively 
on the upper sheet n x on the hyperboloid 

u a U a = 1, u 0> 0. 

Moreover, the Maxwell distribution function is invariant 
under the action of the group SO(3) which leaves stationary 

the velocity vector u a of the fluid. This leads us quite natu­
rally to the consideration of the homogeneous space 
G /SO(3), Helgason.24 

Using the techniques of harmonic analysis, we can ob­
tain a decomposition of the Maxwell distribution function. 
This decomposition is expressed in terms of the zonal spheri­
cal functions on the homogeneous space G/SO(3) and leads 
us to complete expressions for the moments of the Maxwell 
distribution function of the fluid; that is, Marie's polynomi­
als. Moreover, these zonal functions are closely connected to 
Jacobi polynomials. 

In this paper, calculations are performed in a special 
coordinate system, the time axis being taken along the veloc­
ity vector U a of the fluid. 

A. Harmonic analysis on the homogeneous 
space G/SO(3) 

The main references concerning the notions of harmon­
ic analysis used here are Refs. 25-28. 

1. Summary of the method 

(a) Let v(u) be a square integrable function defined on 
n x' Using the Gel'Fand-Graev method,28 we can obtain a 
scalar function h (5) defined on the upper sheet of the cone T, 

5"5 a=o, 50 >0. 

(b) The function h <t) is decomposed into homogeneous 
components 6<7(5) of degree 0'. 

(c) Since they are homogeneous, the 1Ya(5) are entirely 
defined by their values \1(7(5) taken on the sphere!)2 which is 
invariant under the action of the isotropy group of the homo­
geneous space G /SO(3). 

J.e. Lucquiaud 2661 



                                                                                                                                    

(d) Using the Gel'Fand-Graev inversion formula,28 we 
may express the function v(u) in terms of the zonal spherical 
functions .:iV'" on the homogeneous space. We shall see that 
the moments of the distribution function of a Maxwell­
Boltzmann fluid (and also for a quantum fluid ofbosons or 
fermions) corresponds to the case when o-=n is a nonnega­
tive integer. These results can be interpreted in the frame­
work of group representations. We know 29 that the Lorentz 
group has no unitary representation of finite dimension, ex­
cept the trivial representation. Moreover, when o-=n is a 
nonnegative integer, the corresponding representation ofthe 
Lorentz group is not irreducible. 

2. Determination of the homogeneous components 
~(,(s) 

The invariant integral on n x may be expressed by using 
the distribution D. The integral transformation 

h(S)={ v(u)D(S"u,,-l){LI 
JJl , 

gives us a function h (5 ) defined on r. 

(23) 

The homogeneous components lY ,,(5) of h (5) are ob­
tained by a Mellin transformation 

(24) 

We can easily see that lY a(5) is really homogeneous and 
of degree 0-. 

Using the relation (23) we have 

{L(5)= ( v(u) (5 (1 U a)" (LI. (25) Jf) , 

3. Decomposition of the functions defined on the 
hyperboloid 

We owe to Gel'Fand and Graev the following result'°: If 
v(u) is a function with a compact support in Lobatchewski 
space, the inversion formula of the Ge1'Fand-Graev integral 
transformation is give~ by 

v(u)= __ 1_ (h(5)5(2)(s'"u
a

-1)iJ, 
8lT2 Jr 

where Z;; represents the invariant mesure on r. 

(26) 

By the inversion formula of the Mellin transformation 
(24) we first have 

1 ia~ ix 
h (5) =-. J ,r<5) do-, 

2lTI a-ioo 

(27) 

where -1 < a < + 1 and since 15(7(5) is entirely defined by its 
values tj,,(5) taken on the sphere SZ which is invariant under 
the action of the isotropy group, we have by application of 
the inversion formula of the Gel'Fand-Graev transforma­
tion, Vi1enkin ll 

1 La t-ix 
v(u) = - -,-, 0-(0-+ l)do-

4lT I o-ioo 

(28) 
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where (7J is the invariant mesure on the sphere SZ. IT(7(5) , 
defined on the sphereS', may be expanded in a Fourier series 
and, if v(u) is invariant under the action of the isotropy 
group, then this expansion may be expressed in terms of the 
zonal spherical functions on the homogeneous space and the 
relation (28) becomes 

1 iO+iOC 
v(u) = - -,-, 0-(0-+ 1) 

4lT I a-ioc 

The quantities 9)(a are defined as follows, 

9)(,,= 1 v(u) ,;Y "w. 
fl, 

B. Orthogonal polynomials on Minkowski's 
hyperboloid 

(30) 

Now, we may use the preceding results for the determi­
nation of orthogonal polynomials on the Minkowski hyper­
boloid taken as a function v(u), the velocity distribution 
function of a Maxwell-Boltzmann fluid which may be 
written 

v(u)=exp{-yu"U a
}. (31) 

In a special coordinate system, we have by (3), 

v(8) = exp{ -y cosh8}. (32) 

1. Determination of the zonal spherical functions 
.)/,,(8) 

Representations of the Lorentz group G may be con­
structed in the space x 2 (S') of square integrable functions 
defined on the sphereS'. As a basis of this space, we may take 
the orthogonal system offunctions," 

Z k =a kcl/:k" (cos¢) sink, (jlexp{+ik l (jl}, 
(33) 

O<(jl < 2lT, O<¢ < IT, 

where k stands for the following set of real numbers, 

k=(ko+k l), O<kl<ko. 

The C ~ are Gegenbauer's polynomials which are reduced to 
the Legendre polynomials when y=!. The constants a k are 
defined by3l 

(34) 

Let us denote by R (T Ii a representation of the Lorentz 
group in the space ,)Y"(T of the scalar functions defined on the 
cone r and which are C oc and homogeneous of degree 0-, so 
ifJE,?f" 

R a gJ(5) = J(g-lS)' 

The representation R " II is equivalent to a representation 
A "g in the space .:In (SZ), and the zonal spherical functions 
.'.V,,(g) depend only on the Euler angle 8 of the elementgEG. 
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By taking the system (33) of functions as a basis of the 
space .!f2 (,5'2), the zonal spherical functions of the homogen­
eous space G/SO(3) are given by3! 

JY (lO)=~ LT(COShB-SinhOcoS<p) Using; d g;. (35) 

When a=n is a nonnegative integer, the corresponding re­
presentation of the Lorentz group is not irreducible,32 

Later on, it will be convenient to use other expressions 
for the zonal spherical functions. We briefly indicate them. 

(a) Expression oj the zonal spherical Junctions JY U by 
the hypergeometric Junction 

Using the binomial expansion and by integrating term 
by term, formula (35) takes the form 33 

JYU(O)=cOShUOF(-!!..-, I-a ;~;tanh20), (36) 
222 

where F (a,b;c;x) denotes the hypergeometric function 

F(a b'c'x) = I (a,n)(b,n) ~ 
, , , ,,=0 (c,n) n! 

and (p,q)=r(p+q)/r(p). 

By (36) we see that when a=n is a nonnegative integer, 
JY" «() is an nth order polynomial in cosh«(). 

(b) Expression oJthe zonalJunctions JY u«() by Jacobi 
Junctions, Rodrigues' Jormula 34 

By taking - sinh2() as a new variable in the 
hypergeometric function and using the transformation 
formula 

F(a,b;c;x)=(I-x) -a F(a,c-a;c; _x _), 
x-I 

we obtain 

JY «()=F(-!!..- 1+ !!..-.~.-sin2()). 
U 2' 2'2' 

(37) 

By comparing (37) with the expression for Jacobi func­
tions J v (a,b,x), 

J v (a,b,x), =F( -v,a+v;b;x) 

we may write 

0"/' -J (1' _ . h2()- sinh [(a+ I)() 1 
</I u- v/2 ' -, SIn - . 

2 (a+ I)sinh() 
(38) 

The Jacobi polynomials satisfy the Rodrigues formula 

x 1- b (1_X)b-a d" 
J,,(a,b,x)= 

(b,n) dx" 

By using fractional derivatives, see for example Ref. 35, we 
obtain for the zonal spherical functions JY u«() the Rodri-
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gues formula 

JY «() _ I cosh() 
U - i(3/2,a/2) sinb() 

5!..­
d 2 

X ----- {( -sinh2() (u+ 1)!2cosh u-l ()}. 

~ 

(39) 

(c) Connection with Gegenbauer's polynomials36 

Gegenbauer's polynomials C ~ may also be defined by 
the hypergeometric function 

CY(x) _ r(p+2y) 
Jl - r(p+ 1)r(2y) 

X F( -,u,,u+2y;y+~;(I-x)/2) (40) 

so, we may write 

C ~/2(2cosh2()-I)=(I +a/2) F ( -a/2,2+a/2;~; -sinh2() ) 
2 

and consequently 

{(I +a/2) + sinh2() .d }JY u«()=C ~ (2cosh2()-I). 
d smh2

() 2" 
(41) 

(d) Expression oJ the first zonal Junctions JY n (0): It is 
easy to obtain the first zonal functions, for example as poly­
nomials in cosh(). Thus 

(42) 

JY 3 =2cosh3()-cosh(), 5 .A/'4 = 16cosh4()-12cosh2()+ 1. 

2. Determination of the homogeneous components 
lS,,(S) 

The homogeneous components lS n (5) of the Maxwell 
distribution function are obtained by (25). When a=n, a 
nonnegative integer, we have 

E~2) n!(j+ 1) 
lJ,,(5)=81T(5o) n L ( -2')'(2' 2)' 

j=O n ':I. ':1+ . 

X 100 

exp{ -y cosh() }sinh 2j+2() cosh ,,-2j () dO. 

(43) 

The homogeneous components lS n (5) are entirely de­
termined by their values ~ n (5) on the sphere,5'2 that is invar­
iant under the action of the isotropy group of the homogen­
eous space. So, we have, using (30) and (43), 

§'n(5)=9R" 

=41T f" exp{ - y cosh() }sinh2() JY n «() d(). (44) 
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3. Expression of the moments of the Maxwell 
distribution function 

From (38) and (44) we have 

y Win =41T K n-j ,cy). (45) 

The formula (12) may therefore be written in the following 
form, 

};(n/2) ~m. 
/",(l""(l"=am"t2 L (-I)j~ 

j-O yl 

X [(n-2j)UJg r:r,a .... a". (46) 

In this formula, the homogeneous components WIn are the 

coefficients of the term U a
, U a '···U a

". Consequently, in a 
special coordinate system, these homogeneous components 
Win represent the temporal part of the nth order moment of 
the Maxwell distribution function. 

4. Orthogonal polynomials on the Minkowski 
hyperboloicP6 

Now, we try to find mth order polynomials H III such 
that 

H = ~a(m)cosh)8 a (,nm ) =1 
m L J ' 

(47) 
)=0 

and satisfying the orthogonality condition 

(H m,H n)= f" exp{y cosh8 }sinhz8 H mH 17 d8=0 

when m=r'=n. (48) 

With the help of the functions ({J, which have been de­
fined in (14), we see that the coefficients a J"') are solutions of 
the linear system 

//I 

La j'") ({Jj+P =0, 
j~O 

(49) 

where p=O, l, ... ,m -1 and a;:;) = 1. The first polynomials 
are given by 

Ho=l, 

<pJi, = <PocoshB -<P" (50) 

«({Jo({J) -({JD H2 = (<po({Jz -({J~) coshz8 

It is not difficult to see that these polynomials are precisely 
the components of Marle's polynomials on the time axis in a 
special coordinate system. The functions ({J, appear when 
expressing in (36) the zonal spherical functions in terms of 
cosh8. 

The other components of Marie's polynomials may be 
expressed in terms of Gegenbauer polynomials by the rela­
tion (41). The calculations must now be performed on the 
homogeneous space SO(3)/SO(2) and they are rather similar 
to the preceding calculations on the homogeneous space 
G /SO(3). 
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Thus we obtain for the first two polynomials in a special 
coordinate system: 

H"=u O- ({J,[f', Hi =u i, 
({Jo 

H"0= UOuo -Au°l..f' +B[f'[f', 

HOi =U i(uo_fU'), 

5. Thermodynamical interpretation 

(51) 

(52) 

When 1=0, 1, or 2, the functions 'PI which have been 
defined in (14) are exactly the Juttner integrals l

? for a Max­
well-Boltzmann fluid. Consequently, the first homogeneous 
component, WI, , of the Maxwell distribution function repre­
sents the density r of the fluid; and the second homogeneous 
component, Wl 2 , is such that 

Wl 2 =jWl" (53) 

jbeing the index of the fluid. 38 

These last results are valid for quantum fluids after sub­
stitution of the Maxwell distribution function by the quan­
tum distribution function. 
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contain some discussion of the precision of the coefficients. 
Further discussion of the material of this work is given in 
Ref. 2. 

'Susan Schindler and R. Mirman. Computer Physics Communications 
North Holland. Amsterdam (1978) Vol. IS, pp. 131, 147. 

'Susan Schindler and R. Mirman, Group Theoretical Methods in Physics, 
Proceedings o/the Fifth International Colloquium edited by Robert T. 
Sharp and Bernard Kolman (Academic, New York, 1977). p. 661. 
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I am grateful to Joseph C, Ferrar for pointing out 
several inaccuracies related to Propositions II, IV, and 
VI. 

The definitions preceeding Proposition II are incom­
plete since the maps j) and < )" may not exist. In 
general, f) exists only if every polynomial of minimal 
degree contained in the kernel of N is also contained in 
R[xPj. The complete definition of the condition 'LJ is 
faithful" must therefore specify that H has been chosen 
so thatiJ exists. It then follows that < )" exists for all 
admissible values of ~ if j) is faithful. The proof of 
Proposition II should state that D is faithful only if ~P is 
a miminal polynomial in ~ over R. 

Proposition IV is correct as stated, but the accom­
panying proof is based on a false statement. A straight­
forward proof follows from the polynomial expression 
for ( , ((I)) as derived from the general polynomial 
expression for (7J). 

The phrases "is reducible (irreducible) over" which 
are defined in the paragraph preceding Proposition VI 
should read "acts reducibly (irreducibly) on". 

Proposition VI is inaccurate as stated: VI(2) should 
state that ,d';;)(7J;L[7J;]l acts irreducibly on F(r, m) for 
all r? 3; and the term "inequivalent" should be deleted 
from VI(3). The proof accompanying VI(3) contains 
numerous errors and should be replaced by the follow­
ing: for r? 5, P\::)(7J;L[7J;ll is non-Abelian, while for 
r = 3 the (P, r)-analog of U(!) contains only the identity; 
for r=4 there exists a Lie isomorphism ,d~)(7J;L[7J;ll 
~ 2: Ita 1t(7J; L[7J;]) (direct) where the skew-Hermitian 
singlet representations a k are defined by 

a It: 7J; L[7J;) - }\Ill [7J 4 ) : 1> ~'\k' - 0 1tk, C:P7Jp(mod7J~). 

In the final paragraph of Sec. II the domain of pI",": 
should be specified as 11;L[7J;). 
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