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Previous theorems on the convergence of the [n,n 4+ m] punctual Padé approximants to the scattering
amplitude are extended. The new proofs include the cases of nonforward and backward scattering
corresponding to potentials having 1/r and 1/r? long-range behaviors, for which the partial wave
expansions are divergent and oscillatory, respectively. In this way, the ability of the approximation
scheme as a summation method is established for all of the long-range potentials of interest in potential

scattering.

1. INTRODUCTION

In precedent papers!'? we have studied the evaluation

of the scattering amplitude starting from its partial
wave expansion

f(G):LZ% aLPL (COSG), (1. 1)
where a;, = (2L + 1){exp(2i8;) - 1]/(2ik), % is the magni-
tude of the wave vector, i.e., k=Q2uE/F})'/?, U is the
reduced mass of the system, the P, are the Legendre
polynomials, and the 6, the phase shifts. We have con-
sidered interactions usual in atomic and molecular
collision processes, which are characterized by long
range potentials. This feature of the interactions deter-
mines, depending on p and the energy E involved in the
processes, a slow convergence of expansion (1.1). We
dealt with potentials V(»), which at great distances have
the behavior

V(r),~.> A/r*t, az0 (1.2)
where A is a constant and « an integer. For these
cases, and when the series (1.1) is convergent, a large
number of phase shifts is usually required to attain a
reasonable accuracy when calculating differential cross-
sections. To avoid this difficulty, its summation with
the Punctual Padé Approximants (PPA) was proposed.
A set of theorems were proven which showed that the
rate of convergence of the PPA is higher, for any value
of the scattering angle ¢ and of the coupling constant,
than that of the partial wave sums of (1. 1), when the
latter are convergent.

From the mathematical point of view, we studied
the convergence properties of the PPA when applied
to sequences {Sm}, characterized by the asymptotic
behavior

Sp T fHAm+a) " sin(m6 +b) (1.3p)
and
S TS ED™ A+ a) T, (1. 3b)
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where, following the nomenclature introduced by
Shanks, ? 7 is the base of the sequence, # is a positive
integer, and A, @, b, and ¢ are parameters which de-
fine the convergent mathematical transients. The
theorems proved in Ref. 1 for these cases represent
a wide generalization of those by Wynn, * for mono-
tonous and oscillating convergent Newton sequences,
i.e., the sequences of Eq. (1.3b) withn=1,

In Ref. 2 we showed the numerical efficiency of the
approach when calculating the differential cross section
for e—~He elastic scattering at intermediate energies
and for the scattering by a Lennard-—Jones potential.
Furthermore, we also found fast numerical conver-
gence in the cases of the scattering by Coulombian and
repulsive inverse square potentials. In both cases, f(9)
is well defined for nonforward directions, although the
partial wave expansion is divergent for any @ in the
first, and oscillating for 6 =7 in the second. This sug-
gested that the domain of convergence of the PPA is
actually larger than that to which the theorems were
restricted in Ref. 1,

In this paper we extend the convergence proofs for
the PPA, to sequences {S,,,} with asymptotic behaviors
of the type

S, ~_f+A(m+a)P sin(mé+b),

m
m

(1.4)
S, :Of+ (- D"[A + Blm + @)®),

with B a nonpositive integer complex number. They
have the interesting property of being capable of having,
depending on the values of the parameters, divergent
or purely oscillating mathematical transients. In this
way, we are able to include in our formalism, all of
the long-range forces of interest in potential scattering
covering all the cases for which f(8) has finite mean-
ingful values.

In Sec. 2 we introduce the PPA, and a set of lemmas
are proven regarding their convergence when applied
to sequences of the type satisfying Egs. (1.4). By using
these results in Sec. 3, we establish the convergence
theorems for the PPA to the nonforward scattering
amplitude, including the cases for which the partial
wave expansions involved are divergent or oscillatory.
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2. PUNCTUAL PADE APPROXIMANTS

Given a formal power series
C(Z) = Z; brzrs
r=0
its [N, My, Padé approximant (PA) is defined® by

[Nv M]C(z) :RM(Z)/QN(z)y QN(O) = 1,

where Ry(z) and Qy(z) are polynomials in z of orders
M and N, respectively, whose coefficients are uniquely
determined by the requirements

C(2)Qyl2) - Ry(z) :O[ZMHWIL

The partial wave expansion (1.1) of f(f) can be seen
as a power series, by introducing a variable x and
defining

= E ar Py, (cosB) x*.
L=0

Then f(8) =C(1) and we shall have an approximation for
f(6) by evaluating the PA to C(x), calculated at x=1,
The punctual Padé approximants (PPA) to the scatter-
ing amplitude, ! s0 defined, determine a doubly infinite
array of rational approximations. In this work, we
shall restrict ourselves to consider the PPA

[n, n +m]ﬂg) , With n, m=0,

Let us define the partial sums of expansion (1.1) by

m
S, =2, a;Pp(cosh).
L =0
Then, [n,n+m],,, can be expressed in the following
4
way,

[n, n+m],6,=1n, n+mls,

ml’{sr}' _ Hr(;];{ ATS mll'

= HAS )T HOLAS,) .1
where, for ¥>1, A'S, =a™!s, ,—aris = alS =S,

and the Hankel determinants are defined for a given
sequence {f,}, by

Sm Smen R |
( fm+1 fm+2 e fmﬂz
g fb=| - : :
o
fm+k+1 fm+k+2 ee fm+2k 2

Furthermore, by using Eq. (2.1) it can be easily shown

that if S, =A + BS!, then

[n,n+m][sr,:A+B[n,n+m]{su. (2.2)
Let us note that, for large n, the PPA are not readily
computable with these determinantal quotients. Recur-
rent algorithms exist, however, which allow for an
efficient calculation of the approximants. >

In what follows, we shall prove a set of lemmas
which will be used in the next section, to derive our
main proofs regarding the convergence of the
[n,n+m) e,

Lemma 2. 1: Given the sequence

g8 = (m +£)% sinA,,, (2.3)
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where A, =(m+1)8-7/4, 0<6<7, and f#0,1,2,3,--+,
is a complex number, the sequences {g"“} defined for
fixed » > 0 by the recurrent relation

gttt =grh 4 grd _2cosfgh®, (2.9
have, for large m, the following asymptotic behavior,
gn® ~(- 2 sinb)[Bl,(m + 1P sin(A,, - 71/2) + O],

(2.5)
with [B],=B(B-1)2c(B—=n+1), for n>1 and [B],=1.

Proof: Replacing (2. 3) into (2.4) for =0, it is easily
seen that

o

& =- T g Bl 1yrgtse + g, 2.6)
Assuming now that
73 [B] [(= D gzt ?* + gaii ], 2.7

a

it follows by using (2. 4) that (2. 7) holds also for i re-
placed by 7 + 1, and then, by induction, that it is valid
for all i > 1. The asymptotic equation (2.5) for r=1,
can be readily obtained by replacing (2. 3) into (2. 6)
and it is easily proven for » > 1, again by induction,
using Eq. (2.7).

Owing to the algebraic nature of the proof of Theorem
4.1 in Ref. 1, it is actually valid for any sequence to
which a family of sequences may be associated by
Eq. (2.4), and having the asymptotic behaviors given
by Eq. (2.5) for all > 0. This holds as long as 8 is
restricted as in Lemma 2.1, Then, performing straight-
forward modifications in the statement of the theorem
mentioned above, we can state the following:

Lemma 2.2: The PPA [n, n+ ) applied to the se-
quence { g2*}, defined in Lemma 2.1, have, for fixed
n and large m, the following asymptotic behavior,

[r, n + m](go,a)
_ (sin®)*-"[g), Ni(sinA ,,
25N sin(6/2) " ’

{sinf,,, # 0},

)2(2N-n)+1(m+%)B-ZN )

(2.8

where N=n/2 for even n, and N =(n-1)/2 for odd #.
As in Ref. 1, it should be noted that when sinA,,,=0
for a given 8, the asymptotic order of magnitude of the
[n, 7+ m](0.4, is somewhat smaller for even x, and
somewhat larger for odd n, than that generally pre-
dicted by Eq. (2. 8) without the oscillatory factor
sinfA,,,.

Lemma 2.3: The [n,n+m] PPA to the sequence

G =(-1[(r+3)V+E], (2.9)

where E is a constant and v a nonzero complex number
have, for fixed »> 0 and large », the following
asymptotic behavior,

[n,n+ Wl]{c';) ~ (= )™ 2 + )0

~ (= 1D!v]e; Rer<0, E#0, (2.10a)
X<n!lvl],; Rev>0, any E,
2.
or Rev <0, E=0, (2. 10)
C.R. Garbotti and F.F. Grinstein 2406



Proof: We note that
ARGY =Gy + G = 26
~- 4G:*1 +0[7v-2]:

and replace the first order asymptotic approximation
for A%GY thus obtained, in the expression (2.1) for the
PPA [n,n+m]iey), to get

[ Jors J AN T 0 Viund) - AR TR Vil e
n,n+m e = m IR (_ 1)n(m+2)4nbv}m+l ){(_ l)rG‘;}.
(2.11)

Let us first consider the case Rev <0, E#0. Operat-
ing on the determinant H{*{(- 1G5} and using (2.9), we
have

HEO{(- 17 G} =H™{ 87 (- 1°CY)

=EH®{a7(s +5)V}+BO{a7(s + 5], (2.12)

These Hankel determinants can be evaluated
asymptotically by noting that

a(s +3) ~[v] (s +3)7, (2.13)
and the equality®
n-l
H.f’"’{[V],}:HO[V],,..p(— 1¥p! (2.14)
P:

in order to obtain,
E(- 1)-Yv]
O (_17GY ~ Lyw-p (p-1) )4
Hﬂ {( 1) Gf}s-n(s+2) [ V(p—l)!

=1
+(s +;)"] ino [v],(- Dt a1

§ -

v(p =11
(2.15)

In the other cases, i.e., Rev>0 and any E, or Rev <0
and E =0, it is clear that

G Lz (=D (r+3),
and consequently,
HOOU- 117G o= HV{a7 (- 1)%(s +3)}
:H;O){A’(s +§)”}

p-1
s7e (s +3) 00 T (V] (- 1)et,

(2.16)

where we have used Egs. (2.13) and (2. 14), as before

By using the asymptotic estimates given by Eqs.
(2.15) and (2.16), in (2.11), Egs. (2. 10) follow.

3. THE NONFORWARD SCATTERING AMPLITUDE
FOR LONG-RANGE POTENTIALS

Let us consider a central potential V(»), which be-
haves at large distances as

V(r) ,Te A/r*E az 1, (3.1)

where A is a constant and @ an integer. We show in

the Appendix that the corresponding partial wave ampli-
tudes a;, in expansion (1.1), have, for large angular
momentum L, the following asymptotic behavior,
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- E(s+3)4 00 1], hiiv] (- D!

J :
a L7 Zl) B,(L +§)B' +0[LB""], (3.2
i=

where for a >0, J=2,

By == Ar*"U,, B,=(i/2)A%*® L,

Bi=-q, Bp==2a=-1 py=-20-2,
while for a=-1, J=1, and

By=-i/k,

Bi=1+iX, By=-1+41x,

I, is a numeric factor dependent on @, and x =4/k. By
noting the well-known properties of the Legendre
pelynomials

2 12 V172 3/2
ﬂsin9> cos (L +3)t 2 +0[L=2"?]

P;(cosf) ;7w <

(0<6<m Q@ =(L+3)6~1/4), (3.3)
and

P(-1=(-1", (3.9
it follows that the sequence {S,,,} of partial sums of
expansion (1. 1),

S,.(8) :Lf—% a; Py (cos®), (38.5)

for the nonforward directions, is divergent for all 6
when a =~ 1, oscillatory for 6 =7 when =0, and
convergent otherwise. The scattering amplitude is well
defined, for these anomalous cases. In what follows,

we shall restrict ourselves to 8#0, and show the ability
of the PPA to regularize the sequence (3.5) in those
situations.

Let us introduce the regularizing factor” {1~ cosé)
in (3.5), to obtain

(m + 1) On+1)

(1-cos) Sm:LZjo P+ 27 + 3 Imt M T 9 U P ety
(3.8)

where the coefficients

_ L L+1 _

@, =0 - g7 %4~ 57 13 % a3=0, (3.7

are those of the expansion

(1-cos8) f(6)= 2, @ Prcosh). (3.8)

L=0

Taking account of the asymptotic behavior of the q; as

given by Eq. (3.2), it is easy to show that
J 8

G 17e 3L +5) 2 BB - DL+, (3.9

and by using a procedure similar to that used to prove
Lemma (3. 1) of Ref. 1 we find for large m

% @Py(cosh) 3 {0[%’“‘5”1, 0<f<n, (3100
L+ L m =
L =mel Ulazm?], 6=m. (3. 10m)

This shows that expansion (3. 8) will be convergent
for the cases here considered, and we can then write,
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w©

S,.(6) =f(8) ~ (1~ cos9)‘1[ 2 aPg

L =m+l
m+1
a1 “me] ’

and by using Egs. (3.3), (8.4), and (3. 10) we have for
large m,

m+1 P o+

- 2% + 3 A1 £ m (3. 11)

84-1/2

£(8) + D{F) sinA, By(m +5) +0la,, w-3"?)

(0<6<q)
Fn(8) e | (3.12a)
m 1y 21
)+ (—21) ¢Z=>1 Bim+%) " +0la, m]
(3.12p)

where D(6) = — [27 sin8 sin®(6/2))1/2, A, =(m+1) 6 - 7/4,
and J the {B;} and {8,}, are defined as in Eq. (3.2).

By inspection of Eqs. (3.12) our previous assertions
regarding the divergent and oscillatory nature of the
sequence of partial wave sums can be clearly seen for
the cases @ =0, -1, i.e., B; =0, and By =1+ix, which
correspond to potentials having long-range behavior
of the type 1/#* and 1/7, respectively. We can now state
the following theorem:

Theovem 3.1: The PPA [n,n +m];p, to the scattering
amplitude corresponding to a central potential having
the long range tail

V(r) ,ce A/ret ax_1

’

where A is a constant and o an integer, has for fixed
n and large m, the following asymptotic behavior:

[n7n+m]f(9) m e

D(8) B,(sin®)?-V[B, |y Nl (sinA,,,)? @¥-"+!
2“"'N)(sin% 9)2"(7}’1 +_2_T)2N3T¥1/Z H

6+

(0<9<m, sinA,_,,#0)

(3.13a)
[, 2+ m] ey =
By(= 1)mn2n-ty 1+ 51 [y,
(a+0) (3.13b)

By27H (= 1)"8,9 + By(= 1)™272 (o1 + )2, (n + 1)
(Q:O)’

(3.13¢)

flm) +

where the coefficients B; and B, are dependent on a and
defined as in Eq. (3.2), v,=(h-1)! for n>0, y,=1
for n=0, D(8) and A, are those of Eq. (3.12a), N=n/2
for evenn, and N={(n-1)/2 for odd =.

Pyoof: We first note that according to Eqs. (3.12),
(3.14)
(3.15)

5,,(0) nzw AB) +D(O) Byglfr1-t/2 pg< o<
Sm(ﬂ) mawe f(’”)—Elcl,;,

where { g %*1"1/%} ig the sequence defined in Lemma 2. 1,
and {G”} is that of Lemma 2. 3 with

v=-a, E;=B/2, E=0, for a>0,

ve=-1, E,=B,/2, E=B;/B,, for a=0,

v=1+ix, E,=By/2, E=0, for a=-1,
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and by using Lemmas 2.2 and 2.3, and property (2.2)
of the PPA, Egs. (3.13) are readily obtained.

Theorem 3.1 generalizes Corollary 4.1 of Ref, 1.°
It includes the latter for 0< 6 <7 when o > 0, and for
6=7 when @>0. Two new results are established: The
convergence of the PPA [n, n+m] to the nonforward
scattering amplitude corresponding to a potential having
a Coulombian long-range behavior, for »>2 when 6+,
and for »>1 when 6 =7 [see Egs. (3.13a2)—(3.13b)] and
to the backward scattering amplitude for the case in
which the behavior included is of the 1/4* type, for
n>1[see Eq. (3.13¢)]. This shows that the PPA are
able to transform divergent or oscillatory sequences
into others that converge to the right values, thus
providing regularized sequences for the corresponding
partial wave sums. Moreover the rate of convergence
of the former is seen to increase rapidly with ».

The real physical interest in summing in a direct
way the partial wave expansion when Coulomb forces
are present, could be questioned. The usual method
in this case, is to subtract in a closed form the Coulomb
scattering amplitude, and to concentrate in the remain-
ing convergent expansion.’ However, the latter will be
rapidly convergent only if the other forces of interest
are short-range ones and the energy involved is rela-
tively low. Otherwise, it will be poorly convergent and
a summation method such as that of the PPA will be of
value. This is the usual situation, for example, when
studying ion—ion collisions, where long-range distor-
sion and polarization forces are present, apart from the
Coulomb interaction. The PPA approach allows us to
treat all of the long-range forces present in atomic
and molecular collision processes, in a closed way,
without further distinction. '’

Finally, let us note that owing to the rational nature
of the approximations, and their good behavior for
physical values of cosf, they can be expected to be a
valuable means for the analytical continuation of the
scattering amplitude in the complex cost plane. This
possibility deserves further study.

APPENDIX: ASYMPTOTIC BEHAVIOR OF THE
PARTIAL WAVE AMPLITUDES FOR LONG-
RANGE POTENTIALS

The partial wave amplitudes a; are defined in terms
of the phase shifts 6, by

{expl2i6, ]~ 1}(2L + 1)/(2ik), a=>0,

=) expl2i6, J(2L + 1)/ (2ik), (A1)

a:-—l,

where o characterizes the dominant long-range compo-
nent of the potential [see Eq. (3.1)]. Moreover, it is
well known that for these type of potentials the §; have
the following asymptotic behavior, for >0

AR,

O 17w~ @+ +O[L23], (A2a)

with?
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/2, a=0,

~ 1)
I - EETX—II—')'—L%, even a >0,
e = !
a- I
S e
while for o =-1, one has

A
8 13w 5y log(L +3) +0[L7], (A2D)

which can be obtained by considering the behavior of
the Coulomb phase shifts,

o, =argl'[L +1+14/(2R)],
for L>1, 1A]/(2k).

For o> 0 we expand exp[2i8; | in powers of &;, in

order to obtain, by using Eq. (A2a),

ap = (L +3)(26, +4i282+022)/k

—ART, AN e
AT A T

and using Eq. (A2b), we obtain, for a=-1
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ap, =—1(L +3) exp[2i6;, )/
7w~ L+ 3R+ O[L), (A9
with x =A/k.
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Spectral and scattering inverse problems?
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The reconstruction of a differential operator form discrete spectra is reduced to its reconstruction from an
S-matrix. This method makes it possible to solve the singular Sturm-Liouville problems which determine

certain modes of a sphere. The results pave the way for handling studies in which information on modes
and scattering results would all be taken into account. They are applied to the earth inverse problem and
partial answers are given to a well-known conjecture. Finally the relevance of the JWKB approximation in

this kind of problem is briefly discussed.

1. INTRODUCTION

This paper is part of a study in which our purpose is
to construct a method able to take into account alto-
gether scattering and discrete spectra results in order
to reconstruct the parameters of a differential system.
Here we first show, in two general examples, how the
problem of constructing the parameters of a second or-
der differential equation on a finite domain from its
“modes, > the so-called “inverse Sturm Liouville prob-
lem, ” can be reduced to “inverse scattering problems.”
Such an approach, in some way, goes backwards in the
sense of history. Inverse Sturm— Liouville problems
were either studied for themselves, ''? or studied for
their numerical analysis,® or studied for introducing
and solving the fundamental analysis, or the numerical
analysis, of inverse scattering problems. *5 But the
various studies of collision theory have been so rich
that it is now “a priori” justified to try this way of
working. Besides, this is clearly a correct approach to
the more general study quoted at the beginning. “In
fine,” we feel justified by the results which have been
obtained, both from the mathematical and from the
physical point of view.

In Sec. 2, we consider a second-order linear differ-
ential problem on a finite interval of R, in which the
solution is imposed to vanish at the two end points. In
a regular case, this is the usual inverse Sturm—
Liouville problem. But thanks to the “scattering
approach,” nonintegrable singularities like R*%, can be
taken into account without additional difficulties, and the
problem is completely solved.

In Sec. 3, again we consider a second order differ-
ential problem, on a finite interval of R, but now the
derivative of the solution should vanish at one or both
end points. Again, the regular case reduces to the
usual inverse Sturm—Liouville problem. Again, thanks
to our approach, important singularities can be taken
into account in a trivial way,

The physical justifications of our two general ex-
amples are clarified in Sec. 4. The first example is
an acceptable scheme for the radial modes of a liquid
ball. The second one is an acceptable scheme for the

aThis work was completed under R.C.P. Grant No. 264:
Interdisciplinary study of inverse problems.

b Physique Mathématique et Théorique, Equipe de Recherche
Associee au C. N.R.S.
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toroidal modes of a solid ball, The results are used to
study a well-known conjecture concerning the earth
inverse problem. In this problem, one tries to infer
the density p and Lamé€ parameters A, u of the “spheri-
cal” earth, as functions of the radial variable R, from
the information that is contained in the free oscillations.
The central question is to determine what pieces of in-
formation are necessary and sufficient to determine
the parameters. Backus and Gilbert® conjectured that
the eigenvalues of three normal mode sequences are a
sufficient amount of information. Qur answer is more
pessimistic. Let us state it as follows:

(1) Suppose that in a liquid ball, of radius R, p and
A are finite positive and twice differentiable functions
of R for any 0<R< R_, with zero derivative at 0 and
R, and do not depend on 6 or ¢, and suppose the
gravity can be neglected (this and the zero derivative
assumptions are just for the sake of simplicity).

Suppose then we know:

(a) The sequences of radial mode eigenvalues {w, ,}
for two values of the angular momentum 1.

(b) The sequences of the corresponding values of
either the derivative of the modes in the surface or
the normalization factors. These sequences can be
derived from the response to a fully analyzed known
source.

Then we can reconstruct p(R) and A(R) for any R.

(2) Suppose that in a solid ball, of radius R, with a
liquid core, of radius R, p and X are finite, positive,
twice differentiable functions of R for any O<R<R_,
with zero derivative at 0 and R_, whereas u is finite,
positive, twice differentiable for any R <R <R, with
zero derivative at R, and is (R - R,)* times a twice
differentiable function as R goes to R, with 0 < a <2.

Suppose then we know the toroidal modes for two
nontrivial values of [, again with both the eigenvalues
and the normalization factors, or the amplitudes of the
modes at R, Then we can reconstruct p(&) and ;1 (R)
for k> R_. The asymptotic behavior of the eigenvalues
readily gives the value of o, which determines the meth-
od of reconstruction.

If u was strictly positive for any R= R, (i.e., a=0),
this toroidal modes problem would be an ordinary
Sturm—Liouville problem and the result, henceforth,
would be well known.! But for o #0 which is probably

© 1978 American Institute of Physics 2410



the physical case, the problem is singular, and, re-
markably, it is simpler to treat it by the scattering
approach than (with the same approach) in the regular
case,

Suppose now that 1 <@ <2, and that we know in addi-
tion the 1=0 radial modes, again in the sense of knowing
both the eigenvalues and the normalization factors or
the equivalent. Then, we can completely reconstruct
A(R), p(R), and p(R) for any R_,<R<R,.

Hence three spectra are sufficient to determine
A(R), p(R), and u(R), but only if we know altogether the
eigenvalues and the novmalization factors, or equivalent
information which follows from the response to a known
source (e.g., toroidal mode amplitudes at R, or deri-
vative of the radial mode amplitudes at R_).

Let us emphasize at this point that we only pretend
to give a reconstruction of existing parameters. Hence
we do not try to clarify the necessary conditions (inter-
lacing, asymptotic behaviors, etc.) that these spectra
certainly must satisfy to correspond to a set of para-
meters. This question deserves a study by itself,

Of course, it would be interesting to study the infor-
mation which is contained in several spheroidal modes,
thus generalizing the “liquid” case to the “solid” one.
Again, we know that it is possible to reduce the problem
to a scattering problem, which is fully similar with one
we have already studied.” Unfortunately, this is a
coupled channel problem, and only partial solutions of
the inverse problem are known in scattering theory.
Again, this deserves a study by itself, and we shall
not try to do it here.

Let us come back to the more general physical motiva-
tion of our study. Seismological problems often have
two aspects, viz., a normal mode aspect, and a scat-
tering aspect. Both have been taken in account in local
(and oversimplified) studies, with respect to the direct
problem. But, up to our knowledge, there never has
been any global study, and taking into account altogether
direct and inverse problems, altogether modes and scat-
tering result. We tried to make a global study of the
scattering results in previous papers, 10 1yt the finite-
ness of the earth was not taken into account, Only here
do we really begin such a general study. At this point,
a very natural question arises. What is the importance
of our assumptions?.

First there are assumptions which are there only to
simplify, or clarify, the results. The reader who is
interested can drop them and follow our argument
point for point, except for some complications or addi-
tional work. Such assumptions are of zero derivative
of the parameters at end points and neglecting the
gravity. A nonzero derivative at the origin can produce
a R singularity in the equivalent potential, and the
remainders in inequalities get logarithmic terms, A
nonzero derivative at R_ makes it necessary to investi-
gate a little bit more carefully the asymptotic behavior
of the eigenvalues. Taking into account the gravity in
the /=0 radial mode is trivial.

It is likely that the assumption 1 < <2 in the earth
problem can also easily be weakened up to 0 s @ <2,
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Much more important is the differentiability condition.
It is not physical. We should allow the parameters to be
only piecewise continuous, with jumps. Unfortunately,
these jumps produce 8 functions in the equivalent scat-
tering problem, which is too singular to be treated in
known generalizations of potential scattering theory.%#
Extending the scattering theory to these cases has been
partially done, but many points deserve a study by
themselves, and we shall not do it here.

The positivity condition is essential. It is connected
with excluding the possibility of holes. A hole is a
finite continuous domain in which p or at least two of
the parameters are identically zero. When holes do not
cut the domain in disconnected parts, they can be taken
into account, and introduce important modifications in
the theory (see for instance the problem of the “shape of
a drum”*+%), In our radial case, a hole would introduce
a cutoff between two parts of the ball, and hence a com-
plete cutoff of the information. Thus it is not surprising
that we cannot take it into account in our scattering
approach.

In a short section {Sec. 5), we sketch the JWKB ap-
proximation of these problems. This just serves a
pedagogical purpose, to understand certain points in
the analysis of the eigenvalues, and to make a guess
on the way to take into account various pieces of infor-
mation. But when this method will be fully justified for
piecewise continuous parameters, methods using its,
as in the RKR method, can cevtainly be of interest in
the earth inverse problem. It will be usefully combined
with the ray theory, to which it is intimately connected.

To finish this Introduction, let us note that we do not
pretend to give practical ways of reconstruction, We
stop our study as soon as we get the scattering matrix,
provided there exists a method like the Gel’fand—Levitan
method, or Marchenko’s method, or one of their gener-
alizations, enabling us to obtain the functions we seek.
In fact, we could have very easily used our results to
describe veconstrvuction miethods for singulay inverse
Sturm— Liouville problems, but this was not our pur-
pose in the present paper, and we feel comfortable when
a piece of information has been proved sufficient for
deriving the parameters. The fact that such reconstruc-
tion methods are not deeply hidden in our results is
very clear if one notices that the “external range” we
have to introduce for R > R is artificial, and the
parameters are, to a large extent, arbitrary. Needless
to say, when we shall try to analyze simultaneously
modes and scattering results, the physical support will
appear much more clearly.

Technical remarks: (1) It may be amusing to notice
that the =0 radial mode in Sec. 2 could have been
studied by the method which is described in Sec. 4,
provided the interest is focused on p™dil/dR instead
of T11.

(2) With the differentiability assumptions, there are
three formulations of the problem (space formulation,
time formulation, Schrédinger formulation). We have
thought it interesting to base the analysis of modes in
certain cases on one formulation, for others on other
formulations. The most physical one is the space formu-
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lation, but in the present paper all the necessary analy-
tic and asymptotic properties are derived in the
Schrodinger formulation.

(3) Although they are very well known in scattering
theory, techniques which are actually based on the use
of R-matrix theory or of dispersion relations are given
in such an elementary way that the paper is self con-
tained even for a reader who is not acquainted with them.,
The properties of information which are behind these
techniques (causality, etc.) are not recalled, We think
it better to postpone remarks of this kind after a study
of the problem for discontinuous media, where some of
them may be modified.

2. DIFFERENTIAL PROBLEM OF THE FIRST KIND
We study the set of equations

(-~ pR? ;l%Rzp'l E% +1(I+1)R3)

XT1,(w, R) = «?pA-111, (w, R) 2.1)
in which / runs through the nonnegative integers, p and
A are nonnegative piecewise continuous functions, and
w is a real or complex continuous parameter. Equation
(2.1) is completed by the following conditions:

R ~T11,(w, R) should be absolutely continuous, (2.2a)

R-p! E%U,(w, R) should be absolutely continuous,

(2.2b)

(BRI, (w, R) |go =1, (w, R) ]z RW=0. (2.2¢)
The condition (2.2) can be satisfied only for a certain set
of values of w, {w,,}, which will be called the eigen-
values of the differential problem (2.1), (2.2), or its
modes. The direct problem is that of deriving the
sequences {w, ,} from p and A. In the inverse problem
we want to identify sets {w,'"} or related information
which is sufficient to construct p(R) and A(R). Because

R ig the variable in (2.1), we call this formulation of

the problem its space formulation.

Time formulalion: We introduce the physical assump-
tion

pr#0 for any R, (2.3)

This assumption enables us to introduce a new variable,
called the time, which is bijectively related with R by

R

T(R):J0 [e()]* ax, (2.4)
where the “local celerity” c is equal to
c=0/p)’2 (2.5)
Thus we obtain the “time formulation” of (2.1),
d ., d {I+1)¢
(ZZEZ 2—[}}- +u)2— -——Ey— H,(w,R(T))—:O, (2-6)
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where the “impedance” Z is

Z=R'pc)'?, 2.7

and the conditions (2.2) are to be replaced by

7 I1;{w, R(7)) absolutely continuous,

T—~Z2 d—(?%l absolutely continuous,

[ (w, R(T) }, o= {w, R(T))],.,. =0. (2.8)
We use the index = to denote the values at R=R_ for
T=1,, and the notations ¢(7), Z(7), etc., for c(R(7)),
Z(R(7)), etc., when there is no ambiguity.

“Schrodingey” formulation: We introduce the strong
mathematical assumption: p and A are twice differen-
tiable functions of R, going to constants with zero
derivative as R —~0 or R —R_. It follows that Z is a
twice differentiable function of 7. Setting

¢, (w, 7)=Z" T {w, R(1)) {2.9)
we obtain the “Schrodinger” formulation of (2.1),
Lt W) =10 +1)72) 0 (w0, D =0 (2.10)
J.P' ] - QDI s /=Yy .
where
W, (1)=V(7) - 11 + 1)U(T),
Vin =z dezZ", U(n=12_R?:? (2.11)

are continuous functions on [0, 7_].

These formulations are completely similar to those
of a scattering problem that we formerly studied and
in which the inverse problem could be solved, The in-
terest of the Schriodinger formulation, and of the strong
mathematical assumption which enables it, is that many
analytical properties are readily available. They are
our main tool in the following. Since we use them in very
precise forms, we have thought it convenient to sketch
them and their proofs in Appendix A.

The scattering problem: We continue A and p for
R> R_ by constant positive values A’ and p’. The equa-
tion (1.1) in this external range simply reads

dz wz
(W +—,2-_z(z+1)R'2> RIT,(w,R)=0, (2.12)

c

where ¢’>=x’/p’. By this ansatz, Egs. (2.6) and (2.10)
are also continued for 7> 7_, V(7) is identically zero
in this range. U{(r) is not, being exactly 7% - [t -7
+R./c’T?. Thus W(r) is twice differentiable for 0 <7
<7, and for 7>7,_, and is O(77% as 7 —~w, Equation
(1.10) can be considered as the partial wave equation
for the scattering of a plane wave exp(iw7cosf) whose
propagation follows the Schrodinger equation with the
I-dependent potential W(r). The S-matrix s is diagonal
and s,(w) is given by the ratio of the Jost functions

F (- w)/ F,(w), with
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Fy(w)=(- w)[f,(w, Nejw, 7)=filw, T¢,(w, 7)],
(2.13)

where the prime indicates the derivative with respect
to 7, f,{w, 7) is the solution of (1.10) which asympto-
tically is exp[i(wT +17/2)] as T~, and ¢,(w, T) has
been normalized to be 7'/ (21 +1)!! as T — 0. We met
the same problem (with ¢’ =c_) in our study of explo-
sions in the earth'® and a similar one later.” We know
that, thanks to the positivity of Z, there cannot be™!*
any bound state. Thus, if s,{w) is known for all real
wf, W,(r) can be reconstructed, for instance, by a
generalization of Marchenko’s method, 32 Knowing
functions s,(w) for all real w’s and two values of !
enables us to construct two functions W, (), which
readily yield V(7) and U(7). In turn, a knowledge of
V() and U(7), together with R_, 7_, and Z_ (or equiv-
alent information after ¢, is known), enables us to re-
construct A(R) and p(R). Let us again state this
argument.

(a) U(7) should satisfy two consistency conditions.
First, for 7> 7., it must be equal to the exact function
which was given above. Then for any 7, it must be not
larger than 7-2. In general, ¢’ is not ¢. so that U(r)
has a jump at 7=17_. We denote by the index « the values
which are in continuity with 7< 7,

(b) For 1< 1., a(n)=[r2-UM@]*/2, R(r)and c(r)
are given by
R(T)=R., expf (x)dx, c(r)=R(r)a(7). (2.14)

(c) For 7=7,, we know Z_ by assumption, and
ZNd/dr)Z =a(7.). For T<T_,, Z is the continuous
solution of

dZ

E_—zz" = V(T)Z‘l.

(2.15)

(d) From Z({7), c(1), T(R), (2.7), and (2.5), we
readily obtain A(R) and p(R).

Thus, we are reduced to deriving s,(w) (real w) from
the free modes of (2.1).

Construction of s,(w): Since W is real, f,(w, 7) has
well-known symmetry properties, which can be com-
bined with the parity of ¢ ,(w, 7) when w -~ - w, to show
that [F,{w)]*=F,(- w) for real w. Thus we only need to
construct s,(w) for positive w. Now the equivalence of
(2.6) and (2.10), together with (2.9) and (2.12), show
that for 7=7_ (or R> R.)

filw, ) =exp(- iwT’)7 (,, R_+¢'(r-7 ))( T=T.),

where 2.16)
7,k B) —zexp(zln)< kR)l/zggig (R, 2.17a)
T'=R.,/c' =T, =4"—71_, (2.17b)

Hence s,(w) can be constructed from 7' and the function

2@ =[0,(0, TP s 010, 7.) (2.18)

Tao
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which is real for real w. Because of (2.2c), the poles
of y,(w) are the modes of (2.1).

Properties of ¢,{w, 7.): ¢;(w, 7..) is an even function
of w. Its zeros are those of [1,{w, R,). Besides,

(a) All zeros arve real and simple.

Proof: Writing (2.1) for two different values of w, w
and @, we easily obtain

51, ~1Lp

”Ri<n'p- R

1 4

“ g )R
3 R-o b

=(@* - wz)jo I,ILR*\"'dR. (2.19)

Setting Co.zw*, and noticing that the corresponding

function I1; is nothing but the conjugate I1¥ of I1,, we

see that if w is a zero of [1,(w, R.), Rew Imw =0, On

the other hand, it also follows from (2.1) that

fOR'[wZRZA-l (l+1)p-1]nz dR = f p-1R2< d >2dR

dR
a4 R’
(e =)

0

(2.20)

For R'=R,, the right-hand side reduces to the first
term, which is positive, whereas the left-hand side is
negative if Rew =0. This completes the proof. In addi-
tion, we see that w =0 cannot be a mode and that, for

w =0, neither [1, nor its derivative vanish for any values
of R (they both remain positive), Incidentally, making
R’ =< in (2,20) enables one to prove that there cannot
be any bound state. Incidentally also, one sees that dif-
ferent modes are orthogonal (weight R?, A™!), It is well
known that they form a complete sequence in L,(0, 7).

(b} ¢,(w, 7.) is an entire function of w?, of order 3.
The proof of this well-known result is recalled in Ap-
pendix A. Its very important consequence is that ¢, can
be constructed from the sequence {w, ,} by Hadamard’s
product

(p,(w, T.Q):(P;(O, T.o)"l.jl(l - wz/win)“

©,(0, 7.) and 7, can be derived from the asymptotic be-
havior of ¢, for large ’w] in the upper half-plane, for
instance, for Rew=0,

(2.21)

2[w

" exp[-|w|T.] )=1+0(|w["), (2.22)

@ (i|wl|, .
which follows from formula (A6), and is equivalent to the
formula

log[2¢,(0, 7))+ (I +1) log|w]| - lwlu*—i}log( +_|f‘2’_|_>
n=1

=0(|w|™), (2.23)

which gives the result. Hence the sequence {w, .f com-
pletely determines the function ¢g{w, 7.), but not
(8/97 e, (w, 7).

(c) That sequences {w, ,} do not determine (3/37.)
X ¢, (w, 7.) most easily can be seen for [=0. If they did,
then s,(w), and eventually V(7), would be completely
determined. However, it is clear in (2, 6) that if we re-
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place Z by its symmetric with respeect to T=47,, or in
(2.10) if we replace V by its symmetric with respect to
T=47., then symmetric solutions exist, and give the
same sequences of modes {w,,}. There are other trans-
formations'® of V keeping {w,,} (see below in Sec. 2),
To prove that similar transformations exist also for
other values of I, we first use Krein—Marchenko’s
transformations® to prove that there is a regular poten-
tial W,(7), such that, if W, is substituted for [W,
—I(I+1)m2]in (2.10), the corresponding sequence of
free oscillations still is {w, .-

Proof: We know?® that if ¢ is the regular solution of
the equation

9" + (W - U))¢ =0, (2.24)

and if g, is any solution of the same equation for w=w,,
then the function

Plw, P (wq, T) = @' (w, TIP(wy, T)

#ler D= (@~ aDylg, 7 (2.25)
is the regular solution of

" +wip=(U,+AU)e, (2.26)
where

Ay, =-2 2 Yoo @2.27)

aT ‘po(“-’oa T)

In Appendix B, we prove that there exists a value of
w, and an irregular solution #,(w,7) which has its small-
est zero at 7 =7_. Let us use this function in (2, 25). It
is clear in (1, 25) that ¢, (w, 7) has modes for all w in
{w;,}. From (2.27) it follows® that the new potential
U, + AU, has centrifugal barrier as » — 0 corresponding
to (I— 1) instead of I, To go back from U, + AU, it is
possible to use the solution 7, (w,, 7)= [Pylw, 7)™ in
the formula

CACH )P (woy T) = ¢1(w, T)P (wy, T)

olw, T)= A (2.28)

which has the meaning of an inverse of (2.25).

Thus the zeros ¢, are also those of ¢ and both func-
tions correspond to the same sequence {w,,}. Using !
times this method we are able to destroy the centrifugal
singularity and construct W,(v). Q.E.D. We can now
construct potentials that are equivalent to W,(7) like we
did above, for instance its symmetric one. Going back
I times, we are thus able to construct potentials which
have in common with W(7) the same sequence of modes.
Thus giving the sequence {w,,} of normal modes is not
sufficient to determine W, (7).

Now suppose that the response to a known source
enables us to obtain the values of (3/37 J@{w; , T.) for
each mode in the [-sequence, up to a multiplicative
constant. That such information can be obtained is
easily seen with the following (slightly heuristic) argu-
ment. The Green’s function (which is the response to a
point explosion) can be expanded along with the normal-
ized modes (IT),
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G(Ro’ Rl) :xé;,,yl-m(go’ ¢07 61’ ¢)) MM’

Wy, —= W

(2.29)

where R stands for R, 6, ¢, and y‘m stands for the pro-
duct of spherical harmonics. The physical response is
obtained by taking the Fourier transform (as a limit for
Imw — 0*) and convoluting with the source function. If
one can fully analyze this response, one obtains

M (@, 5 R {w;, 1y R,). Now (this is the heuristic part),
if R, and R, are very close to R, this product is of the
order of (R~ R,)(R, - R, )[(3/2R),(w,,,, R.)F. One
can obtain this value rigorously if R, and R, are, to-
gether with R_, in a surface range where the parameters
are constant. If not, the problem is more complicated
but can also be disentangled. In all cases, one has to
use as additional information the following formula,
readily obtained from (2.19) by letting & go to w, ,,

w= Wins

(%) <a§em“l(“’l»"’ R")>

w=w
Iyn

- %—E?“L"nf(w,,m R)R*\'dR. (2.30)

In the case quoted above, where we “know” (a/aR,,)ﬁ,
and since we know [from (2.21) and (2.9)] Z2(3/3w)T1,
we easily derive from (2. 30) the value of (p./c.)

% (8/37_)¢(w, T.) which is the desired result. Notice
that it follows from (2.30), that the information (1/p,)
X (3/ 8RN, (w,,, R.) is equivalent to the information
I, Gy o RIS

Thus we know the sequence [y,(w, ,)] equal to (p./c.)
x(y,(w, ,)). From it, we can derive y,(w) for any w.

Proof: Let us evaluate the integral of z7*(z—w)v(z)
on an infinite circle in the z plane. Because of the
asymptotic behavior of y(z) [see (A12)], this integral is
equal to zero. The residue theorem yields

vi(w)=1v,(0) -2 ng[wl,,,/%'(w,_,,)(wz,.,,- W), (2.31)
where
Ry )= (o 0l 7)) P @.32)

is known up to the multiplicative constant ¢/ pay but
it follows from (A12) that the leading asymptotic be-
havior of y,(w) as |w| —« must be wcot(wT - 17/2).
Hence the constant can be determined. If [R']=R'co/ pus
we can write,
b/ ca=2 lim 33 ]w|lw,, IR @, DS, + [T

(2.33)

Hence, we obtain R '(w,,,) from [R’(w, ,)] and we can
insert the result into (2. 31). It remains to determine
y,(0). This is done by writing (2. 31) for W, =0, obtaining
y%{w), which is perfectly well known, and subtracting
from (2.31), then taking the limit when Imw —«, Rew
=0, using (A12). This yields the formula
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71O = 50 =2 lim 3} o [*[w PR " wi2)

X(wf S+ o] = [w,, RN (W), M0l + [w|5]).
(2.34)

Hence y,(w) is completely determined by (2.31) Q.E.D.

We also know 7_ by (2.23), and therefore f,(w, 7.) and
(8/37.) f;(w, 7. by (2.16). From y,, f,, and (8/37.)f,,
we readily obtain s,(w) and thus we can construct W,.
From two values of W,, we first obtain ¢, which is
easily combined with p./c, to give Z., ., p., and we
easily achieve the whole determination of A and p.

Remark: The assumption that A(R) and p(R) have zero
derivative for R — R? is a simplifying assumption. It
is not essential, but we shall leave to the reader the
tedious complications which come in when it is
suppressed.

3. DIFFERENTIAL PROBLEM OF THE SECOND KIND

We study the set of equations

a 4 pa 4 (pa
T4R (“R aR " T'>'3“dR(R T

+[(1+2)(1 - 1)pR2- pw?]T, =0 38.1)
in which 7 runs through the positive integers, p and u
are nonnegative piecewise continuous functions, and

w is a real or complex continuous parameter. Equation
(3.1) is completed by the following conditions, in which
R, is a positive number:

R—T,(w, R} should be absolutely continuous, (3.2a)

R=T|=p 2% [R™'T,(w, R)] should be absolutely
continuous, (3.2Db)

Tiw,R,)=Tilw, R,)=0. (3.2¢)

Again the conditions (3.2) can be satisfied only for a
certain set of values of w, {w,'n}, which will be called
the modes. Again, the inverse problem is to determine
information on the modes which is bijectively related

to u, p.

Time formulation: We introduce the physical
assumption

pu#0 for any R=> R, 3.3)
and the new variables

c(R) = (I-l/p)llz’ T(R)=fRR [c(x)]“dx, A= (pc) 2Rz,

(3.4)
Thus we obtain the “time formulation” of (3.1),
2 4 d (1-1)q+2)
(7 4 g vt - R R -0, @)

where ¢,(7)=R"'T,, and the conditions (3.2) are to be
replaced by
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T~1, and 7~ A? %—t;—_ absolutely continuous,

dirt’=0 for r=0and 7=71_.

Schrddinger formulation: Again we introduce the
strong mathematical assumption: p and pu are twice
differentiable functions, going to constants with zero
derivative as R — R.. It follows that A is a twice differ-
entiable function of 7. Setting

(3.6)

X;(w, T)=A(T)t1(w17)’ (3.7)
we obtain the “Schrodinger formulation” of (3.1),
dz 2 2 -2
pr V(T) - I+ 2)I-1)c*R2)y,(w, T)=0,
(3.8)
where
a4t
V(T)ZA E_E‘Aa (3.9)

With the assumptions, V is a regular potential for any
0<7=<7_as well as ¢®R™®, and x, is the continuously
differentiable solution of (3.8) which satisfies the bound-
ary conditions

ii—[A"x,(w,T)]:O for r=1_. (3.10)

dar
Let us now introduce the auxiliary scattering problem.
For R>R,, we continue 1 and p by the positive numbers
u’ and p’ which can be equal, or not, to u. and p,,. For
each value of [, we consider the scattering of an S-wave
by the potential

W, H=V(T)+(1+2)I-1)FPR2. (3.11)
For each potential W(l,T), we can define the (S-wave)
functions ¢, f,, F,, s,(w), exactly as in Sec. 1, In the
following, in all functions we drop the index 0 referring
to the absence of centrifugal singularity, and use [ as
an additional variable only when we want to refer to a
particular W({,7) or emphasize the dependence on |.
Thus the regular solution of (3.8), which vanishes at
7=0, will be denoted by ¢(w, 7), or ¢(l, w,7) when it
is necessary. The scattering “matrix” will be denoted
by s(w) or s(I,w) instead of s,(I,w), which could have
been used more correctly. Now, thanks to the positivity
of p and p for any R> R_, no bound state can corre-
spond to a potential W(l,7). Indeed, for such a potential,
it is well known that w® necessarily would be negative,
and the regular solution [¢(Z, w, ), or its product by
[A(T)]?, say, #({l,w,T)], would decrease exponentially
as T —«, But »(w, 7) would be a solution of (3.5) so that,
multiplying both sides by » and integrating by parts,
we would get

0=- f:Az(T)<d¥i 7w, T))ZdT + jo'c (w"‘ _U=-1a+2)e 1)1(;; 2)c* )

X A%(1) ¥ (w, T)dT, (3.12)

which is contradictory for negative w?,
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Hence s(l, w) is bijectively related to W(,7). On the
other hand, it is easy to derive u and p from the values
of W(i,7) for two values of [ since they give V(7) and
c®R™ from which p and p can be derived, exactly like
we did for X and p in Sec. 1, and provided 7_ and Z,

(or equivalent information once c. is known) are given.
Hence we are led to construct s(/, w) from the modes.
This will be done in three steps. First we study the
analytic properties of the function x(w,7) in the w plane,
and those of its Wronskian with f(w,7), which is in

some sense the “Jost function” of this particular solution
of the Schrodinger equation. Then we show how the
modes can give this “Jost function, ” It remains to show
how one can get the true Jost function and the S-matrix
from it.

Analytic properties of x(w,T): Let us recall that
¢(w,T) is the solution of (3.8) which goes to zero, with
derivative equal to one, as 7 goes to zero. We define
the solution y(w, 7) as the solution of (3. 8) which goes
to one, with zero derivative, as 7 —0, From (3.7), and
if we normalize x(w, 7) by imposing the value 1 at 7 =0,
we obtain

A'(0)

X(w,T):m¢(w’7)+¢(w,T)- (3.13)

(w, 7) is a solution of Volterra’s integral equation

T sinfw(T = 77)]

l,b(w,T):COSwT—i-‘[) W )y (w, T")dr’.

(3.14)
The Green’s function which appears in (3.14) can be
bounded by means the formula (A5) (used for [=0), and
|cos w'r\ can be bounded by Cexp(7 ]Im w ] ]. Using these
bounds, we easily prove that y(w,7) is an even entire
function of w, and satisfies the inequalities“

T
! D e —————
i¢(w,T)—cosz[<Cjo [We far = leT
Xexp[Imw |1‘, (3.15)
'zp(w,‘r) - COSWT — ff sinw(r - 7) W(r’)coswTt’dr’
T T
< Cf0 |w(r*)|d7’ e exp |Imw |7
1+ W 'r’ (3.16)
The derivative of y with respect to 7 is given by
P (w,T)= - wsinwT + fOT cos{w(T =T W(Eylw, 7" )dT’.
(3.17)

and satisfies the inequality

[y (w,7) = [- w sinwT + / cosw(T - 7)Y W(r’") coswT’ dr’]|

Q

<C‘/‘T }W(T')‘dr’exp(‘lmwl‘r)f

(o]

T W(r)ldr’
1+|wl7T’

(3.18)

Collecting these properties and those of ¢(w, 7), which
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are given in Appendix A, and using (3. 13) and (3. 7), we
are able to prove that

(1) x(w, 7) and ¢{(w, 7) are entire functions of w2, of
order 3.

(2) x(w, 7) and ¢'(w, 7) are entire functions of w?, of
order %

(3) For large lw!, and taking into account the dif-
ferentiability of W in (3.13) and (3. 18) to integrate by
parts and evaluate the integral on the left-hand side,
we obtain for ¢ and ¢’ the asymptotic behavior (r<1,)

_coswt | sinwt [(A’(0)
o, = Jmy T wAm ( A0 "2 y bW MT)
+O(\w|'2explImw|T), (3.19)
/ _ wsinwT  coswT (A'(0) A’(7)
w,T)=- ) + A(T) (A(O) T TAM)
F2 (W) +olalt emltmolr).  (3.20

Construction of t'(w, 7): The modes are the zeros of
t’(w, 7.). They have the following properties:

(a) All zeros are real and simple: From (2.5) we ob-
tain the equation

TQ
[A2<t—t d‘ii)] :(&z-wz)/ 1 A% ar, (3.21)
=’I'_° 0

where @ and ® are two different values of w, and ¢ and
{ are the corresponding functions #w,T). Setting

@ =w*, and noticing that the corresponding function iis
nothing but the conjugate ¢* of ¢, we see that if w is a
zero of H{w,7.), RewImw=0. On the other hand, it
also follows from (3.5) that

To [ d .
_f A (dtT l,> dar
:./ ) <(l+2)(l‘1) I?Az—w )tf(r)dr

which yields a contradiction if w? is negative.

(3.22)

Q.E.D.

In addition, we see that w =0 cannot be a mode, and
that, for w =0, neither ¢, nor its derivative vanish for
any value of R, They both remain positive. It also fol-
lows from (3.21) that the functions ¢ of two different
modes are orthogonal on [0, 7_] weight A%*(7). On the
other hand, one knows that they form a complete set.

(b) Since #,(w,T,,) is entire, of order 3, and not zero
for w=0, it can be constructed from the sequence
{w,, .} by Hadamard’s product

Plo,7) =111 - 0w r 0,7.). (3.23)
n=1
It follows from (3. 20) that
AT )P (w,7,) N . os
- e =t 0wl (e[ =) (.24)

Hence, for large imaginary w (w=:lwl), we obtain 7,
by the formula
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=|w|7T.+log2 +O(|w|?). (3.25)

Z ].Og w 2+ 4 Iw l

n=l at Jwl?
On the other hand, using Hadamard’s product for
x~! sinx, we easily derive from (3.23) and (3.24) the
formula

o 1+lwl?/w?
2108 T a e

- 2log(|w|7.) +loglr. A(r.) # (0,7 )]=0(w|™),

(3.26)

which yields A(7,)#(0,7.), achieving the determination
of #'{w,7.) up to the constant A,_.

{c) That the sequences {w,'”} do not determine p and
© has been shown by Gerver and Kazhdan,'® The most
simple example of nonuniqueness is obtained by replac-
ing A(7) and ¢(r)/R(7) in (3.5) by A(T - 7_) and
c(t=7_)/ R(t—7,). Obviously {7 - 7_) is a mode of
(8.5) with the new parameters if #(7) is a mode with
the former ones. But clearly also, unless (1) happens
to have the same value at 0 and 7, the normalization
factor fot“ £2(1) A%(7) @t [with #(7) uniformly standardized
at =0, e.g., by t(0)=1] is not conserved in this sym-
metry, Other examples have been given'® when A(T)
and c¢(7)/R(7) are periodic functions, with its period
equal to 7, N-! (N is a positive integer). Then a sym-
metry (as given above) inside a period is possible and
transforms a mode into a mode. The new solution of
(3.5) is easily obtained by the same transformations,
taking care of the continuity of ¢(7) (since the derivative
itself is trivially continuous, being zero at both ends of
any period).

(d) Suppose now we know in addition either the values
f{w,,7.) (the bar means a normalized function), or the
normalization factors ([*° f2(w,,7) A%(T) d7 }/2. They are
related with each other by the formula

o t(w,T,,))

- A f((d", .,) (A,, m

wW=wpy

To
=2w, f Flw,, TVA%(T) a7,
0

which is obtained from (3.21) by setting w =w, and
letting w go to w,. Using it, we easily see that if we
know f(w,,T,) (which is obtained from the Green’s func-
tion more easily than in Sec. 1), and since we know
A(32/07 Dw )t (w,, T.), we know Alt(w,, 7). Calculating
on an infinite circle of the z plane the integral

Jol(z =) (2,7 )] (2, 7.)dz, and using the asymptotic
behavior (3.19)—(3.20), we obtain zero. Thus the
residue theorem yields

et 225 w7/ 0= 055 oy 7)),

(3.27)

t'(w,T,o) _ n e .

(3.28)
Comparing the asymptotic behavior of both sides we ob-
tain the value of A2,

AZ=2 lim 7, w,,fwl[Allt(‘*’nT-o)]

lwl-wo 1

{(w +|°~"2)"_[A £ Wy n)]} ’

and reinserting it in (2, 27), we obtain

(3.29)

2417 J. Math. Phys,, Vol. 19, No. 12, December 1978

Hw,T,) &

=2A2 -1 -
o) sz)l W [ATHw,,7.)]

x{(wi-wZ)aZ [A.t'(w,, J]}

Hence, at this point of our study, we know 7, A,, and
Hw, T, )/ t'(w,7,). We are now in a position to calculate
the S matrix.

(3.30)

(e) For R=R., Eq. (2.1) reduces to

&+<w2 _ l(l+1)> £, =0,

AR? 72 B2 (3.31)

where ¢,(w, R)=x,(w, 7). Hence the Jost solution f(I, w, T)
[for f,(I,w,T)] of (2.8) can be derived for 7> 7_. This
Jost function goes to exp(iwT]as 7 ~, and thus differs
from (3.17) by the additional factor exp(- #lm/2). The
Wronskian H(w) of x(w, ) with flw, 7) is constant, 1t is
readily calculated at 7=7_ by using (3.7), #(w,7.), and
t'(w,7,) [of course, for the S-matrix, which is the
ratio f(— w,7)/flw,T), #/t' is sufficient]. Since W is
real, f(-w,T)is the conjugate of flw,7), and since

x{w, 7} is an even function, H{- w) is the conjugate of
H(w). For t=0, one readily obtains

H(w) =f(w, 0)A"(0)/ A(0) - f'(w, 0) (3.32)
and
flw,0  « . Fl)
M= H&) = TH@ 1 ~ ™ Hw) * (3.33)

where F(w) is the Jost function. This result of course
suggests that we calculate F from H by a dispersion
relation. We need some analytic and asymptotic proper-
ties of Fand H,

(1) It is well known [and it readily follows from (A13)]
that F(w) is holomorphic for Rew = 0 and behaves for
wl -, Rew=0, like 1 +O(lwi™), Let G(w) be the
Wronskian of flw, ) with §(w, 7). From (3.14), letting
T — 0, and using the asymptotic behavior of flw,T), we

obtain the formula
Gw)=— 1w+ [~ exp(iwTYW(r" W(w, ") dr’ (3.34)

and inserting in (3. 33) the asymptotic behavior ap-
pearing in (3.15) and (3. 18), we obtain that for Rew = 0,
and {w| -,

Glw)=-iw+ fom exp({wT YW (T!) cos(wT’) dT’

+0o(|w|™). (3.35)

From the definition of H{w) and (3.13), we finally ob-
tain the asymptotic behavior of H(w) in the upper half-
plane,

S VAR

FIG. 1.
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H(w)= - iw +<‘2,((00)) + fw exp(iwt")W(T’) coswT’ dr'>
+0(|w]|™). (3.36)

(2) That H(w) has no zero in the upper half-plane can
be seen as one does for F{w) in ordinary potential scat-
tering. If H(w) had a zero, then for this value x(w,7)
would be proportional to f{w,T) and hence would de-
crease exponentially as 7 -, This is also so for
t(w, 7). Then writing (3,21) for T =«, instead of T=71_,
we again prove that Rew =0. Then writing (3,12) for
Hw, T) we obtain a contradiction,

(3) Now, let us calculate the integral, for real w.

/F(w /H(w’)
w—-w’ B

C
where C is given in Fig. 1 and the radius of the half-
circle increases to =, Since F(w)/H(w) is O(lw 1) on
this circle, the corresponding part of the integral
vanishes, and since H(w) has no zero in the upper
half-plane, we obtain after separating the real and
imaginary part,

Fw)\ 1 **Im(F(w)/H(w)] , ,
Re<?((d—)>:ﬂvp[m - w(ii_ww dw

_'1—V ET-) w/ d(l.’,
o2 ) w—w [HwE

(3.37)
So F(w) can be calculated from H(w).
And S(w) is determined from F(w), and W(»’) can be

determined from F{w). This closes this part of our study.

Case i1 —0 as R—~R_: Since ¢t =0 for R <R, it seems
necessary to study this case, which makes the Sturm—
Liouville problem singular, If u— 0 like (R = R,)%

(o > 0), whereas p remains positive, ¢ goes to zero
like (R —R,)*/2. For o =2, formula (3. 4) cannot define
7(R) since it does not converge. This case is related
both to a “physical singularity” (uncontrolled travel
time), and to a very strong mathematical singularity.
This case will be discarded in the following.

For a <2, 7(R) goes to zero like (R~ R)*"*/?, and
therefore (R~ R,) is O(T?/2=9) A is O(R - R,)/% or
O(rte/2 /-2y Hence, for 7 —0,

dz

V(T):A'la——gA—s(S +1)7°2 + 0(77Y), (3.38)
where
s=3(8a¢-4)/(2-a). (3.39)

The conditions (3. 3c) or (3.10) imply that x{w, 7) is the
solution—say, ¢ {w,7), of (3.8), which is O(!**) as

T -0, viz, the “regular solution” of (3.8). The modes
are the zeros of {'{w, 7.). Now it follows from (3.7) and
the results of Appendix A on the functions ¢, and ¢; that
t'(w,T.) is an entire function of w? of order 3. It can be
constructed from the sequence {w,} of its zeros. Again
the formulas (3.21) and (3, 22) show that all the zeros
are real, simple, and w =0 is not one. From (A9),
(A11), and (A16), it is easy to see that for any s >~ 1,
there exists a positive number e such that

Al ) (w, 7,)

3.40
wcos{wT,— 3 7s) ( )

=1+0(|w|.
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Hence, for large imaginary w (w=11wl), we gef s and
T, by the formula

W +dlwl®

AEEa P Iw]'rw—slogz +O(|w|")ﬂ

2 log (3.41)
n=1

It is important to notice that (3.41) is a straightforward
generalization of (3.25), which would correspond to
s=~1, Thus, investigating the asymptotic behavior of
{w,,} is a way to see that u goes to zero as R goes to R,
Now there are two cases, which correspond to different
cases in the factorization of cos{wT, — 37s).

{(a) If s is an odd integer, s={(2k +1), factorizing
cos(wT, — 37s) and using (3.40) yields for large |wl,
and w ={lwl,

& 1+1lw lz/w
nz; 1+] lwi?2
+2klog|wT, | +10g[T;st’(0,Tw)A(T,,)]= oljw|9),
(3,42)

which reduces to (3,26) for s=k -1,

(b) For other values of s> -1, we obtain

% | 12 +L~ 2
Elog{(l + ‘:2 )/ [1+ <"‘"(;°°_ _é___;;s"> ] +slog|wT.)|

—is3m+1og[T (0,7,) A(T.)]=O(|w]|).

(3.43)

Thus we are able to determine #/(0,7.) A(7.), and
hence t'{w, T.) A(7,). Again, the response to a known
source may give, directly or not, the values {(w,,7.),
with an additional and uniform factor which involves
and p,. From (A15), (A18) (if -1 <s<0), {(A6), and
(A9) (for s= 0), it follows that there exists ¢ positive
and such that, as |wl and Imw — =,

Hw, T,) wil(wT,)

lw, 7o) H{wT.) =1+0(Jw ™.

(3.44)

Hence formulas similar to (3.28)—(3.30) can be ob-
tained and yield {{w,7.)/# (w,7.) and x(w,7.)/x (@, T.).

From this point, this “singular case” is no longer a
straightforward generalization of the regular one,
because it is simpler! Indeed, since x(w, 7) is now the
“regular sclution, the S-matrix is simply obtained by
matching x and the Jost solution at 7. Of course, to
be consistent with the singularity 7-?s(s +1), we have
to define the Jost solution f (w, 7) as the solution of
(3. 8) which behaves asymptotically like i’ exp(iwT).
The Jost function is the Wronskian of y(w, 7) with this
Jost solution, and the S-matrix is given, for real w,
by

=0, T X, T )XW, o) = fol= w, To)
Slw, 72} = '(w TIXw, T X (w, 7)) = folw,7.) 7
(3,45)

From this S-matrix, using the generalized Marchenko’s
method, '? we construct the effective potential, viz.

the difference between U,(7) and s(s+1) 12 for two
values of I. Hence we can achieve the determination

of parameters as in the regular case,
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4. THE EARTH INVERSE PROBLEM

In the “liquid” approximation p =0, where the only
modes are radial modes, this problem has been fully
treated in Sec. 1. In the general case, we shall only
study the information that is contained in the [ =0 radial
modes and in the toroidal modes. For the sake of sim-
plicity, we shall assume that x and p are positive and
twice differentiable functions of R, with zero derivative
as R—~R,, and that p is identically zero for R<R_,
is O(R-R,)*, with 1<a <2, for R— R}, and strictly
positive and twice diffrentiable for R> R, with zero
derivative as R—~R,.

With these assumptions, the toroidal modes problem
clearly is the one which has been studied in Sec. 2, in
the solvable “singular” range. Hence, a knowledge of
two sequences of normal modes, with both eigenvalues
and surface derivatives or normalization factors, yields
the functions p(R) and u(R) for R, < R< R,. Let us now
study the radial (=0) modes. They are given by the
equations4

diR s rdy a‘%(ze-lm:_pwz}z, (4.1)
pr=art gy von R @.2)
R{w,0)=R*(w,R,)=0, (4.3)

where R and 2* must be continuous functions of R.
Actually, it follows from our assumptions that R and
dR/dR must be continuous. The condition (4.3) can be
satisfied only for the spectral values of w, say, w,.
The Egs. (4.1)—(4.3) are the space formulation of the
problem. Setting

c=(\+2u) /313, (4.4)
Te= fOR[c(x)]'l dx, 4.5)
Z=R1pc)/?, (4.6)

and taking into account the differentiability assumptions,
we obtain the “Schrédinger” formulation of the problem

%+ [w? = W(T) = V(T)]v=0, (4.7)
where

v(w, T) =ZR*R (w, R(7)), (4.8)

W(r)=42-2R"3 %T‘i , (4.9)

V(r) =2 (;fo Z. (4.10)

In this section, as in previous ones, we use ¢(7), etc.,
for ¢(R(r)), etc., when this is not confusing. Now it
follows from (4.4)—(4.6) and the differentiability
assumptions that V(7) is 27°2[1 + O(72)] as 7 — 0, while
W(r) is identically zero for any 7 smaller than T(R)=T,.
Taking into account (4.3), we see that v(w, 7) is the
regular solution of the P-wave equation (4, 7), and
should satisfy in addition (for w=uw,), the second con-
dition (4.3). The potentials V{r) and W(7) are twice
differentiable for any 7> 0, except 7., where V(7) is
O(t —7.)*% when 7 — 72, and remains finite when
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7 —~T7, and the derivative of W(7) is singular

like V(r) whereas W(r) itself is continuous.

The modes are the zeros of R*(w, R,). Their proper-
ties can be derived with the help of two equations which
are easily derived from (4.1), (4.2), and (4.3), by
using Wronsgkian properties as in Secs. 2 and 3. For
any R,>0, and w and @, we can write for regular solu-
tions R(w, R) and R(&, R),

- / RopszZdR=[R2/{R’]R=RO— f ROxR'z <£§(R2/\’ ))zdR

Rg
—4/ wR2dR

o}

(4.11)

and

RERR = RR Jnero=@* = @) [ pRRR? dR (4.12)
If w=w,, and &=w* is the conjugate value, f{:R*, the
left-hand side in (4,12) vanishes, the integral in the
right-hand side is positive, and hence Rew, or Imw, is
zero. But if Rew, was zero, then (4.11), in which the
first term of the right-hand side vanishes for w=uw,,
would be contradictory. Hence all modes are real. They
are simple because there is only one regular solution.
It is also easy to prove from (4.11) and (4. 12) that there
is no bound state (same argument with R, =) and from
(4.11) that w =0 is not 2 mode, and both R and R* (as
well as dfR /dR) cannot vanish for R>0 if w =0,

Again, we continue the parameter for R> R_ by con-
stant values (not necessarily those for R=R,), so that
(4.1) and (4, 2) become there

&# | w 2
(02 2) o

Replacing R by R, + ¢’ (1 -7_) and RR by v gives the
corresponding equation in the Schrddinger time formu-
lation. As in previous problems, we are led to con-
struct the logarithmic derivative of v(w,T) at 7=171_.
We shall construct it from R{w, R.) and R*(w, R_).

{4.13)

The analytic and asymptotic properties of R(w, R..)
and R*(w, R,) can be derived from those of the P wave,
v{w, R.), and its derivative, which are given in
Appendix A, and the formula

. _ dv(w, 7)
fr(w,R)=Z., <———d7 ) Lt

A -2p,

Z R3 U((.O,T,o),

(4,14)

which is derived from (4. 2) and (4.8). Since the poten-
tial is integrable, (1 +lw|7)"'7 can be replaced by |w ™
in the remainders.

Thus R*(w, R,.) is an entire function of w?, of order %,
which does not vanish for w =0, and can be reconstruct-
ed as Hadamard’s product of its zeros w?,

R*(w, R =R*(0, R.) ﬁ(1 —w/w?). 4.15)

From (A9), we obtain the asymptotic behavior of
R*(w,R.),
R*(w, R,) =Z w™ sinfwT ]+ O(|w |2 exp[ |Imw |7_]).
(4.16)

Pierre C. Sabatier 2419



Hence, we derive 7, and Z22R*(0, R.) by the formulas
d 1+4jwl?/w? .
Elogm-«|wlrﬂ—log2+0(]wl ), (4017)
® 1+ wl/w? R*w, R,)
ﬁ?l log 1 +lw P12/ nr? Z.T,

+1log =O(|(,o|"1)e

(4.18)

Hence we know Z2R*(w, R.). However, this is not
sufficient to determine V and W (one can construct
counterexamples as in previous sections), but let us
assume in addition that the response to a known source
has given the normalized values R(w,,, R.). This is
tantamount to saying that we know R(w,, R.) up to a
constant factor, since it follows from (4.12) that

— R2R(@yy Ra) e Ry B =20m | Rwps) [P (4.19)
n
Indeed, Z}R*(w,R,) gives Z1(3/3w,)R*(w,, R.), which
can be combined with Rlw,, R.) to give ZZ1R(w,, R.,).
Thus we know [(3/8w,)R*(w,, R.)]*Rlw,, R,). The inte-
gral of [(z -~ w)R*(z, R R(z, R.) on an infinite circle
in the z plane is zero, thanks to (4.16) and to the cor-
responding formula for R{w, R..),

Rlw, R.) =~ w?(pc.)?/? RE cos(wT.) + 0w exp( [Imaw [7).

(4.20)
The residue theorem yields
Rw,R) _ 5% W R(Wny R
Rl Ry =2 ; (@/3w, ) R*(w,, RS - w?)° (#.21)

Comparing the asymptotic behavior of both sides, we
obtain

R2Z% = lim

{wleo

x[(wﬁ+ ‘w Iz) a—i—/{'(wn, R.,.)] .

(.22:) w,|w|Rlwn R

(4.22)

Hence we can construct R(w, R,) from (4,21), (4.22),
and Z7'R*(w, R.), which we already know. From Z,
and since the toroidal modes gave ¢, and p,., we can
derive 1,. Using (4.8) and (4.14), we construct v(w,7,)
and [dv(w,7)/dr],.., . The Jost function in the external
range 7= T, is reaaily obtained from (4.13), and is
equal to the function given in (2.16) for I=1. Hence
s,(w) can be constructed and since there is no bound
state, one can derive from it W(r)=W(7)+ V(). We
have now to derive A(R) from this function and a knowl-
edge of p(R), n(R), A(R.), and N (R,)=0, From (4.9)
and (4.10), and replacing du/d7 by p’(R)c(7), and then
using (4.6), we obtain for R(7) and Z(7) the system of
equations

#z  4p'(R(1))

7 T RO prmy) M ="M 2, (4.23)
2@ =pREONRET E - (4.24)

So as to reduce this system, we notice that (4.24) is
equivalent to

fTT Z*(x)dx= [ R*p(R) dR. (4.25)

The function R — B= [ t"p(t) di is monotone, and con-
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tinuous. Let D be the inverse function R =D(B). Instead
of (4.25), we can write down

R()=D(f, Z*(x) dx). (4.26)

Then inserting (4.26) in (4.23) yields the unique equation

PL P 220 ) - WD) 200) =0,

= (4.27)

where

Flu) = 4p’ (D(u))
p{DW)) D(w)
and Z is the unknown function., Once Z is known, R can

be derived by (4.26), then ¢ by (4.6), and, from ¢ and
i, X is derived by (4.4).

(4.28)

For 7 <7,, Eq. (4.27) reduces to an ordinary linear
differential equation, which can be solved if we know
R,, p., A, and their derivatives with respect to 7, all
these being continuous at 7,, Thus we obtain Z(7) for
0<7<T, but we cannot derive x from Z since we do
not know p(R) for R<R_.

Usually W(7), which involves d?Z/dr*, has a singu-
larity like (7 ~ 7_)*? for 7 -7}, while V is continuous.
Thus W{7) has the same singularity and, in that case,
T, is known offhand. If not, 7, is known as the value of
7 for which R(7) =R, which is known from the function
L(R). Hence it is sufficient to study Eq. (4.27) for
T>7,. We study it for 7= [7,+¢, 7.], Where ¢ can be
arbitrarily small, but must be positive. On this inter-
val, it is a matter of elementary transformations of
(4.27), taking care of Z and its derivative at 7., to
obtain the integral equation

Z=2y0) + [ (t-F( 22() ax) - w2 (1) dt,

(4.29)
where

Z(T)=Z - pdZo(T=T.). (4.30)

It is proved in Appendix C that (4, 29) has a unique
solution, which can be obtained by a constructive meth-
od., From Z(7), R(7) is derived by (4.25), ¢ by (4.6),

A by (4.4), A therefore is obtained for any R> R_.

Remarks: (1) It is of interest to notice that the method
we use to study (4.29) in Appendix C can probably be
generalized to take into account more general behavior
of u(R) as R —~ R,. But since there are many other
simplifying assumptions in this paper, we do not think
it is useful to study generalizations.

(2) Core oscillations and their coupling with mantle
oscillations can be studied in the same way, provided
their coupling can be described in the elastic theory.
Such a study would make it possible to get X, p, p,
from R=0to R=R_.

(3) In the regular case, ¢/R may be a monotone
function of 7. Let us take it as a new variable and make
a Liouville transform of (3.8). For large [, the trans-
formed equation is the Hankel equation plus a compara-
tively small perturbation, For [—«, it is possible to
show in this case that two sequences {w,,} determine
the parameters. Compare this with the JWKB result at
the end of Sec. 5 (for a differentiable potential, the
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JWKB approximation asymptotically gives the correct
result).

5. JWKB INFORMATION

The Schridinger equations we obtained can be studied
by approximate methods. The JWKB method is justified
for large values of w,, when the differentiability as-
sumptions hold. It can be used to understand the nature
of information which is given by the asymptotic behavior
of the modes, Take the example of toroidal modes, with
Eq. (3.8), first in the regular case. Then y(w,7) is
approximately

x(w, T)~[w? = W(r)]t/4 cos(fof[w2 -w)}2dry  (5.1)
and the modes are given by the condition

fo"’ [w2 - W/ 2dt= (n - 37, (5.2)
where W(r) is given by (3.11). This asymptotically
yields

w,=(n-3)1+0®™). (5.3)

Inserting (5. 3) and transforming the sum into an
integral, enables one to check, for instance, the lead-
ing terms in (3.25).

In the singular case, the argument of the periodic
function in the approximate value of x is an integral
whose lower bound is the turning point instead of 0.
For large w, this turning point is completely deter-
mined by the centrifugal singularity (3,38). Thus the
asymptotic behavior of w, should give information on
s—and this is readily checked in (3. 40).

Similar remarks can be made for all sequences of
modes. Apart from these pedagogical remarks, is it
possible to use this approximation as a practical
inversion method?

One certainly thinks of the Rydberg—Klein—Rees
method of analyzing data on atom—atom interactions.®
This method works beautifully in chemical physics
when many (vibration-rotation) modes are available,

In the earth problem, there are also many available
modes, but the smooth differentiable functions which
usually justify this approximation are lacking in the
crust. Nevertheless, let us look at what it would be for
the example of toroidal modes (the others would be
similar).

At least for the first modes; which are the best known,
turning points appear. The simplest case is the one in
which W(7) is monotone decreasing, and there is only
one turning point. Hardly more complicated is the case
in which W(7) has a minimum, with two monotone
branches. In both cases, the condition (5.2) becomes

P (W3- WP dt=(n e, (5.4)
where TP, is the first turning point (always present in
the singular case) and TP, is either the second turning
point [if W(r) has a minimum, and w2< W(7_)], or 7..
€, is equal to 3 if there is zero or two turning points,
 if there is one only. = is the ordinal number of the
mode (numbered in our paper from 1). A very important
additional assumption of the method is that w, is so
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smooth that it justifies interpolation towards n=¢,,
which yields the minimum of W(r) [or W(.) in the
monotone decreasing case]. It is equivalent to say that
we can fit the curve n(w) from n=¢,.

Apply now to both sides of (5.4) the semi-integration
operator between W_,, and w?, Dr'/2, defined by

[D %] g =t /2 fw:in (w? = w22 fw'?) d(w'?), (5.5)
We obtain
Hw?) = j;iff::)z)[wz - W(T)]dt =277 2D 2([n(w?) —¢,]7),
(5.6)

where TP, (w?) stands either for the first turning point
when it is positive or for 0, TP,(w?) stands either for

the second turning point when it is smaller than 7, or
for 7, when it is not. From (5.6), one readily gets the
difference y = [TP,(w?) - TP,(w?)]

x(w?) = 8‘97 {20772 D2 ([n(w?) - 4] 7 (5.7)
Hence we see again in this approximate model that the
modes do not determine W(7) but rather the separation
between its two branches (in this relatively simple
case). It is only when W(7) is monotone that it is com-
pletely determined, since TP, is 7, (another well-posed
case would occur if the two branches were symmetric).
It is also interesting to notice that when w? is larger than
than any W(7) (in the regular case), the left-hand side of
formula (5. 6) should simply reduce to [w?r? - [[*W(7)dt].
This yields a simple way to check the relevancy of the
JWKB method in the range of values of # which are
accessible, But a negative result does not prove anything
since one then cannot know whether these large values
of w have been reached or not.

Information contained in the amplitudes at 7.: This
information can be analyzed in the JWKB approxima-
tion. From well-known connection formulas, *® it is not
difficult to see that the amplitude at 7, of modes which
are standardized at 7 =0, yields the ratio

(= 1)"| 2(0)/2e(7 ) l”z exp[_/oTplu dt - f;: u dt),
2
where

(5.8)

u(r)=[W(1) - 0?2, (5.9)
and we assumed that there are two turning points for w
=w,. We saw above that the parts of W(7) where there is
only one turning point are determined by (5.7). Thus,

if we are, for instance, in the case of Fig, 2, W(7) is
known from 7 =0 to 7,=TP,(W(7,)), W(7..) is known,

and so are «(0) and u(7,). Thus, from (5.8), we know

by interpolation between the modes [since we know
w(r)], the value of

A = [T W) - 02} 2 - [T7 (W) - w2 2at,
o 2
(5.10)

In other cases, we know W(7) near W(r.) and replace
7. by another point 7,. In the singular case, u(0) is in-
finite and (5. 8) has to be modified to take into account
a convenient standardization at =0, but again we ob-
tain (5. 10). Now let us apply to both sides of (5. 10) the
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[2 Z) P,

min Teoo

FIG. 2,

semi-integration operator between w? and (in the case of
Fig. 2) W(r,), in any case, the value of w? which cor-
responds to the new end points, We obtain

Y =27"1/2p2[A(w?)]

—_ TPl(wz) - 2 Teo 2
- 7o [W(T) @ ]‘/TPz(wz)[W(T) @ ]dT (5 11)
and obviously
3Y =7,+7,— TP (0*) - TP,(w?). (5.12)

ow?

Hence, these amplitudes (which are equivalent to the
normalization factors, etc., see previous sections) give
information that are complementary of those given by
{w,}. Comparing (5.12) and (5.7) readily yields TP,

and TP,, and hence W(7). Again the result suggested

by this approximation method confirms the one obtained
in Sec. IV,

Information contained in diffevent values of 1: The
function I(w?) which is obtained in (5. 6) actually depends
on I since W is a function of 7 and 7 [see (3.11)]. If we
know two sequences with the sequences of amplitudes,
this can of course be used as in the exact solution of
Sec. 4. But in the RKR method, one can derive TP, and
TP, from (5.6) if one knows its value for different values
of I. This is easy to understand: The potential W(I,7)
which appears in chemical physics contains [ in one
term, which is exactly known, and which is (I + 3)?/7
(with the present notation). Hence

ML) [Ty,
EI) S P

(5.13)

and this resuilt obviously can be combined with (5.6) to
give TP, and TP,. But if we come back to our method,
the corresponding ansatz will give

rwd) = (72 prremar (5.14)
@)= Jpez € ; 5.
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which gives c(f)R™*(7) if we know both TP, and TP,, but
not if we know their difference.

It is interesting to notice that when [ vary, the various
values of X(w?) and T(w?) which are obtained depend on
1 only through the turning points, which should be zero
for w? - W(I,7), but not formally. This, however, does
not mean that all [ values give the same information.
Actually, for large [, the term containing I becomes so
large that W(l, 7) is dominated by this term. If it is mo-
notone, between 0 and 7, then everything can be deter-
mined, even if, for small {, V(7) introduces turning
points.

Similar results hold for other mode problems.

Combined information: Suppose we have information
which comes altogether from scattered waves!® (seismic
waves in the earth problem) and by modes. The most
commonly available modes are the lower ones, whereas
the scattering involve much larger values of w. The
JWKB phase shifts involve essentially the
same function, [w?- W(7)]/2, and its integral, which
appear in the JWKB analysis of modes. Hence it is very
easy to combine information on the modes and on scat-
tering data in this approximation. This is not so obvious
in the exact case, in which determining a function from
its first zeros and its asymptotic behavior is not so
easy (nevertheless it can be done, e.g., by using con-
tinued fractions or Padé analysis). Here we shall not go
deeper in this problem.
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APPENDIX A: REGULAR SOLUTION OF (1.10)

¢,{w, T), which is normalized as in (1.12), is given
by Volterra’s integral equation,

@ (w, T) =w ", (wT)

T
+ [ G lw, T, TIW, (1) (w, T )T, (A1)
0
where u, is the free wavefunction (3rw7)!/2J ,; ;,(w7)
and G, is the Green’s function, which can be written in
terms of the free Jost functions or wavefunctions

[

G,=5 (=D w, ™) = w,T)

T 2w
-, ) = w, 7] (A2a)
= (= 1)~ o, (wT) [, T")
-ty (wT’) (W, )] (A2b)
= (w sinm\) ! [7@ (0 T)7E Ly (wT’) = % (wT" )i, (wT) ], (A3)
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where x=[+}, #,,,,,=u,. Using the bounds’® (valid for
any Z, any w, 7, 7' real, and 727’2 0):

lu,(2)| <C|Z|" (1 +|Z |-t exp(IImZ ), (Ad)
nienf el \itf ol \

|Gz("~”7’7)1 (1+leT> (1+lw|.rl>

Xexp[lImw (T - T79], (A5)

we easily show that the series of successive approxima-
tions which solves (Al) is absolutely and uniformly con-
vergent. Hence (since G, and w™'"'y are entire functions),
@{w,T) is an entire function of w.

Besides
-1t T )" exp(immo|
[0, T) = 0™ (wT) | < c<1+ 7)) ew®(mwln)

T T/ , B
[ l—mle(T)ldT-

From (Al), we obtain a formula for the derivative of
Pys

(A6)

0 f o
2 oo =atiton) + [ (£ 6,00, 7, 7 W)

X@,(w,dr’. (AT)
Using the recurrence formula for Bessel functions,
formula (A4), and the symmetry of the Green’s function,
we obtain for 7= 7’ = 0 the bound

a
‘E. G;(ws T;TI)

lwlT \ P/ dwlT \ ! ,
<C (1 +lw |T> (1 +lw |T'> exp[flmw[('r =7}
(A8)
Inserting it in (A7), we get
0 il
5 ¢ (w,T) - e w 'y, (wT)
. T 1+1
<Clr- +fwf)(—1+—|m> exp(|Imw |7)
X ' T |w, (x| ar (A9)
1+lwlr” ' :
[¢]

For large |w!, in nonreal directions, |u,(wT)| is
asymptotic to |sin(wT —I7n/2)1, and lu}(wT)l to
lcos(wt - Im/2)|. Iterating Eq. (Al) once, and using
(A6) and (A9), we easily prove that for large |lwl, in
nonreal directions, we can write for a regular poten-
tial W, (r):

“’“I(PI(U); 7) :ux(wT) + j;T G;(“-’J 7, 7’) Wx(T,)ul(wT') ar’

+0(|w|? exp(|Imw |7)), (A10)

: T
w? a—TQD.(w,T)Zu;(wT)'*'w'I/ EGt(“”T’T')

[

XW (T, (wT’) dr’ + O(|w |2 exp( [Imw ),
(Al11)
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w0t %(pl(w,T) /(p,(w,r)__ z:(w‘r)

(wT)
=0(]w | [Imw |?) + O(|w [-?). (A12)
Jost function: F(w) (for 1=0), is given by the
formula
Flw)=1+ ["expliwt ) W(T') p(w,7")dT", (A13)

which is easily obtained from (A1) (for 1=0), the
definition of F{w), and by letting 7 - «, Inserting (A6)
and {A9) into (A13), we obtain the asymptotic behavior
of F(w),

Flw)=1+w" /ow exp(iwT’) W(7’) sin(wr’) d’ + O(| w | 2),
(A14)
where we used the integrability of W on R.

Generation: Let us introduce the continuous variable
x=1+3, and u =Rex, For noninteger x and u =0, the
bounds (A4) and (A5) are readily extended provided
(I+1) is replaced by  +3, — I by — iu +%. The bounds
(A6)—(A14) are thus readily extended with obvious
modifications., For integer x> 0, our method does not
apply. From (A3), one can obtain a limit form for G,,
in which logw appears. It is nevertheless possible to
prove that ¢,(w, 7) is entire and that the bounds we ob-
tained can be generalized with some modifications in
the remainders, but we shall not do it. For Rex <0,
the parity of G, enables one to get bounds, In particu-
lar, if — 3 <Rex<3, with A#0, it is easy to see that
|G, | is smaller than Clw|-* exp[|Imw |(T = 7’)|, where-
as |u,(z)! is smaller than Cexp[iImz{]. Inserting
these bounds, we easily prove from (Al) that ¢,(w,7)
is an entire function of w and (- 1<1<0, I+~ 3)

lo)(w, ) = 0, (wT) |

<Clw|™ exp(|Imwl7')foT]W,(‘r’)ldT’g (A15)
Bounds for (3/27) G, can be obtained from (A8) by
noticing the parity of G, as a function of A. Inserting
them in (A7), we obtain for - 1<7<0, [#- 3,

2
a—_rcp,(w, 7} — 0w} (wT)

1l T
<C<-1~_|I_w—l——(LTIT> l exp(]lmw]T)f ]W;(T')]d'r'u
(A16)

APPENDIX B

We give some properties of the zeros of the solutions
of (2.1), or (2.10), for [#0. The regular solution ¢ is
normalized as in (2.13), and we also consider an
“irregular solution” y such that

o' - =1,
(1) 11;{w,,, R) has no zero for RE J0,R.[.

(B1)

Proof: 11, is the function for which the minimum of
the functional F(I1) on C,(0, R,,) is achieved, where

F(I = [*<[R%p™11"2 - 11+ 1) p'T? - 2RI dR
(B2)
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and
C,(0,R)={y|y€C,(0,R,);y(0)=y(R,)=0}.  (B3)

In fact, w,, is fixed by this condition'” and the additional
constraint fDR” R2AE dR =1, If there was a zero R, in
10, R.[, we could replace I’ by 0 in a small interval, of
width A, containing R, in such a way that IT remains
continuous. Now Infi[1’| in this interval is not zero
(remember that IT and [T’ cannot vanish simultaneously)
and sup {IT" | is not infinite., It is easy to see that the
first term in the right-hand side of (B2) is reduced by

a term which is at least O(AInf|I1’|), whereas the other
ones are reduced by a term which is at most
0(A3Infi11’]). Thus for the new function I1, F([) is
smaller, which contradicts the fact that is should be
minimum Q.E.D.

(2) For w < w,,, each zero has a continuous trajectory.
Proof: The zeros are solutions of
M{w, R(w))=0.

Because the differential equation (21) is a linear
second order equation, ITand (3/2R)II cannot simultane-
ously vanish., Hence the implicit function theorem says
that for a couple w,, R,, and an open neighborhood of
w,, Uy, there exists for all connected open neighborhoods
U of w, contained in U,, a unique continuous mapping
R(w) such that R(w,)=R, and (B3) holds. This can be
continued in the domain in which we work. Q.E.D,

(B4)

(3) For w small enough, there cannot be any zero
between 0 and R,,.

Proof: For any w such that

WRZAT - I(1+ 1)p <0, (B5)

such a zero R’, when inserted in (2.20), would yield
a contradiction,

(4) For w <w,,, there is no zero between 0 and R..

Proof: One can prove very simply that there is a
ball free of zeros around R=0 (proof left to the reader).
Now suppose that there is a zero for w <w,,, and let
us make o decrease. The zero can only go beyond R,
since there is no zero for w small enough. Thus it
should reach the value R, for a certain w smaller than
w,,, which is a contradiction.

(5) All these properties are readily extended to
¢,(w,7) by using the definition of ¢, from [1, and that
of 7 from R.

(6) Consider now an irregular solution of (1.10), say
$,(7). Giving the Wronskian of ¥ with ¢, as in (B1),
is not sufficient to define §, since one can add to ¢ the
product of ¢ by an arbitrary constant A (we use in the
following the notation #,). From the analysis given
above, we know that the regular solution for w=w, is
positive for 7 <7 _ and zero at 7=7_, and for
w=we€ 10,w,,[, is positive for 7 <T,, zero at T="T,,
for a certain value 7, larger than 7. On the other
hand, any solution §, satisfying (B1) is asymptotic to
=1/ (21~ 1)!! as 7 —0, and is therefore positive. From
(B1), it is readily seen that any solution §,(w,,7) is
negative at T=T7,, and any solution #(w;o 7) is negative
at T=T..
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Now, since ¢ is positive between 0 and 7, there is
a value of A above which ¥, (w,, 7) is positive for
0<7<7_, Fix this value of x and consider §,(w,7)
for w,< w < w,;,. This function of w has its first zero
in 7 smaller than 7 for w=w,,, and larger than 7
for w =w,. Thanks to the continuity of the zero, there
is a value of w for which #,(w,7) is positive for 7<7_,
and zero for 7=7_. This result is used in (2.28).

APPENDIX C

Let 7, be a number in {7, 7,]. Let 7 be the operator
which maps any real function Z(r), defined in [, 7_],
into a function 7(Z), whose value at 7 is

@)=z, + [ -DIF( [} 22(x) dx - W] Z(t) .
(C1)

Any solution of (4.29) is a fixed point of 7(Z) in a con-
veniently chosen set. Now, in addition to the function
D(B) which is defined in (4.26), let us define, for any
number 0 <e <R, - R,, the function D,,

D(B) for B(R,+¢)s B< B(R,)=0,

nam- -

R, +¢ for B< B(R, +¢).
In particular, using D,(B) in (4.28) instead of D(B)

enables us to continue F for any real negative argu-

ment, F is thus a continuous function, which is equal

to zero for [[7 Z%(x) dx < B(R,). In the following, we

use this definition of F in (C1). Since W(f) is integra-

ble, and Z is continuous, it follows that 7 is a mapping

of C(1,,7,) into C(7,,7,). In the following, we look for

the solution of (C1) as a fixed point of 7 in C(7,,7..),

where 7, can be any number in [7,,7.].

With our definition, F is uniformly bounded for any
Z. Let F be an upper bound for |{{ - 7)F|, W be an up-
per bound for |(t{ - 7)W|, C, their sum, and, for any
other function, e.g., Z, let us define the number Z,

Z= sup l|exp(-p(T.-7)Z(T)], (C3)

Toif"f.o

where p is a positive parameter. One readily shows the
inequality

TZ)<Z,+pCoZ.

Hence, if we choose p larger than C, 7 maps the

set 8 ={fl f <Z,(1 - p~*C,)'} into itself. It follows that
any continuous solution Z of (C1) must satisfy the
inequality

1Z ()| < p(p - Co) P exp(p(t., - )| Z,(M)|

for any p larger than C,. We shall set in the following
p=(C,+1). Let us now introduce the function F,(B) by
substituting D, for D in (4.28), and the operator /,

by substituting F, in (C1). All the results which have
been obtained above remain valid.

c4)

(C5)

Now, consider the algorithm
Zp (1) =Z(1) + j;(t ~MF; Z360ds) - WOIZ,0 dt
(C6)
which begins at Z,(7). Since Z, belongs to 4, so does

each Z,, and they satisfy inequality (C5). Let us intro-
duce in C(t,, 7,) the norm

Pierre C. Sabatier 2424



1 ZIk= sup {exp(- g(r.-7){Z(N)]}, (€7)
where ¢ is a positive number. C(7,,7,) is complete
for this norm. From (4.28), (4.25), {4.26) and (C2),
it follows that there exists a constant f such that

|, 230d) - F ([} Z3x)an) | <feo2 [ | Z3(x)

- Z%(x) | dx. (C8)
From (C6), (C7), and (C8), we obtain
"Zml_Zn”$L”Zn_zn-1”’ (Cg)
where
<M.IQ)_ F+W .
Ls TETIEY) exp(2p(t, -~ TN + (C10)

It is always possible to define q so large that L <1,
and the algorithm converges for the corresponding
norms, Its limit is a continuous function Z (7). Since
the mapping 7, is contracting in C(7,, 7,) for the
norm (C7), Z(7) is the unique fixed point of 7,. Now,
two functions Fg and F, are obviously identical for
any Z such that

D[_/;:Z"’(x)dxb R, +suple,, €;) (C11)

and hence Z,(7) and Z,,(7) are identical in this range.
It follows that Z,(7) converges in 4. Its limit is con-
tinuous for any 7> 7, bounded for T=7_, and since
(4.29) maps bounded functions into continuous functions,
it is continuous for any 7> 7,. That R(r,) must be equal
to R, is a consistency condition, since R, is known from
the toroidal modes, whereas 7, appears as a singularity
of W(T).
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The plane wave-projected formulation of the half-shell T-matrix for ionization and the Coulomb-projected
formulation of the half-shell T-matrices for excitation and ionization are shown to converge to zero in the
energy-shell limit. “Renormalized” plane wave-projected and Coulomb-projected half-shell T-matrices are

defined and are shown to have physical energy-shell limits.

. INTRODUCTION

The plane-wave-projected (PP) and Coulomb-projected
(CP) formulations of the scattering amplitude have been
used as a basis for the computation of the excitation and
ionization cross sections.! In particular the PP formula-
tion of the scattering amplitude has been used to justify
the Born approximation for ionization and the CP formu-
lation of the scattering amplitudes leads to the Coulomb-
projected Born approximation for excitation and
ionization, !

In Sec. III of this paper we define PP and CP half-shell

T matrices which formally reduce to the integral ex-
pressions for the PP and CP excitation and ionization
scattering amplitudes on the energy shell. The time-
dependent theory of Coulomb scattering is used to show
that the PP half-shell 7 matrix for ionization and the

CP half-shell T matrices for excitation and ionization
converge to zero in the energy-shell limit.

In Sec. IV of this paper we apply the techniques
developed in Ref. 2 to define “renormalized” plane-
wave-projected (RPP) and Coulomb-projected (RCP)
half-shell T matrices. The convergence of the RPP and
RCP half-shell T matrices for ionization and the RCP
half-shell 7 matrix for excitation to the corresponding
physical S matrices for ionization and excitation is
shown.

A short discussion of the Born approximation and the
Coulomb-projected Born approximation is given in Sec.
V.

1. PRELIMINARIES

In this paper we consider three spinless particles,
assumed to be distinguishable, with a Hamiltonian #
given by

H=H_ + V (x,)+ V,(x,) + V ,{x, - x,),

1 1

Hy=wo—Vio—V2
0 om, ' 2m, 2
ee €iEN .
Vlz(XI_XZ):|X 1—22| Vi(xi):—\‘;?—i ’ 121,2’
1 i

where m;, e;, and x;, {=1, 2, represent respectively
the mass, charge, and position coordinate of particle i
and ¢, denotes the charge of the “nucleus” which is
assumed to be infinitely heavy.

We assume that the initial channel o is made up of an
uncharged fragment, consisting of particle 2 bound to
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the nucleus (e, +e,=0) and a particle 1 which is free.
The bound state wavefunction of the particle two-nucleus
system is denoted by ¢,(x,) and satisfies

H2¢a(x2) = anbc:(xz):
where

1 .
Hi:—mvl?+ Vl.(X‘.), l:]., 2.

In the case of excitation the bound state wavefunction
¢B(x2) corresponding to the final channel g satisfies

H,p4(%,) = Eydg(x,),

where E,# E . For ionization the final channel
corresponds to the free channel, §=0, which is made
up of three free particles.

Since there is only one charged fragment in the initial
channel o the usual wave operators exist and are given
by?

Wi =g-lim exp(iHt) exp(—iH t)p'®’
to g
where H,=H + V, and P'® is the projector onto the a-
channel subspace #'®’, The “modified” or
“renormalized” wave operators which are required in
this paper are defined as follows?
QL =s-lim exp(iHt) exp| ~ iH, - iG'V(8)],
t

- deo

1
GY— g-1i i —f a2 G
Qf ASt‘ll:nexp(ijt)exp[ i -3 ,V’l zGJ(,g)],

j:1’ 29
where

GO =G+ G2

v 9 — D, |2
e(r) —aMa01Cs g { (£l [Py ~ m P, | ]’
Im,p, — m,p, | momy(m, +m,)

202 . 2
G (f) = () LN 10%[2 : |,1|p¢] ’

(p; | m;
= Y
i=1,2,el)=
RS -1, ¢<0,

with p, the momentum coordinates of particle, ¢,
i=1,2.

We will asume the usual relation between the wave
operator W%’ and the three-particle Coulomb wave-

© 1978 American Institute of Physics 2426



function »*’(x,,X,; p,), that is,
(W' ¢)(x,,%,)=1.i.m. [ dp, P O(x,,%,;p,)0(0,), 2.1)

where ¢(x,, X,)=b(x,)¢,(x,), ¢ €/[*(R®) and § denotes
the Fourier transform of y. Furthermore, we will
require that there exists a constant C for each

de Ccy (Rs\{()}) such that

Jdpy |9 (%, %53 0)3(p,) 1< € 2.2)

for almost all x,,X, & R®. The asumptions (2.1) and (2.2)
are sufficient to derive the relationship between the
various Riemann—Stieltjes integral expressions of Sec.
IIT and IV and the corresponding half-shell T matrices.

The renormalized wave operators ¢’ can be expanded
in terms of the two-particle Coulomb wavefunctions
Ue(x,,p;), i=1, 2 as follows™

@0)x,) =L.i.m. [ dp, %5(x,,p,)0(p,), i=1,2 (2.3)

for each ¢ € [ 2(R%). Using the explicit form of the two-
particle wavefunction, one can show that there exists a
constant C for each ¢ € C3(R*\{0}) such that

S dpy [i(x,, p)60,) [< €
for all x, €R%, i=1,2.

(2.4)

IIl. THE PLANE WAVE AND COULOMB-PROJECTED
7 MATRICES

In this section we define PP and CP forms of the half-
shell T matrix and apply the time-dependent theory of
Coulomb scattering to examine their behavior near the
energy shell. The PP formulation of the half-shell T
matrix for ionization and the CP formulation of the half-
shell T matrices for excitation and ionization are shown
to converge to zero [in the sense of distributions, see
Eqgs. (3.4), (3.5), and (3.6)] in the energy-shell limit.
We conclude from this result that the PP and CP half-
shell 7 matrices are not continuous on the energy shell.
Thus the usual integral expressions! for the PP scatter-
ing amplitude for ionization and the CP scattering
amplitudes for excitation and ionization are not math-
ematically well defined.

The plane wave-projected half-shell 7 matrix for
ionization (p,,p,|7% Ip;) and the Coulomb-projected
half-shell T matrices for excitation and ionization,
denoted respectively by (p, [T%; Ip]) and (p,,p, T, Ip]),
are defined as follows:

(1, P2 [ Thp [p]) =1im(py, 0, [Thp(R) [p]),

(P, P, ‘Tipp(R) lp{> = fdx1dx2 (27)7%/2 exp(- ip,x,)P_(x,,p,)

xexp[— (1/R)(|%, |+ |z, DIV, (%) + Vi,(x, - %,)]  (3.1)
X' (&, X, p7),

=lim (p;, | 7¢5 (R) | p),

(pu| Tep(R) 1) = fdx,dx, .(x,, D) b5 (x,) (3.2)
X exp[~ (1/R) [x, |1V ,(x, - x,0'*(x,,%,; p}),

and

Py, P2 | Tep [p]) =Lim (p,,p. | TEx (R) p]),-

(3.3)

<p1,p2 ] T(,EP(R) ‘p1’ )= f dx, dx, l,b_(xl ,plj ¢-(x2,p25
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XexP[_ (1/R)(’xl ’ + Ixz')] Vlz(xl —X2) w(a)(xnxz;p;)y

where the limit R —« is to be taken in the sense of dis-
tributions. If we formally set the initial energy equal to
the final energy in (3.1), (3.2), and (3.3), we obtain the
PP and CP formulations of the scattering amplitudes. ’

In the following we show that the PP and CP formula~
tions of the half-shell T matrices given by (3.1), (3.2),
and (3. 3) converge to zero in the energy-shell limit,
that is,

lim lim [dp, dp, dp} Fp;, p,)2(p!)

€E~+#0 R-w

X0y, 22| Tho(R) [0)) 7o gayry s =0 (3.4)
lim lim [dp,dp{ &(p,) &(p})

X{p,| Te R} |p{) me—z=0, (3.5)
and
lim lim [dp,dp.dp} f(p:, P) §(p))

X(Dy,p, | Tip(®R) |0} mﬂ (3.6)

for each fe Cs(R%), flp,,p,) =0 in a neighborhood of
p,=0 for each i, i=1, 2, &, hc Cy(R*\{0}) with
E*=[p!1*/2m,+E,, E*=1p,1%/2m, + E,, and

E°= Ip, 13/2m + 1p, [2/2m,.

By a lengthy but straightforward argument (see the
proof of Theorem 7.2, Ref. 2) one can show, using
(2.1), (2.2), (2.3), and (2.4), that (3.4), (3.5), and
(3. 6) are consequences of the following respective
results:

. e H 6

wlimf BV AV W =0
(3.7

i " B perg s o) —— &
We:Ll)m -.ed)‘E)‘ PEIQINY Wia ()\—Ha)2+ez*0’ (3. 8)
and

+oc H

w-lim[  @E”° (@@ y Wi — 0, (3.9)

€ +0 . ()\—HQ)Z-FEZ -

where Efo and Ef“ denote the spectral functions cor-
responding to H, and H, respectively,.*:5 Thus, in order
to show the convergence of the PP and CP formulations
of the half-shell T matrices to zero, we must verify
(3.7), (3.8) and (3.9). Only the proof of (3.9) is given
in the following since (3.7) and (3. 8) can be verified

in a similar fashion.

The intertwining properties® together with the follow-
ing equalities®:
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J def“Hz(H—)e) 1 :j dAE;lﬂiz v 1

H-tie 12 H_atie
and

e + {¢
H o +H
f d,E71 25———.
- A x2€

Foo . .
=(¥) f dt exp [:t+ E(—H%M} exp <— Lleﬁ)
0

yield

dEFo (U@ y W £
_[; A + 12 (K—Ha)z T2
= (2 (QI@)* f d,EH 12

-co

1 1
XV — (a)
IZ(H—).—ie H—)\+i€)W'

Feo
— (25)-1(Qi1)9£2))* / dlEiisz

-

8 (H—lekw%e A —ie) wae
=1I(e) + L), (3.10)
where

I,(e)= (= 201> 0'“" dt
xexplt + i(H, + H,)t/e] exp(- iHt/e)W ™
and
L) = (- 20 QW@ [ at
X exp[ - ¢ +i(H, + H)t/e] exp(- iHt/ W',
I,(e) converges strongly to zero since

s-lim {exp [Z_(E;L_zﬁg.)_é] exp (ﬂ) W-('(!)

6~ +0 €

: 8 {1 z,)t

- L. — V)~ (a)> =
exp< € )eXp[l<2m1 yel| P 0
for < 0 and Q¥* pte) — 9,

The following result for [> 0,

s-lim{exp(iHt/¢) expl - ¢(H, + H,)t/e ]V QP
E=+0

—exp(ift/e) expl~ iH t/e = iG 1 (t/e) —iG®(¢/€)]} =0,
together with Corollary A.2 vields
w-Um(QMQ2)* expli(H, + H,)t/e] exp(~iHt/e)= 0

€ -+)
for t> 0. Thus L(e) converges weakly to zero, which
verifies (3.9).

IV. RENORMALIZED PLANE WAVE AND COULOMB-
PROJECTED 7 MATRICES

An inadequate formulation of the asymptotic condition
for Coulomb scattering is responsible for the breakdown
of the PP and CP forms of the half-shell T matrix in the
energy-shell limit, In this section we define
“renormalized” versions of the PP and CP half-shell
T matrices which correctly take into account the
asymptotic condition for Coulomb scattering.
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The “renormalized” plane wave-projected (RPP)
half-shell T matrix for ionization and the
“renormalized” Coulomb-projected (RCP) half-shell
T matrices for excitation and ionization are defined
respectively as follows:

(1,02 | Thpp [p0) = Limp (X py, 2, | Top @) [p)), (4.1)
(py| Ther|pD) = LimAo(eXpy | Te, (B) |3, 4.2)
(P1,P2| Thep [P1) = 1ima , €Xpy, 0. | T, (B) [p)), (4.3)

where the limit R — « is to be taken in the sense of dis-
tributions and

-1
A, 0=T l—i< mymge e, +m!eley)

lmopy — m,p, | Ip, |
Xexpi— i M M€, em my(m, +m,)
[m,p; = m P, | 2 myp, =m,p, I*

.me.ex em
P d L2124 Sy
i ™ log(ZIpllz)}’ 4. 4)

. -1
AL ()=T (1+M> exp|i Ta%ala 150 (€M N
p Ip, ! 21p, |

b, |

4.5)

. -1
Cp(e) ( imap, = m P, |

xexp d_ i —MaM2€€2 100 em,ma(mz+m2)] .
map, — m,p, | 2 lm,p; — m P, 1* )
4.6

In the following we show the convergence of the renor-
malized half-shell T matrices (4.1), (4.2), and (4.3)
to the corresponding physical S matrices for excitation
and ionization,

The S operators for excitation and ionization are
defined respectively by S, = - (1/27)WP* W!® and
Sgo=—(1/27)Q*W!*). The physical S matrices for
excitation and ionization, denoted respectively by
(P, 1S° Ip}) g8 po and (p,, P, |S* Ip})gope, exist as distri-
butions® and satisfy

(1|8 asf1) = [pa_ o P1P] () ZPIP, IS¢ [P )g 0

4.7
and
<f'sa0g1> = fE(’:Eﬂ dpldpzdp{f(Pnpz)g(Pf)(Pl;pz fsi IPDEO:E"‘
(4.8)

for each f€ S(R®) and h,=h¢,, g,=80,, h,gc SRY).
Let x,(y) be a C* function which satisfies

1 if |y|>3,
Py Pl<1, x(lyD=
0 if |y|<o/2.

Let
0 = {(f)(xuxz) l‘?s(pupz)
= X{ |2 %[z %y oy =m0, )30, 2.

for some 6> 0 where & CZ(R®)}. [ is dense in / 2(R®).
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The renormalized half-shell T matrices and physical
S-matrices are related as follows:

f . Apdp,p] f(p1, P 20D Py, P |S° D) goupe
EV=g

=Llimlim fdp,dp,dp; /p,,p,) &(p{)

€E~++*0 R
i €
XApp(€)(py, Ps | Thp(R) lpD) (E°<E*F +¢?

=1lim lim [dp,dp,dp; /(p.,p.) g®@})

€ = +0
N N €
X A& o(€) (P, P2 | Thp(R) IPDW 4.9)
and
[B dp,dp] i(p,) £1) (P, [S*|P}) g8 5o
EP=g%
=1im Lim [dp,dp, f(p,) &(py)
€ .
X AL (eXp, | TEp(R) |p]) E_E e’ (4.10)

where f< /) and 8, h e C(R*\{o}).

Using (2.1)—(2.4) together with (4.7) and (4. 8), one
can show that (4.9) and (4. 10) are consequences of the
following Riemann—Stieltjes integral representations
of the S operators:

(filS ao1) :el_“}g <(APP(€))*fl ’("-Iz/"mde:’O o

X[V1+ VWi (4.11)

) €
5y _Hm')z +Ezg1 s

(Al ) =i {(at s o7 [ ey

’ o €
XV 12W: ) mgl>, (4. 12)
and
(hy|Sqas1) = eli‘rg<(Agp(e))*hl [ f defB Q*
XV W) (4.13)

€

where g, /Y and f, e/, f,€H, h,cH® are such that
(gl €4, (A p @), €A and (Mg, () *h, € H® for
each € >0, Only the proof of (4.12) is given in the follow-
ing since (4.11) and (4.13) are verified by an analogous
argument,

Using (3.10) yields
(srernienf” qel @agry, e

€
S AT g,> (4.14)

= de((A(i;p(E))*fz 'Il(e)g1> + 7’-1<(A(i;p(€))*f2 Pz(E)g])
for g, € //'® and f, €/{ such that (AL (e))*f,€//, > 0.
The term involving /,(¢) in (4. 14) converges to zero as

€ =~ + 0 since I,(¢) converges strongly to zero. The term
involving I,(e) can be written as follows
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T AL | Lie)g,) = (- Zni)"f: dtexp(-1)
x{ exp(iHt/e) exp[— i(H, + H,)t/¢]
XQMQBAL (S, | W ¥g,). (4.15)

In order to complete the proof of (4,12), we must show
that (4.15) converges to (f, 15,42,

By a similar argument as used to verify Theorem A.1
we have

s-lim{exp(;Ht/e) exp| ~ ¢(H, + H,)t/e]QVQP

LEX 1]
X exp[ - 1G'2({/e)] - 2} =0
for each > 0. Thus for each fixed t >0

s-lim exp(iHt/e) exp{ - i(H, + Hy)t/e] QAL L)) S,

6= +0

= s-lim exp(iHt/e) exp| ~ i(H, + H,)t/e]2 Q2

x expl - iG™(t/e)) expli G (AL ),
= QL exp[iG'2(1)] (AL, )¥f,,

where (A"cp(e))*fze/f and

(4.16)

A *_ iny,m,e e i)+,
(AipeN e:-:p(——a‘—z—l—z—]mzpl " loge ) (AL L)
From (4.16) it follows that (4. 15) converges to
(f218,48:), which verifies (4.12),

V. CONCLUDING REMARKS

The usual Born approximation for ionization and the
Coulomb-projected Born approximations for excitation
and ionization have been derived from the PP and CP
formulations of the scattering amplitudes by replacing
the three-particle wavefunction ‘*’(x,, X,;p}), appearing
in these expressions, by (27)"°/2exp(ip] - x,)¢,(x,).*

This derivation is not adequate since the PP and CP
formulations of the scattering amplitudes are not defined.

Presumably these approximations can be justified by
defining formal “renormalized” series expansions for the
RPP and RCP half-shell T matrices in analogy with the
two-particle case.” For example, a renormalized series
expansion for the RCP half-shell 7 matrix for ionization
can be defined by expanding (4. 3) via the Lippmann—
Schwinger equations for §'®’(x,, x,;p,), multiplying
the result by the series expansion of Al (e} and collect-
ing all terms which are multiplied by the same powers
of the expansion parameters e e, and e,ey. The term
multiplied by e, e, is given by

lim e, [dx,dx, U.(%,,p)0(%,, p,) exp[ - (1/R)(|x, |+ |x,])]

X |%, =%, |"1(20)/2 explip] - X,) 9, (x,). (5.1)
Using the techniques of this paper one can show that
(5.1) has a well-defined energy shell limit which is given
by the usual Coulomb-projected Born approximation for
ionization.' The terms from the expansion of A{,(e)
which are divergent in the limit € =+ 0 appear in the
renormalized series expansion for (4. 3) in the coeffi-
cients of (e,e,)?, 1>1, and thus do not effect the validity
of the Coulomb-projected Born approximation. Thus if
one is willing to accept the validity of a renormalized
series expansion for (4. 3) then the Coulomb-projected
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Born approximation can be justified via the RCP
expressions for the half-shell T matrix.

The approach adopted in this paper is also applicable
to the problem of multiple ionization. One can define
RPP and RCP half-shell T matrices for multiple
ionization and show the convergence of these expressions
to the physical S matrix.

APPENDIX

We assume that H=H + V, where H, is the usual N-
particle kinetic energy operator and V consists of a sum
of two-body Coulomb-like potentials, i.e., V=73..V,.,
V=V +Vy, V= V}j + ij, V}j e [*(R?), ij e [ *(R?),
2< p< 3. The results of this appendix are also valid for
the scattering situation considered in this paper where

one particle is assumed to be infinitely heavy.

The renormalized wave operators Q¥ for N-particle
Coulomb scattering are defined by

Q48 = s-1im exp(iHt) exp[ - iHyt - iGP (1)]P®),
t

e

(A1)

where G®(¢) consists of a sum of terms connecting the
various charged fragments making up the channel §,*
Let G{®)(¢) consist of a fixed number of these terms and
set G (1) =G (1) - G{¥(1). Let the bound state wave-
function corresponding to the /th fragment, 1<l <ny,
where #, is the number of complex fragments making up
the channel 8, be denoted by n,(x;) where x,; denotes
collectively the internal coordinates associated with the
lth fragment.

We have the following technical result (see Ref, 8
for the case of two-particle scattering involving a
general class of long-range potentials):

Theorem A.1: Assume that for I=1,...,n; -
fdxl |y () |3 [P < o0
for some 8> 0 and each x; making up x,; then

s-lim {exp(iH?) exp[ - iHyt — iGE () ]F®

tet o
-8 expliGH ()]} =0.

Outline of proof: We have for a dense set of y#®
(t>0)

I{exp(iH?) exp[ - iHgt — iGE ()] P® - @® expliGLA ()]}l

+0
< du
t

.

(A2)

KV“S) _%ZL-“D expl—iHg - iG®(u)
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where V%8 =H - H,. It is straightforward to generalize
Dollard’s estimates® to show that the above integral
converges to zero as { — + .

The following result is an immediate consequence of
Theorem Al,

Corollary A,2: Suppose the hypothesis of Theorem A. 1
is satisfied and assume that

w-lim exp[iG#(¢)]=0; (A3)
$ -t
then
w-lim exp(iHt) exp[ - iHyt ~iG{®(t)] P® =0, (A4)
t g

In Ref. 2 the convergence of the N-particle off-shell
wavefunctions for Coulomb scattering to zero in the limit
to physical energies was shown to be a consequence of
the following result:

; ®) _
w-lim W' =0,
6« 40

W — (:t:)j:m dtexp(¥t +iHt/e) exp(— iHgt/e) pt#)  (A5)

The proof of (A5) given in Ref. 2 required the asymptotic
completeness of H. Corollary A.2 allows us to drop the
asymptotic completeness of H assumption, Setting
G () =G®(¢) in Corollary A.2 yields

w-lim exp(iHt) exp(-iH ) P® =0,

t~ ko

Thus (A5) is valid under the hypothesis of Corollary A,2
together with the assumptions stated in the first para-
graph concerning H.
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An illustration of the Lie group framework for soliton
equations: Generalizations of the Lund-Regge model

James Corones

Department of Mathematics and Ames Laboratory—USDOE, Iowa State University, Ames, Iowa 50011

(Received 5 April 1978)

The Lie group framework for soliton equations is illustrated. It is shown that the original Lund-Regge
model is one of an infinite family of similar relativistically invariant models that possess associated
eigenvalue problems and isospectral flows. The models are explicitly found and their associated structures
displayed. The group theoretic significance of the soliton equations and associated structures are given in

accordance with the general theory.

1. INTRODUCTION

In this paper it is shown that a relativistically in-
variant set of field equations studied by Lund and Regge’
and Lund® and shown by them to possess an associated
eigenvalue problem and isospectral flow is one example
of an infinite family of similar models. This family of
models is defined and the associated eigenvalue problem
and isospectral flows are explicitly computed. The cal-
culations in this paper are all carried out from the point
of view of a recently developed Lie group framework of
soliton equations®:* and are illustrations both of the
logic of this approach to soliton equations and the com-
putational procedure that yields soliton equations in the
Form (2.2) below with C}, #0.

Equation (2.2) is the necessary and sufficient con-
dition for the local existence of parameters (coordi-
nates) that themselves depend, for a Lie group G
(specified by the structure constants Cf,), on two
space —time points. It was pointed out in Refs 3 and
4 that (2.2) is formally equivalent to defining a
Yang —Mills field with zero field strength. Thus sol-
iton equations can be thought of as defining vector
potentials, denoted below by f%, that describe part of
the Yang —Mills vacuum. A particular soliton equation
does not describe the entire vacuum of the gauge
field associated with G since for a particular soliton
equation the f? are of particular form. In a loose sense
the soliton equation fixes the gauge. It is not clear
whether this last statement can be made precise.

The interpretation of (2.2) as defining a Yang—Mills
field with zero field strength is slightly labored since
when the Yang —Mills field vanishes the field equations
vanish without a trace, so to speak, since they reduce
to 0=0 and leave no artifact in the formalism. However
the identification has a certain heuristic value and is
quite natural from the point of view of Yang’s integral
formulation of gauge fields. **

Once the bilocal parameters of G are defined, group
actions are considered. In accordance with the general
theory® the linear group action is the eigenvalue
problem and isospecfral flow associated with the
soliton equation. Some nonlinear group actions are also
considered.

The Lie group framework for soliton equations offers
a clear and unambiguous Lie group theoretic interpre-
tation of the inverse scattering equations and has a
unique generalization when the number of space—time
dimesions is greater than two. If the framework is
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accepted in two dimensions as an appropriate des-
cription of soliton equations and associated structures,
then it follows that in more than two dimensions it
should be possible to write soliton equations in the form
(2.2)** and that the higher dimensional generalization
of the inverse scattering equations continue to be the
linear group action, i.e., of the form (4. 3) below.

The Lie group framework provides a group theoretic
interpretation of “pseudopotentials” that is incompatible
with the understanding of these objects as defining
generalizations of conservation laws, It will be recalled
that “pseudopotentials” were introduced in Ref, 5 as
generalizations of the potentials of classical conserva-
tion laws, hence the name. The most recent exposition
of this point of view can be found in the papers by
Estabrook, Hermann, and Wahlquist in Ref. 6 and
Hermann in Ref. 7. As a generalization of conservation
laws, when three dimensions are present the “prolonga-
tion structure” should be defined by 2-forms, in four
dimensions by 3-forms and so on. The reason for this
is that the vanishing of an exterior derivative of an
(N = 1)-form in n-dimensional space—time is, in
coordinates, a vanishing of the N-divergence of an n-
vector, i.e., a conservation law. Indeed Morris®
adapted, with some success, the differential-form pro-
longation ideas to nonlinear wave equations in more
variables by doing precisely this (see Hermann’s intro-
duction to Ref. 7). The present author also investigated
“pseudopotentials” from this point of view,®'!°

In the Lie group approach the “pseudopotentials” in
N =2 are elements of a representation space on which G
acts, They retain this interpretation in all dimensions,
In essence the difference in how these objects are under-
stood comes down to the observation that it is possible
in two dimensions to interpret the exterior derivative of
a 1-form as whether the specialization of the exterior
derivative of an (N - 1)-form in N-dimensional space—
time o7 as the specialization of the exterior derivative
of a 1-form in N-dimensional space—time. The
Wahlquist—Estabrook approach takes the first inter-
pretation. If soliton equations and the associated
inverse scattering equations are to be given a Lie group
theoretic interpretation the second interpretation is the
only possible choice.

The above remarks were included in the spirit of
“truth in advertising,” that is, the reader should be
clearly aware of the forseeable implications of adopt-
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ing one or another approach, Precisely because on one
hand the characteristics of solitons in higher dimensions
are obscure and on the other two dimensions has so
many special characterisitics, it is extremely impor-
tant to draw careful distinctions between interpretations
of two-dimensional soliton equations and associated
structures, if the eventual object of the investigation

is to produce a fomulation that generalizes in a useful
way, with respect to solitons, to higher dimensions.
There is, of course, no question of the logical con-
sistency, in two dimensions, of the Wahlquist— Esta-
brook approach, the Lie group approach, or most of
the other two-dimensional interpretations given in

the literature, some of which are mentioned in the
concluding section of this paper.

2. FIELD EQUATIONS AS INTEGRABILITY

CONDITIONS
Attention will be focused on pairs of real field equa-

tions of the form
©,5—5(6) +h(O©M A =0,
Mg =p(O) (X0, +26,).

(2. 1a)
(2. 1b)

Subscripts denote differentiation with respect to the
indicated variable and g(8), h(€), and p(©) are, for the
moment, arbitrary functions of ©. Clearly with ap-
propriate choices of g(©), 1{8), and p(e), (2.1) be-
come the systems discussed in Refs. 1 and 2, It will
be shown that these are but two of an infinite number
of equations of the form (2. 1) that have soliton pro-
perties.

When can the system (2. 1) be written as the integra-
bility conditions for a bilocal Lie group?* That is, for
which g, &, and p is this possible? More exactly,
when can (2.1) be written in the form

Ui -0 —curyt
?

xh e
where l, n, p=1, **°, f, C:l, are the structure constants
for an f-papameter Lie group G, A=0, 1, °*°, N-1,
and N =dimension of the underlying space—time.

(2.2)

In this work attention will be restricted to the above
question with the stipulation that =3 so that ,5,p
=1,2,3, and C}, =¢,,, where ¢, is the completely
antisymmetric tensor with €,,,=1. Further N=2 and
the space—time coordinates (which should be thought
of as light-cone coordinates) are denoted by a and g.

It is convenient to note the components of fL, H=a, B
by

fhE-Al, fh=-B, @3
and to introduce the vectors

A=(4A', A?, 4%}, B=(B', B?, B*). 2.9
With this notation (2.2) becomes

A;-B,=AXB. {2.5)

It is now required that (2.5) becomes a re-expression
of (2.1) with a suitable identification of A and B as
functions of the field variables and their independent
derivatives, these being 6, ©,, 6s, Ay, and X.. It will
become clear in this example, and it is true in general,
that the identification of the f! so that the original field
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equations are expressed in the form (2.2) is a computa-
tional problem with a well-defined line of attack. This
point was not stressed in Ref. 4; see, however, Refs.
9-12,

It is thus required that
A:A(ey ea, )‘a)7
B:B(e, Og, }‘B)’

(2.6a)
(2. 6b)

where no ©; or A; dependence is assumed in A since
this can quickly be seen to be impossible by arguments
similar to those used below, likewise with ©, and 1,
in B.

Using (2.6), (2.5) becomes
AgOpt Ag © .+ A, Moy —BeOy ~Bg Oy —Byras=AXB.

2.7
Using (2. 1) this becomes
A6, -Bo, +[g(©) - hOM,N](A, ~Bg,)
+p(0) (2, 65 + %8, )(A,, ~ By) =AXB. (2.8)

Following the computation method discussed in detail
in Refs. 9 and 11, it can be shown that A and B must be
of the form

A=0,C'+ ), A%O)+F(O),
B=6,C*+)B%©)+G(©),

(2.9a)
(2.9b)

where C! and C? are constant vectors. When this result
is used in (2. 8) and the independence of ©,, O;, A,,
and ), is used to balance the coefficients of monomials
in these quantities it follows that

CIXC?=0, (2.10a)
Gy =GxC! (2.10b)
F,=FxC? (2.10c)
F xG=g(0)(C' -C?), (2.10d)
A°XG=0, (2-11a)
B*XF =0 (2.11b)
AZXB2=—h(ONC'-C?), (2.11c)
p(O)A% - B?) - BZ=C'xXB?, (2.12a)
P(O) A% — BP)+ A2= APXCH, (2.120)

It should be noted that when 1, =x;=0, (2°10) be-
comes the full set of equations to be made equivalent to
(2.1), which itself reduces to

eaB:g(e)’

a case of independent interest.

(2.13)

It is easy to see from (2°10a) and (2-10c) that
G-G=k2, F"F=kZ,
where k, and &, are constants, Using (2°10b) and
(2.10c) and (2.104) it follows that
(F-G)y=7%g(@), (2.15)
where %= (C! =C?)-(C! —=C?), L is then not difficult to
show, using several vector identities and (2¢10a) that
(2.16)

(2.14)

g +y’g=0,
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where g’ =dg(©)/d6. The only forms of g(6) that are
possible are given by (2°16).

The system (2°10) can now easily be solved since the
general form of the solutions of (2- 10b) and (2° 10¢) are
immediate. Explicit solutions will be displayed in the
next section. For the moment it will simply be assumed
that (2- 10) are solved and that F and G are known. The
problem now is to find what, if any restrictions there
are on iz and p.

To find these restrictions note that it follows from
(2-11a} and (2. 11b) that

A*(©)=¢t(0)G, (2.17a)

B%*(©)=7(©)F (2.17)
while (2-11c) implies

trg=h, (2.18)

Now (2:12a) can be written

PG —¥F) =7 F —rF xC2=yC'xF, (2.19)
Taking the dot product with F yields

PUFGeor k) -7 k=0, (2.20)
hence

re+pr::—§ F-G ¢, (2.21)
or

e +2pr* = ZP F- G e (2.22)
Likewise

() +2pt° = 2p F-GE, (2:23)
Thus ¢

REvP=Rk2 12+ C exp (-2[° p dO7), (2.24)

It suffices to take the constant C equal to zero so that

k2 1/2
z—<k2> v, (2.25)
hence
R2\1/2 p
yz:<_L> h 2.26
ky) & (2-26)
Using this result in (2+22) it follows that
h F.G\nh
-} ==2p(1 - -. 2,
(). =2 (1~ ) ; (2.27)

Clearly either  or p can be taken independently, the

remaining function can be computed by (2.27). Here

p will be treated as independent; thus
EZC ex 2f9p(1 1 F G} do’ (2.28)
g P ) ' '

Notice that the constant C can be absorbed in a
simple equal, change of scale of x, and A, and is not
essential,

It has been shown that (2.1) can be written in the form
(2.2) with Cl,=¢u,, Provided (2.18) is satisfied and
k and p are related by (2.27). In the next section
various examples are discussed: A and B are
explicitly computed so that subsequently associated
eigenvalue problems and isospectral flows for (2.1) can
be written down., These associated structures are, as
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follows from the general theory,* the differential
form of the linear group action given by the bilocally
parameterized Lie group defined (locally) by (2.2).

3. EXAMPLES

In this section various examples of the general so-
lution to the problem of writing (2.1) in the form (2.2)
will be presented. In particular the vectors A and
B will be explicitly computed for several representative
cases. These will be used in the next section to obtain
the associated eigenvalue problem and isospectral
flow for (2.1) as a direct application of the general
theory presented in Ref. 4.

Due to (2.10a) it is possible to introduce a constant
vector C such that C'=aC and C2=bC. With this
notation the general solution to (2.10b) and (2.10¢) is
given by

F=F'O)+c,C, (3.1a)

G=GY(6)+c,C,

where F! and G* are orthogonal to C. It is convenient
to introduce a coordinate system at this point and
sufficient to let ¢, =¢,=0.

(3.1b)

Let

c=(0,1,0), (3.2)
and write g(©) in the form

£(©) =g, exp(iy®) +g, exp(~iyO). (3.3)
The appropriate solution of (2, 10b) and (2. 10c) is
F = (b, exp(ibO) + b, exp(~ ibO), 0, —ib, exp(ibO)

+ib, exp(- ib6)), (3.4a)
G =(a, exp(ia®) + a, exp(-ia©), 0, —ia, exp(ia®)

+ia, exp{~ia©)). (3.4b)
Due to (2.10c¢)

b, = —%vgl, (3.5a)

azby =578, (3.5b)
where, now, y=a -b. Clearly

F*F=pl=4b,b,, (3. 6a)

G G=k2=4a,a,, (3.6b)

kiki=4v%g.g,, (3.7

2 252

%:i—%}iﬁ;- (3.8)
Further,

F'G=-g'(0). (3.9)

Notice that %2kZ is independent of the integration
constants a,, a,, b,, b, due to the constraint (2.10d),
Equation (2.28) now becomes

1

)
pO) 1 +—
2yVgige

h
—=cexp -2 g'©’) de' . (3.10)

It is now possible to write A and B explicitly, using
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(2.9), (2.16), (2.17), (2.25), (2.26), (3.3)—(3.5), and
(3.8). In particular the components of A and B are:

A=t (z60) i TR AN 174
=b, exp(ih0) + b, exp(—ihO) —ix, %2 (g.82)
£ . 8o .
X{ = expl(ia©) — 22 exp(-iab) ), (3.11a)
b2 bl
A2=q0,, (3.11b)
1/2
A*=—i{b, exp(ibG) - b, exp(-iDO)) - ), (ﬂ)—é%&}i)
X (glgg)'l/4<% expl(ia©) +‘-g—2 exp(— ia@)) X (3.11c)
2 1

1/2
Bl— (% q0) 82 3 vh
i ( exp(ia®) exp(—ia6)) + g S2b.5,

2 \b, by
X{gg) (b, exp(ib©) + b, exp{ - ipO)), (3.123)
B =bo,, (3.12b)
1/2
gBo_Y& o)+ 52 . . vh
2<b2 explia6) b exp(-ia®) -ix, _—Zgblbz
X (g0 (b, exp(ib6) — b, exp(—~ibO)). (3.12¢)

Notice that up to this point all expressions derived
were symmetric in the @’s and b’s reflecting the sym-
metry of (2.1) in & and 8. In (3.11) and (3. 12) an asym-
metry is introduced by solving (3.5) for «,a, in terms of
b, b,. The reverse could obviously be done. Further,
notice that (3.11) and (3. 12) depend on fwo free para-
meters b, and b, which arose as integration constants of
(2.10b) and (2. 10c).

Several specializations of (3.11) and (3.12) are of
interest. By far the most important, given the current
status of inverse scattering-solition theory, is the
case when H =0, a=y, and b, =~-D,=7. In this case:

1 yh\'/? “1/4,.(¢
A==ty ) @82 2(0), (3.132)
Azzyea (313b)
3 ; h \'*? -1/4 51
AP=-2in+), o (g2, gM®), (3.13¢)
y 1
B'=3 -4), (3.14a)
BZ=0, (3.14Db)
o1 yh\1/?
B=—ig— ¢'©0)- eY (E) (621, (3.14c)

It will be shown in the next section that the linear
group action of G defined through A and B given above
are the eigenvalue problem and isospectral flow as-
sociated with (2.1) subject to (2. 16) and (2.27). It is
interesting to observe that even when the full two-para-
meter freedom in (3.11) and (3.12) is not used, i.e.,
the restriction b, = - b, is employed, a tremendous
amount of information about (2.1) can be gained from the
linear group action through the inverse scattering
method. What, if any, additional information about (2.1)
might be gained by not relating b, and b, is an open
question.
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It should be observed that solving for b, and b, in
(3.5) using the result in (3.11) and (3.12) and specializ-
ing to a=0, b=-v, together with a; = - a, would
yield a representation which is “isospectral” in the «a
direction.

The nonlinear group action associated with a
symmetric specialization of (3.11) and (3. 12) yields an
interesting observation about the Bicklund transforma-
tion for the sine-Gordon equation, Suppose in (3.11)
and (3.12) that g(©)=3 sin2@© anda=1, b=-1,
by=b,=1n, and x, =x,=0, then:

A'=2471cos ©, (3.15a)

Ar=e,, (3.15b)

A*==24n sin O, (3.15¢)
i

Bl:g;?— cOoS 6, (3.163.)

B*=—_0,, (3.16b)

B*== sin ©. (3.16c)

8n

The relationship between this representation of the
sine-Gordon equation, the nonlinear group action of
G and the Backlund transformation for sine-Gordon
will be discussed in the next section,

4. GROUP ACTIONS

In the previous sections it has been shown which
equations of the type (2.1) can be written in the form
(2.2). In group theoretic terms (2.2) is the necessary
and sufficient condition for the (local) existence of a
bilocal parameterization of a Lie group. The next step
is to consider linear and nonlinear group actions of the
group. This is now done.

In the general theory the infinitesimal form of the
group action is given by

9g*(x)

o (4.1)

= fr0)X2(q)

(see Ref. 4 for a detailed derivation), where the ¢* are
elements of the d-dimensional representation space
Q, a=1, -+, d. The Xi(q) satisfy

0Xe

axe N
Wy X =5 p X=X g p =Ch X5, @.2)
In the case of a linear group action
Xe(g)=14°, 4.3)

where the matrices I,, with matrix element I§,, form a

d-dimension matrix representation of the Lie algebra
of G so that

LI, —LL=ChI . (4.4)

Consider the case when C}; =¢,,,, f=3. Futhermore
let d=2. Clearly the matrices

i101 110 -1 111 0
11:5[10],1225[1 0],’3‘2[0—1],

satisty

4.5)
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(I.,1]=¢,,1,. (4.6) when (2.5) is satisfied. [Recall the sign convention of
ir’y g1 . (2 3) ]
I 1=(I,,1,,1,) and @ = (3:{%:8)), (4.1) specializes
When (3.11) and (3.12) are specialized to (3.13) and
§=-A13, §=-B-13, 4.7 1 (3.14), {4.7) becomes

28 h\1? - ¥ i yh
o (mg) O 5oy
aaﬂ_
i h\1/? -1/ ixa {0\
gea - Eka (;ié) (g1gz) g(e)7 ‘f(@)
1 i, [2yR\ 172 - y 1
—_ B fare 1/¢ _ L
an g'(e) g( g) (glgz) » T4 g g®)
és:‘ 1
1 23
-3 5 £© A

The free parameter 7 plays the role of the eigenvalue in
(4. 8a). When A, = ;=0 the eigenvalue problem and
isospectral flow for (2, 13) and (2, 16) is recovered;
when g(6) =% sin 20 and p(6)=(sin © cos ©)™, (2.1)
becomes the Lund—Regge equations with % given by
(3.10), and (4. 8) are the eigenvalue problem and iso-
spectral flow derived by them. The eigenvalue problem
and isospectral flow for (2.1), subject to (2.16) and
(3.10) for g(®), (&), and p(©), follows by direct
substitution. The two “singular” cases y=0or g,,=0
can easily be treated in exactly the same fashion start-
ing with (2.10)—(2.12).

"he nonlinear action of G is closely connected with
the conservation laws for the system (2.1). To see this
consider a nonlinear action of G on a one complex
dimensional representation space ¢, and let the genera-
tor functions be given by, say,

Xl(q):iq> Xz(q):%(l"”qz), Xa(q):

S-g). (4.9
Since d =1 the upper index on the X} is suppressed.

Notice that when d=1 and Cjk:e (4.2) becomes

ijk?
0X; oX
_f’_q‘Xf"Xi—ajzeian (4.10)

and that the X, specified by (4.9) satisfy (4.10). In
accordance with (4, 1) the infinitesimal nonlinear
group action is given by

qgu=—-A°X(q), ¢qs=-B-Xlg),

where X=(X,, X,, X,) and A, B are given by, say

(3.13) and (3.14), An asymptotic expansion of (4,11)

in powers of 7, following Ref. 13, gives (in the by now
usual way) conservation laws associated with (2.1), It
would be of interest to use the full two-parameter
freedom in (3.11) and (3. 12) together with the generator
functions (4. 9) to explore the conservation of {2.1) or
even its reduction the sine-Gordon equation.

(4.11)

Another nonlinearaction of G that is of interest is that
associated with the generator functions,

X, (g)=ising, X,(¢)=1, X,(g)=icosq, (4.12)

These again satisfy (4.10). If 1, =;=0 and the repre-
sentation (3.15) and (3,16) is used, (4.11) gives
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1/2 N
) (2,2,)™/15(0)
5’ (4. 8a)
/2 ,
(glgz)-l/'*g (©)
-
g. (4. 8b)
2y h\ /2
(3) "
I gu=-0,-27sinE -q), (4.12a)
s =6, + - 5in(6 +¢). (4.12b)

8n

This is the Backlund transformation for the sine-Gordon
equation. At this time it is not clear how to generalize
this construction for (2.1) when 2., » #0. It appears
that in the general case the surface given by the
(naturally coordinatized) nonlinear group action is not
again a solution of the integrability conditions for the
existence of the bilocal group parameters, i,e., the
soliton equation, as in the case for the sine-Gordon
equation.

It might be remarked parenthetically that from the Lie
group point of view Backlund transformations are gauge
transformations. Why ? First recall that (2.2) can be
thought of as F =0, where F* is the Yang—Mills field
strength. '* Take one solution of {2.1). This defines a
vacuum configuration of the gauge field associated with
Cl,=¢,,, via the f; defined by (2.3) and, say, (3.11)
and (3.12). A second solution of (2.1) defines another
configuration in the same way. Now all vacuum states
are pure gauge terms and hence (to within possible
problems of singularities) can be reached, one from
another, by a gauge transformation. Indeed, in
principal, solutions of two different equations with the
same gauge group, i.e., (2.1) with », =2,=0 and with
Ays A#0, can be connected by a gauge transformation.
This point of view thus provides at least a theoretical
unity for all equations with a given gauge group, i.e.,
all equations integrable by the generalized Zakharov—
Shabat (AKNS) eigenvalue problem and isospectral flow
since these have the same gauge group.® Whether this
point of view has any computational impact remains to
be seen,

5. DISCUSSION AND CONCLUSION

It has been shown that (2.1) subject to (2.16) and
(3.10) has an associated eigenvalue problem and iso-
spectral flow, The calculations illustrate a recently
proposed Lie group framework for soliton equations. **
In particular they illustrate the computational method
used to “inject” a given partial differential equation into
the group theoretic framework. However, it must be
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pointed out that the computations were simplified by
assuming a given set of structure constants in Eq. (2.2),
i.e., Ci =¢,,. In general part of the computation
involves finding these structure constants, a nontrivial
task, This problem will be addressed in a subsequent
paper.?® Further it should be pointed out that only
non-Abelian groups are of interest, i.e., C;p¢ 0.1

The Lie group framework for soliton equations
illustrated in this paper was formulated after a detailed
study of pseudopotentials and prologation structures,®™'?
It was shown in the Introduction how the Lie and
pseudopotential ideas diverge. Various other geometric,
as opposed to group theoretic, approaches have recently
been compared to the Wahlquist—FEstabrook approach.®
The relationship between these and the Lie approach
will be discussed elsewhere,
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Time-reversal noninvariance of the quantum-mechanical
kinetic equation of Kadanoff and Baym?

Zlatiborka A. Nikoli¢®

Sektion Physik der Universitat Miinchen, Miinchen, Federal Republic of Germany

(Received 3 October 1977)

Applying anticausal Green’s function technique, it has been shown that the origin of time-reversal
noninvariance of the quantum-mechanical kinetic equation of Kadanoff and Baym lies in the selection of
the boundary condition that the system be in thermodynamical equilibrium at time ¢t = — .

1. INTRODUCTION

Kadanoff and Baym! have developed the Green’s func-
tion approach to derive the quantum-mechanical kinetic
equation which, successfully describes the irreversible
phenomena in nonequilibrium quantum systems. But the
weak point of the Kadanoff and Baym method is that they
tacitly pass over the question of the origin of time-re-
versal noninvariance of the resulting kinetic equation.
However, having the view that this equation is derived
starting from the equation of motion for the one-parti-
cle causal Green’s function (GF) which is invariant un-
der time-reversal operation, this question arises by
itself.

In order to provide an answer to this question we have
considered a time-reversed situation described by anti-
causal Green’s functions which represent time-reversed
solutions of the corresponding equations of motion for
the causal GF.

In order to derive the close equation of motion for the
real-time one-particle causal GF from the close equa-
tion of motion for the complex-time one-particle causal
GF Kadanoff and Baym have used the method of analyti-
cal continuation, assuming that the system was in
thermodynamical equilibrium in the remote past, and
that it was taken from it by switching in the external
field at time = — =,

To investigate whether this assumption violates time-
reversal invariance of the initial equation, we have
derived, from the equation of motion for the imagi-
nary-time one-particle anticausal GF, by the method
of analytical continuation, the closed equation of motion
for the real-time one-particle anticausal GF. We had
to use the boundary condition that the system lies in
thermodynamical equilibrium in the far future, i.e.,
at time /I =+ 00,

We have shown that this equation cannot be derived
from the equation of motion for the real-time one-parti-
cle causal GF upon Wigner time reversal, which proves
that the latter is time-reversal noninvariant.

To prove the boundary condition, that the system lies
in thermodynamical equilibrium at time ¢ =~ %, pre-
determines the irreversible motion of the system
towards equilibrium in the future, we have shown that
the substitution of this boundary condition by the “anti-

#This work is a part of the author’s Thesis ,
Munchen (1976),

YPresent address: Pedagogical-Technical Faculty,
Zrenjanin, Yugoslavia.

University
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causal” boundary condition, i.e., the condition that the
system is in equilibrium at time { =+ «, yields the
“quantum-kinetic equation” with the erroneous sign of
the collisions term.

2. DEFINITION, DOMAIN OF ANALYCITY,
AND EQUATION OF MOTION FOR THE
THERMODYNAMICAL COMPLEX-TIME ONE-
PARTICLE ANTICAUSAL GREEN'S FUNCTION

The thermodynamical real-time one-particle anticau-
sal GF will be defined as a thermodynamical average of
the antitime ordered product of field operators,

BH = )] [Ty (x, )P4 (x,, ¢ )1}
Triexp[ - B(H - uN)]}

Tr{exp[-

G(rt, r ) =i

(2.1)
where T is the antitime ordering operator.

The extension of definition (2.1) to the complex-time
domain can be derived by using the same assumptions
used by Mills. ? We get for Im? < Imf,

Tr{exp BH, Ju(0, (s, t)d" (4 ) ,13)}
Tr{exp[ BH Ju(0,4p)}

G(t, t) =

(2.2)

where the operator u represents the inverse of the cor-
responding time-development operators.

The so defined anticausal GF is analytical on the
imaginary segment [0, +i8] and could be written in a
shorter form,

0y TISuOuE)D
Glt, t,)=i as (2.3)
where the operator S is defined as
S =u(0,if) = {exp[ zf: ar Hm(t')]}. (2.4)

Starting from the equations of motion for field opera-
tors in the Heisenberg representation we have derived
the equation of motion for the one-particle anti-causal
GF:

<a
ot

>G(1 17)

=6(1" = 1)¥ [ dr,o(|r, - 1,])G,(1 27 1/ 27) |, ey

(2.5)
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3. DEFINITION OF THE ANTICAUSAL GF FOR A
SYSTEM IN THE PRESENCE OF THE SCALAR
POTENTIAL AND THE CLOSED EQUATION OF
MOTION FOR THE IMAGINARY-TIME ONE-
PARTICLE ANTICAUSAL GF

Let us consider a time-reversed system in the
presence of the scalar potential U(r, ). The external
field can be observed as a time dependent perturbation
which starts to act on the system which is in the thermo-
dynamical equilibrium. For that case it can be shown
that a nonequilibrium anticausal GF has a form

TSy )]

G(1,17:0) =i w2 i A 3.1
(1,150) =i D (3.1)
where the operator S is now defined as

~ -0

S:exp[—i}iﬁ d2ﬁ(2)U(2):|, (3.2)

In order to get rid of the two-particle anticausal GF
in the equation of motion for such a GF we use the func-
tional derivative technique®* and we get

5 v
i + —L
[l of, " 2m

0 -~ —_ ~
+f Az (1,1 06(1,1;U)=6(1" - 1).
ig

—U(l)] G(1,17;U)

(3.3)

Equation (3. 3) represents the closed equation of motion
for the imaginary-time one-particle anticausal GF be-
cause, in principle, anticausal self-energy Z can be
expressed by means of the one-particle anticausal GF in
the approximation of any order.

4. ANALYTIC CONTINUATION TO REAL
TIMES AND DERIVATION OF THE CLOSED
EQUATION OF MOTION FOR THE REAL-
TIME ONE-PARTICLE ANTICAUSAL GF

In order to get a closed equation of motion for the
real-time one-particle anticausal GF from (3.3), we
will proceed in the following way:

Let us define the anticausal GF for a system in the
external field on a complex segment [¢,, 1, + i8] as

G(1,1%U3t,) =i T—[Sf—(T%%—(—lﬂ (4.1)
where
S=ulty, t,+ip)=T {exp [- i f,:inz ﬁ(z)U(z)]}. (4.2)

For the case Imf,>Im/y (4.1) can be written in the de-
veloped form

; lty, )V (t) vy, 1) U0 (6, 8+ EB))

> 1T e ) —
G (1,15U51) == (olty, t, +16))
(4.3)

We define the anticausal GF for real-time arguments
for the system in an external field as

21,173 U) = i(T [, (1D} (1)).

Let us assume that the observed time-reversed sys-
tem lies in thermodynamical equilibrium in the future

(4.4)
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and that the external field starts acting at the moment
ty=+ . For such a system, for the case Im¢, > Imiy,
definition (4. 4) becomes

£, 15 0) = £iu(oe, 1, W (6 Yoty , )00, ), (4.5)
where time-development operators v act in the negative
sense of the real-time axis.

The integral path represented by the segment
[#4 £y +4B] can be deformed, because the functions under
the inegral sign satisfy the Cauchy theorem, so that
arguments #; and {;, lie on a negative part of the real-
time axis retaining the order they had at the original
integral path (Fig. 1).

If we let {; ~ + < under the assumption that
lim, . ov(fy + 7€, 1)+ if)= 1, and applying the group
property of operators v, we get

lim G511, Us ) =2=(1, 1;0).
ot

(4.6)

Thereby we have proved that the anticausal GF for
negative real-time arguments is an analytical continua-
tion of the anticausal GF with the positive imaginary-
time arguments. For the anticausal GF defined on the
segment [, £, + i8] in the case when the interchanging
term is neglected in the Hartree-Fock term of self-
energy, the equation of motion has the form

Z ~ ~
[i a%+ % ~ Tl to)]G(l, V;U;t)
ty

=6(1'"-1) - dis

tg+is
Let us now seek the limes of (4.7) for the case
fy—+°, when the integral path in (4.7) is substituted
by the integral path from Fig. 1. In the case i#;|>1#.1,
we get by means of Eq. (4.6) the equation

; _a__ + l%
! o8ty 2m

ty
:f dA[E(, 1,0 -2Q,1;0]3(1,150)

AL LUi) G, 15U, (4.7

- ﬁm(l%gﬁ(l, 1:U)

t1s
_f diz>(1,1; 0lg>d, 17;0) -2>(1, 1; 0)] 4.8)

o«

which, together with the corresponding equation for
g* represents the close equation of motion for the
real-time one particle anticausal GF.

tot if

ty ty

FIG. 1.

Zlatiborka A. Nikoli¢ 2438



5. PROOF THAT THE EQUATION OF MOTION FOR
REAL-TIME ONE-PARTICLE CAUSAL GF IS TIME-
REVERSAL NONINVARIANT

If Wigner time-reversal® is applied to equation KB
(3.2b) (the KB denotes that the equation is from Ref. 1),
i.e., if we first exchange the arguments 1=1’ and
afterwards perform the complex conjugation of the
equation, we get

2 9 B
[? oty * 21;7] ¢(1, 1)

=6(1" - 1)?2"/ dryp(|ry -, |) 52(12'; 1727} |52=t1 .

(5.1

Equation (5.1) is equivalent to the Eq. (2.5), i.e., to
the equation of motion for one-particle anticausal GF
which is derived on the basis of the definition of this
function. Since we have shown that this equation can be
derived from the equation of motion for one-particle
causal GF upon the Wigner time-reversal, it could be
concluded that the anticausal Green’s function defined
here represents the time-reversed solution.

In the same way we can derive Eq. (3.3) from KB
(5.22) which means that Eq. KB (5.22), i.e., KB
(8.16a) is time-reversal invariant,

When we exchange the arguments 1=1’ in XB (8.28a)
and when we perform the complex conjugation of the
equation we get

2 ~ ~
<z' 565 DI U,ff(1)>g>(1,1';u)
tq ~
:/ A, 1 v) - 50, L0 d, 17:0)

-t

t1+
—f (L1 0[P, 150) - 541, 150)]. (5.2)

~20

The comparison of Eqs. (4. 8) and (5.2) shows that
they are not identical because lower bounds of the inte-
grals over time in them differ. Therefrom it follows
that Eq. KB (8.27a,b) is time-reversal noninvariant,
The difference in the lower bounds of integrals stems
from the different boundary conditions under which
these mentioned equations were derived. From the
foregoing it follows that the origin of time-reversal
noninvariance lies exclusively in the boundary condition.

6. DERIVATION OF THE QUANTUM-MECHANICAL
“ANTICAUSAL KINETIC EQUATION” AND THE
QUANTUM “ANTICAUSAL BOLTZMANN EQUATION"

Since the quantum-mechanical kinetic equation KB
(9. 30), describing the irreversible motion of the system
tending to the equilibrium in the future, could be de-
rived from Eq. KB (8,27a, b) it could be expected that
a similar equation could be derived from (4. 8) which
would describe the irreversible motion of a time-
reversed system towards equilibrium in the past.

When we assume that U(r, ¢) varies slowly in space
and time, 2> are slowly varying functions of the co-
ordinates R=(r; +ry)/2, T=(#+#.)/2, but are sharply

2439 J. Math. Phys., Vol. 19, No. 12, December 1978

peaked about zero values of r=ry-1ry., t=¢1-#.. By
means of these new coordinates we define
2, ;R T U as

P, w;R, T U)
= f_: dr f.: dt exp(—ip_* r+iwl)

x[+(1/)&(x, 1R, T;1)] 6.1)

which can be interpreted as the particle density with
the pulse p=-p and by energy w in the space—time
point, R, T_<0 of the time reversed system. There-
from stems the definition of the corresponding distribu-
tion function

dw

fahadipeS ). T
o g(p-,(—’—yR; J.

Ap,R,T)= (6.2)

If the corresponding adjoint equation of motion is
subtracted from (4. 8), inserting the new coordinates,
and by means of defining (6.1) upon a lengthy trans-
formation, we get the equation

d p_° VR ~
[E_T: + . - VRUQH(R, T_) . Vp_ +

)~ 2
(7_T_: Ueff(Ry T ) '——-]

xg (p., w; R, T)
2., w;R,T)> (p., w;R, T.)
-3(p., w; R, T)Ep_, w;R, T) (6.3)

which describes time reversal of the original process
described by Eq. KB (9.7). Therefore, we shall call
it the “anticausal kinetic equation.”

From this equation, under the same assumption
used by Kadanoff and Baym, the “Boltzmann equation”
can be derived relevant to the time-reversed system.
It has the form

J R v ~ ~
[-ﬁ_ v BT o @, T v,_]ﬂp_, R,T)

= dp. dp. dp.
@@)° @n) (28)°
2 22 o2 12

2m 2w  2m 2m

@u) o(p.+p.-p.- L)
) olp. - p) 30(p. )]

<{F1ef 1 7 =[P 12 71770

where

F'=Fp.,R,T), F=F(.R,T), 7 =F(B,R, T.).
Equation (6. 4) differs from the quantum-mechanical
Boltzmann equation KB (9. 16) only in the sign of the
collision term.

7. DISCUSSION

Kadanoff and Baym have derived the quantum-
mechanical kinetic equation using the boundary condi-
tion that the system was in thermodynamical equilibrium
at time /=- >, Through action of the external fields
the system is removed from its equilibrium state and
brought to some arbitrary state at time /. The dis-
tribution function which represents the solution of the
quantum-mechanical Boltzmann equation is at moment
¢ determined by the external field which acts on the
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system until that moment, i.e., its satisfies the
causality condition. ®

In Sec. 6 we have seen that if the boundary condition
was chosen so that the system lies in thermodynamical
equilibrium at time / =+, then the “time-reversed”
situation results, which implies the “Boltzmann equa-
tion” with negative collision term. The solution of this

equation represents the distribution function of the time-

reversed system which at moment / depends on the ex-
ternal field acting on the system upon moment /., This
obviously contradicts the causality condition.

Consequently, in the Kadanoff and Baym method the
difference between the causal and anticausal behavior
of the system can be established only upon the selection
of the boundary condition and irreversibility appears as
a consequence of the causality condition.
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Tensor spherical harmonics on S2 and S® as eigenvalue

problems?
Vernon D. Sandberg®
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Tensor spherical harmonics for the 2-sphere and 3-sphere are discussed as eigenfunction problems of the
Laplace operators on these manifolds. The scalar, vector, and second-rank tensor harmonics are given
explicitly in terms of known functions and their properties summarized.

The analysis of scalar, vector, and tensor wave equa-
tions on the manifolds S? and S* is greatly facilitated by hav-
ing a set of basis functions that reflect the symmetries and are
eigenfunctions of the Laplace operator. The use of scalar .$?
harmonics in multipole expansions of electrostatic fields is
probably the most well known example;' but cosmological
pertubation,? stellar pulsations,** and scattering problems

TABLE I. §* tensor harmonics.

also make use of multipole expansion using the vector and

tensor harmonics as well. In this paper the $? and $° harmon-
ics are approached as eigenfunction problems (based on an
analogy with the discussion of .S? harmonics by Thorne and
Compolattaro* and the discussion of $* harmonics by Lif-

shitz and Khalatnikov®) with an emphasis on explicit solu-
tions, summarized in Tables I and II. These harmonics will

Yoo=1 ¥, =sin’0
Scalar:  yUm
Vector:  ¢{™ = Y""”

amy _ o byUm
¢, =€," Y},

Tensor: 7™ =Yy .

(Im) Yﬁz’1 +%1([+ l) Y(Im)}/

xS Cim) _ Y(Im)

BN =N +84)

i
€¥=—"r €,

" sing’

VYU =1+ 1) Y9

VU =[1—1(+1) [¢, ™

Gy =—10+DY'"

ViU =[1-10+1) 14,

(Urm)
Gy« =0

Ve =10+

m} 1
nagey =g

Y

le;’n) y ab zzy(lm)

T =4I+ 1) JpUm

YUyt =12-1(+1) ] ™

vy =0

VX ap=—10+ D)y
(al':;)yb ¢(Im)

{m) ., ab _
Xab V =0

v¢(lm) — [4 1(l+ 1) ]¢(Im)

oy =42-10+1) 1g ™

()
Uyt =0
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Orthogonality relations
d*f2=sinf d6 dp O0<B<m, O<@p<lr

fd{{) Y. Yl-sn' =6,

é

mm’

J‘dz{l wirr:w;l’n:‘ 7/uh :1([+ 1)5 ]/‘5 o

fdzﬂ ¢y =1+ D)8 48

[2a wint peyr=

~28,8

mm'

szg wlm 'ln. }/W}/bd:[([-}—l) [%[(1+1)_1]5115mm

[aa xixir vey=25,8,,

deﬂ élm :‘ljlnylu‘y :[([+ 1) [%

All other products vanish, e.g.,

[#a vl o,

1A+ =118 16

etc.

The completeness of these functions follows from the completeness of the scalar harmonics
S YU (6,e) Y8 .9)=8 (cosb—cost)S(p—¢")

Lm

TABLE II. §* tensor harmonics.

- .
g =1 guw=sin‘y, g, =sin’y sin’g,

Scalar: Y (v.0.¢) Ay —

Vector: A ¢ :(O,Sin” Ly CU P (cosy)d " (B9 ))

—ein? 1
€0, =Sin’y sind

7n(n+ 1) Y(nlm)

Bi,’""”:(—l(/—}-l)sin’ ‘XC(”I‘,”(COSX) Y“”"(@,w)—a\/[sin”‘x Elloll)(cosx) ]w(lrrz)(9¢))

2001 172
Clmm = (2 (’(7 ++11)(+nl_'§)1(1!)z) " (3 (sin'y CY1 D (cosy)) Y (6,9)
m\n

B =€ A
C(nlm) Y(rvlrn) »
A4 =[1—n(n+2) 140"
4B =[1—n(n+2) 1B™
ACY =[2—n(n+2) JCI

B _ B _
A8 =8B .;8"=0

Cop8 ™ =—n{n+2) Y

sin'y €V P (cosy) 4 (B.)

A (i) __1 (nlm)
Tensor: A (nhn) =14 Exnzm +4 (nlm)) A =1e aﬁBu
B (o) __ 1 " (nim)
B =4(B ., +B s B =—3[14+n(n+2) 1" 44,
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C(nlm) Y(:;IM)+ n(n+2) Y(nlm)

D (nim) _ Y(nlm)g o8
G(nlm) Y(nlm)eﬂ af
{(nlm) _
EY™=0
Egim =sin'y C* ) (cosy) 4™ (0.p)
2

a ..
E(nlm) - SlnI+2 Cf,lfl) (COS ) ]¢ E;IM)(Q’ )
ab ’[2_1(1+——1)] —81’ ( X ! 24 b @

FUim = [+ sin' g € (cosy) Y (0p)

Fim = —cscy ai[sin x CU* ) (cosy) 1 "™ (6,p)
X

FOim —4(14-1) sin’y C9=P (cosy) ¢ & (6,9 )+ [ sin’y C {2 (cosy)

2 (‘92 a-p
o (si C4=) (cosy)— cot,y— (sin'*
[2=1(+ D) 1\dp “x oy
F("I’")—l[Ea#‘ “'+E/5'u;vea“v]

Eigenvalues:
44 p=[5—n(n+D.p AD ;=—n(n+2)D 4
A4 g =[1—n(n+D Mg AE ,=[2—n(n+2)E,,
4B 5= [5—n(n+2)]B.z AF 3 =[2—n(n+2)IF,,
AB 5 =[1—n(n+2)Bg AG s =[2—n(n+2)]G.,

AC 5 =[6—n(n+2)]C,p
Divergence conditions:

A5, 8" =3C—n(n+2 4,
B 5, 8" =4(3—n(n+2)) B,

Capr 8" =2G—n(n+2)C,

DaB:YgBy:Ca

E =0

apir8
F aBy 4 By =0
Trace conditions:

A .58 aﬁ:Baﬁg s =C 58 i =E 58 P =F 58 @5 =0

D aﬂg aff — 3 Y(nlm)

cu-p (cosx)))]tﬁi,,’,'"’(ﬁw)

be used in a separate paper to discuss perturbations in space—
times with these symmetries.

We use the conventions of Ref. 1 for the scalar $* har-
monics and the conventions of Ref. 5 for the Gegenbauer
polynomials. We denote three-dimensional covariant de-
rivatives by a sernicolon, two-sphere covariant derivatives by
a vertical line, represent the two-sphere metric by 7 , , the
three-sphere metric by g ,,, and define the sign of the curva-
ture tensor so that the Ricci identity is given by

- “
VG;B;V - Va;?’;ﬂ - V#R aBy
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Greek indices run from 1 to 3 and denote three-sphere indi-
ces, Latin indices run from 2 to 3 and denote two-sphere
indices.

The manifold S® is characterized by its metric

ds’=g,, dx" dx* =dy*+sin’ y(d6*+ sin’0 dp?) ,

where the coordinates x* =(y,8,¢ ) have the domains
0 <y <m, 0<8 <7, and 0 < ¢ < 27 with the usual polar sin-
gularities at 0 and 7. The sufaces y =const are conformal to
S? [described as above with the coordinates x°=(6,¢)]. The
S* harmonics are the tensorial eigenfunction solutions
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T to the equations

afey

4 Top.y ETaB"-V:u;ng =a TaB-—-r ey

that are regular on S* and have eigenvalues A. The S? har-
monics satisfy the obvious, similar conditions to the above.

At this point it is convenient to restrict consideration to
the §? harmonics and review the scalar, vector, and second
rank tensor solutions of Ref. 4. The scalar harmonics are the
well known Y " (,p ) listed in Ref. 1 and these form a com-
plete basis for scalars on $% The tangent space to a point on
S$? is two-dimensional, to span it we need two linearly inde-
pendent solutions to the vector form of Eq. (1). These can be
obtained from the gradient of the scalar harmonics ( ¢ ¢™)
and the dual of the gradient (¢ Y™) (see Table I for defini-
tions) (since the space is two-dimensional taking a vector’s
dual gives another vector). That the gradient ¢ , is a solution
to the vector form of Eq. (1) follows from Ricci’s identity

Y,alblc ,ybc =( Y.Mc 7/bc),a +YdR Zacybc

=[1-1(+D]Y,,
where (for S7)

R abed =V ac¥ bd =Y aa¥ be-

That the dual vector ¢, satisfies the same equation with the
same eigenvalues follows from the vanishing of the covariant
derivative of the Levi—Civita tensor. Under the improper
transformation &' =7 — 6, @' =@ + 7 which corresponds to a
coordinate inversion ¢, transform as a polar vector and ¢,
transforms as an axial vector, hence they are called even and
odd parity vector spherical harmonics, respectively. For sec-
ond rank tensors the space is four-dimensional and can be
spanned by a skew tensor y,, and three symmetric tensors
W aps ¥ ap»and @, defined in Table 1. These satisfy the ten-
sor form of Eq. (1) from arguments analogous to the vector
case. The point to be made here is that all the $* harmonics
can be constructed from a knowledge of the scalar S* har-
monics, but thisis not the case for the $® harmonics as will be
shown below.

The dimensionalities of the tensor spaces over S° com-
plicate the previous analysis as can be seen by a count of the
number of independent solutions to Eq. (1) as a function of
the rank of the tensor. For scalars there is one set of functions
Y '™ (y,0,¢ ). For vectors there are three linearly indepen-
dent harmonics. In three dimensions we cannot use the trick
of using the dual of a vector harmonic as we did on $?, but we
can use a generalization of this idea and use the curl of a
vector to generate a linearly independent vector. In three
dimensions there are two main types of vectors: divergence
and curl free. The latter is exemplified by the gradient of the
scalar harmonic

Y(nlm) (2)

Two other vector harmonics 4 /™ and B ™ can be found
by imposing the divergence condition

A 8 =0, &)

C (nlm)
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solving for 4, from
Ad , =24, 4)

and forming the third vector from B, = —(curld ),, (obvious-
ly B, is also divergenceless). The vectors 4 /™ g ¢im)
and C (™ form an harmonic basis for the three-dimension-
al space of vectors on S°. The second rank tensors on S* for a
nine-dimensional vector space so we need nine independent
tensor harmonics to span it. Two candidates come from the
scalar harmonics

DG =Y (58 up (5)
and

C(nlm) Y(nlm) +. | n(n+2)Y(n1m) B (6)

[n.b. these are symmetric tensors and C {3™ g *# =0]. Two
more come from the divergenceless vectors

A (nlm) A Szn;;gm)’ (7)
B gg"“ =By, ®)

These can be further decomposed into symmetric and anti-
symmetric tensors:

A (nlm) 1(A A (nim) +Zg""')) , )]
B E:/)l‘m) :l( B B (nim) +§gzm) , (10)
y ([:,l//,;,l) IB ("[m)G();ﬁ’ (1 1)
B — A1 4n(n+2) |40 e, (12
and
G i) —g vy (i, (13)
where € .5, is completely antisymmetric,
with
€,,3=sin’ysinf and €, =sin’ye,,. (14)

The antisymmetric tensors arises algebraically from the vec-
tors while the symmetric tensors come from the covariant
derivatives of the vectors. To find two more independent
harmonic solutions we impose tracefree and divergenceless
conditions on a symmetric tensor E,,zand solve Eq. (1) with
these constraints. The last harmonic F4is then found from
E_; by taking the symmetrized curl

F(Iﬁ =an;v6/3‘uv1 (15)

Fop=%F s +Fp), _ e
(n.b. F 5, =0due to the trace and divergence conditions on

Eaﬂ)‘
We now proceed to verify these statements. For the §°
scalar harmonics we have

cscly {3(1’ (sm Y %/;—) +cscd [:9 (smﬁ %)

oy “:AY"‘""). (17)

The solutions that are regular at the poles are

221 (a4 1)(n —1)!(1!)2)1/2
m(n+I1+ 1))

YUy, 8, ) = (
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xsin'y CY+D (cosy) Y (0,9) (18)

with eigenvalues given by
A=—n(n+2), mI<n=0,1,2,...

The C Y+ (x) are Gegenbauer polynomials as defined in
Ref. 5, the Y (6,p) are the S? scalar harmonics, and the
coefficient is chosen® to normalize the harmonics

fdgn Y(nlm)(x,e,¢) Y(nﬁn’) (X’H’¢) *

__—6 ml'(S ll'(S mm's (19)
where the §° volume element is given by
d*(2=sin’ydy sinf d@ dg.

The vector C '™ satisfies

ACG™ =(AY ™™+ YR .8". (20)
On $° the curvature tensor is given by

R 0 =8%8,,—2%8 (1)
and hence

ACT™ = [2—n(n+2) ]C o™ 22)

so C ™ satisfies Eq. (1) for a vector. It is not divergence-

less, but satisfies
Cg:gn)g af __ __n(n + 2) y o (23)

To solve Eq. (4) we consider the obviously divergenceless
vector (motivated by considering an odd parity split of a
divergenceless vector)

A" =(o,h (x) 8™ :p)) 24

then using the properties of the S >-harmonics Eq. (4)
becomes

Lk (At [2—1(+1) Jescy —2coty ) h (x)=0

dy’
(25)
which has the regular solution
D) =siny "' C YD (cosy), (26)
with eigenvalue A =[1 —n(n+2)}.

From Eg. (7) and Eq. (21) we note that the Laplace
operator acting on 4 ,; is given by

Ad 5=[3—n(n+2) 14 5 +24 4,. (27)

Therefore, the vector B, =€ ,*"A4
harmonic equation

AB =€, A4, ,=[1—n(r+2) 1B, (28)

v Satisfies the §° vector

and obviously B, is divergenceless. It has the components
B =—1(I+ 1) cscy h ™(y) Y 6,p),

Y™ O0.p). (29)

The tensor harmonics consist of three antisymmetric
tensors and six symmetric tensors. It is easy to verify that

B (nimy _ __ dh =D
‘ d

2445 J. Math. Phys., Vol. 19, No. 12, December 1978

D{m and C & satisfy

AD @ — —n(n+2) D (30)
and

ACT™ =[6—n(n+2) 1CL™. a1

Using Egs. (11), (12), and (13), the vanishing of the covar-
iant derivative of the € 5, tensor, and Egs. (28), (27), and

(22), it follows
A = [1—n(n+2) 145, 32)
A BT = (1—n(n+2) 1B, (33)
and
Gi?{f{m) [2 n(n+2) ]G(n!m) (34)
From Eq. (27) and the analogous equation for E,ﬁ we find
A4 =[5—n(n+2) 145%™, (35)
ABGY™ =[5—n(n+2) 1BA™. (36)

The two remaining tensor harmonics are found by solving
Eq. (1) for a symmetric tracefree divergenceless tensor

E(nlm)

The properties of the $*-harmonics in Table I suggest as
a candidate the odd parity traceless tensor

H$ ™ Op)

S L 0.9)
(37

e - Hpd, " 6)

The conditions E ., g #” =0 impose the relation

%ii-FZcot)(H(x)-Fz[Z 1+ DleseryS ()=0 (38)

which we will use to determine S given H. (In what follows
we assume /> 1. The /=1 case will be treated later.) Using
the divergence condition the E|, equation

FE
AE,,_

~tesc?y E Latte ¥

+ [cse’y —6cot’yIE |,

—2cotycscyE o ¥ =AE |, (39)
decouples and we find

2
aH +200txﬂ+{[2 [+ D]esc’y —2cot’y | H=AH.
dy’ dy

(40
The solution regular at the poles for /> 1 is given by
H™(p)=sin'y C¢* ] (cosy) (41)

with the eigenvalue given by
A=[2—n(r+2)]. 42)

The symmetric tensor F_; defined by Eq. (16) is obvi-
ously traceless, divergenceless, and linearly independent of
the eight previously defined tensor harmonics. It is straight-
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forward to show from Eq. (1) and Eq. (15) that F_ 4 satisfies
the same harmonic equation as does E 5. The properties of
the $* harmonics are summarized in Table II. The antisym-
metric tensor £,z is identically zero. This follows from Eq.

(15) and the divergenceless and traceless properties of £,
€, PF (op\=2E},, —2E ,,=0.

wv

For the case in which /=1, Eq. (38) implies

di—}- 2cotyH=0
dy

which integrates to give H=csc’y and implies
AE 4\, =2E ,4|,_, - But this solution is not regular at the
poles. If we consider Eq. (39) with /=1, we find it is already
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decoupled but it is not divergencefree. In fact it is propor-
tional to the 4 , |, _, tensor harmonic. There are no regular
I=1 divergenceless tracefree harmonics.
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In this paper, we suggest that what we shall call the conformal 2-structure may, in an appropriate
coordinate system, serve to embody the two gravitational degrees of freedom of the Einstein (vacuum)
field equations. The conformal 2-structure essentially gives information concerning the manner in which a
family of 2-surfaces is embedded in a 3-surface. We show that, formally at least, this prescription works
for the exact plane and cylindrical gravitational wave solutions, for the double-null and null-timelike
characteristic initial value problems, and for the usual Cauchy spacelike initial value problem. We

conclude with a preliminary consideration of a two-plus-two breakup of the field equations aimed at
unifying these and other initial value problems; and a discussion of some aspirations and remaining

problems of this approach.

1. INTRODUCTION

The gravitational field, as described by the Einstein
field equations, embodies the possibility of gravitational
radiation; this has been known in linearized approxima-
tion since the early days of the development of the
theory. ! Consideration of plane waves in this approxi-
mation showed that they involved fwo degrees of freedom
per space—time point.? When the linearized theory is
interpreted as the theory of a massless spin two field
in flat space—time, this is just an exemplification of
the general property of massless, integral spin, free
fields of having two helicity states,® Of course, in the
gravitational case we should not interpret the linearized
theory as a Poincaré-covariant theory, but rather as
(one hopes) the first approximation to a solution of the
full (nonlinear) field equations. Thus, it becomes
important to know whether this property of having two
degrees of freedom per space—time point is also char-
acteristic of the exact theory. A number of arguments
to establish that this is indeed the case have been given,
probably the earliest being based upon consideration of
the spacelike hypersurface initial value or Cauchy
problem. *

The question of precisely how these two degrees of
freedom may best be expressed analytically in terms
of the components of the metric tensor and its deriva-
tives (or such combinations of these as the Riemann
tensor, notably) for a particular solution to the field
equations, in a particular coordinate system, is not a
simple one—nor indeed one with a unique answer. Any
theory with a gauge group, such as Maxwell theory or
general relativity, will allow a wide lattitude in the
expression of true degrees of freedom of the field in
terms of nongauge invariant quantities such as poten-
tials for the gauge-invariant fields. Thus, it is not a

20n leave from Department of Physics, Boston University,
Boston, Mass, 02215,
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question of finding a uniquely “right” answer to the
question: What quantities are the bearers of the gravi-
tational degrees of freedom? But rather, a question of
seeing what particularly convenient embodiments of
this information can be found when considering various
problems of physical or mathematical interest in the
study of the theory. Of course, the answer to any
physically well-formulated problem within the theory
must be the same, whatever method of treatment is
employed, and therefore that answer could always be
formulated invariantly in principle (that is in such a
way that anyone could arrive at it by the use of any
coordinate system—or, perhaps better said, by intrin-
sically geometrical considerations), Clearly, in prac-
tice, one may not be able (or willing)} to reformulate
the problem in such a way; and for actual computational
purposes various coordinate choices, explicitly or
implicitly adapted to some fully or partially geomet-
rically determined structure, may vastly facilitate the
treatment of particular problems.

In this paper, we shall attempt to show that a unified
treatment of several important problems in general
relativity may be given by adapting a coordinate
system, such that the gravitational degrees of freedom
are embodied in that portion of the metric tensor which
we term the conformal 2-structure. In the next section
we shall explain just what we mean by “conformal 2-
structure.” We shall then review part of the motivation
for singling out this entity by looking at some exact
and approximate solutions of the Einstein vacuum field
equations. More specifically, in Sec. 3 we shall con-
sider exact plane and cylindrical gravitational waves
and establish in each case that it is precisely the con-
formal 2-structure which, in the standard representa-
tions of these solutions, embodies the two degrees of
freedom of the field. In the following two sections, we
shall briefly review the double-null initial value prob-
lem, as analyzed by Sachs,® and the null-timelike initial
value problem as analyzed by Bondi et al.,® Sachs, and
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Tamburino and Winicour.? In these cases as well, we
shall see that it is the conformal 2-structure on two
null hypersurfaces, or a null surface and timelike tube
{or some appropriate limit of it) respectively, which
embodies the two gravitational degrees of freedom.
Then, in the following section we shall discuss the
spacelike or Cauchy initial value problem, and show
(at least formally) how the constraint equations on the
initial spacelike hypersurface may be interpreted so
that again the conformal 2-structure on the initial
hypersurface and its “velocity” play the role of the
gravitational degrees of freedom,

However, we wish to be clear from the beginning
about the limitations of what we are attempting in this
paper. In general, when considering a question such as
the solution of a boundary value problem for a system
of partial differential equations we should require that
the problem be well posed, mathematically speaking,
To be more precise, such problems require a specific-
ation of data which lead to the problem having a solu-
tion (existence), no more than one solution (uniqueness),
and dependence of the solution on the specified data
such that small variations in the data (“small” being
suitably defined) lead to small variations in the solution
(stability). Now, from the physical viewpoint, problems
that seem physically reasonable are usually mathemat-
ically well posed; conversely, a problem that is ill
posed mathematically often has turned out to conceal
some physically dubious feature. This rule is by no
means infallible, (Some ill-posed problems of physical
importance are known. ®) However, the posing of such
problems is a signal for caution, at the very least.

In discussing the double-null and null-timelike type
of initial value problems, as well as our approach to
the initial value question in the case of the Cauchy
(spacelike) problem, we are treading on quite danger-
ous territory. Very little is known about how such
problems may be well posed, if at all; and global prob-
lems are known to abound here. ! Since we have nothing
to contribute to the solution of these difficulties, we
shall sidestep the issue and adopt the following point of
view, provisionally at least. Instead of claiming to
construct solutions on the basis of the initial data for
these problems, we imagine that we are given a
solution to the field equations, and ask what data we
need to give on our initial hypersurfaces to character-
ize it uniquely. Thus, we bypass the existence and
stability questions, and merely consider the uniqueness
of the problem. Of course, if in addition the solution
we are considering is analytic, then the solution could
actually be constructed from our initial data, But in
any case, we claim no more than to analyze given
solutions {given in the imagination at any rate) in terms
of data characterizing them uniquely.

In the penultimate section, we shall consider a for-
mulation which may eventually lead to a unified treat-
ment of all the various initial value problems. In the
concluding section we shall mention some of the still
unresolved problems connected with this approach.
Finally, an Appendix is included which recalls how,
in a somewhat analogous manner, the various problems
can be formulated in the case of the one-dimensional
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(i} Spacelike hypersurface

IR

(ii) Timelike hypersurface

q

(iii) Null hyperspace

FIG. 1. Hypersurface foliated into topological 2-spheres.

wave equation, We shall throughout restrict our atten-
tion to the Einstein vacuum field equations, and all our
considerations will be purely local in character.

2. CONFORMAL 2-STRUCTURE

We attempt to make precise in this section the mean-
ing to be attached to the term “conformal 2-structure.”
(We owe this term to B, Carter, whose suggestion we
gratefully acknowledge. ) If we consider an arbitrary
Riemannian 2-geometry, it is a classic theorem that it
is conformally flat.!! In this sense, there is no con-
formal 2-geometry; or rather only the trivial flat one.
However, consider a family of 2-geometries g5 (x%, p),
given as a function of some preferred parameter p
(where from now on Greek indices run from 0 to 3,
lower case Latin from 1 to 3, and upper case Latin
from 2 to 3). Obviously, we may now extract a con-
formal factor A"1(x%, p) from g.s so that the determi-
nant of the remaining conformal metric, g4p =Mgas, 1S
parameter independent, i.e.,

|Gan | =F(°).

This property is clearly invariant under all parameter-
independent coordinate and conformal transformations.
Then, the two remaining independent components of
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g4p, as functions of the two coordinates and of the
preferred parameter p, contain the information which
we refer to as the conformal 2-structure. [If we were
to attempt to transform away this information, by a
parameter-dependent family of coordinate and conformal
transformations, on each 2-surface p =const of the
three-dimensional (x4, p)-space, we would need two
functions of the original coordinates and of the param-
eter to make each metric locally flat, and these func-
tions would be equivalent to the original two functions
in their information content. |

Note that, since (lgas ] ,)/(1gas ) =g*®g4s,, for any
metric, our condition that Ig,s!, p=0, is equivalent
to the condition that the trace of g, , vanish, This
condition is invariant under the remaining conformal
freedom, Namely, if g 5 =K*Z4p5, K* must be indepen-
dent of p to preserve the condition that the determinant
of gap be independent of p, s0 g*%¢ 45, =2""gus 5.
Thus, it is really the conformal structure which is
important. Indeed, g°“g4s,, is invariant under any such
allowed conformal transformations.

Now we shall translate these results into more
geomefrical language. Consider a three-dimensional
manifold, which is fibered by the trajectories of a
vector field V* (a=1,2, 3,), and foliated by a family of
2-surfaces generated from any member of the family
by dragging it with the vector field (alternatively, of
course, one could start with the foliation and set up a
correspondence between points on each 2-surface to
generate the vector field). If p is the preferred para-
meter of the vector field, starting from some value on
the initial 2-surface, then it can be used together with
two coordinates x* chosen on the initial 2-surface of
the family and dragged with the vector field, to set up
a preferred coordinate system for the 3-space, In this
coordinate system each 2-surface in the family will be
labeled by a value of p, and the vector field will take the
form 6% (@a=A, p). Any member of the family of 2-
surfaces is then a rigged hypersurface in the 3- mani-
fold, with V* as the rigging field. If we introduce a
family of 2-metrics g,, on these rigged hypersurfaces
(g, V*=0), this not only induces an intrinsic Riemannian
geometry on each 2-surface, but enables us to define
an extrinsic curvature for each 2-surface as embedded
in the 3-manifold, namely -3 L,g,5 =h,, Where L &
stands for the Lie derivative of the geometric object &
with respect to the vector field ». In the adapted co-
ordinates (x*, ), 24 Will only have components g4z and
ligs Only components /45 =~ 3g4s,,. Thus the family of
2-geometries g,5(x%, p) enables us to compute /4,
and hence also gives information concerning the manner
in which this family of 2-surfaces is embedded in (x, p)
3-space. (We are grateful to R, Penrose for a discus-
sion on this point. )

We emphasize again that this construction is quite
independent of whether the 3-manifold is endowed with
any other structure, and depends only on the inner
metric of the 2-surfaces and their rigging, Of course,
if the 3-manifold itself has a Riemannian metric, and
&ap is the induced metric on a 2-surface rigged with a
unit normal vector, 7,5 is the usual second fundamental
form of the 2-surface.
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Now we can take the 2-surface metric g5, compute
its inverse metric g*#, and project this back into the
3-manifold using the projection operator By =48; - Vw ,,
where w(x?) is the scalar field which reduces in adapted
coordinates to w=p, (It follows that this projection g*®
obeys g‘"’w' » =0.) We now look for a conformal factor
A(x%) such that g, =Ag,, obeys the equation & =g®h,, =0.
This always exists, since it merely requires that Ly1ln A
=h=g"h,. Thus, the conformal 2-structure can be
invariantly characterized by the condition that the trace
of the extrinsic curvature vanishes. This condition is
clearly invariant under the remaining conformal free-
dom, which allows us to introduce any conformal factor
K?® such that LyK=0. Thus, the conformal 2-structure
essentially gives information about the traceless ex-
trinsic curvature of the family of 2-surfaces, which we
shall call the conformal extrinsic curvature.

it is easy to generalize these ideas'? to a family of
2-surfaces in a 4-manifold generated from an initial
2-surface by dragging with two commuting vector fields.
The 2-surfaces will then form two families of 3-sur-
faces; and each 2-surface will have two extrinsic
curvatures: one with respect to each 3-surface in which
it is embedded. If one wants to consider the evolution
of the gravitational field from the initial data this is the
sort of construction that is needed. But in this paper we
confine ourselves {except for the next section) to a dis-
cussion of the initial value question only, so our
treatment here is sufficient,

3. EXACT SOLUTIONS, PLANE AND CYLINDRICAL

Bondi, Pirani, and Robinson!® have discussed plane
gravitational waves, defining them as nonflat solutions
to the gravitational field equations possessing at least
as much symmetry as electromagnetic plane waves
(actually, an additional symmetry will always exist).
Locally, it is always possible to put such solutions
into the form

ds® = exp(2p)(df* — dE?) — uPg ,pdxtdx®, 3.1)
where
‘cosh2p + sinh 28 cos 29 -~ sinh 28 sin 26
&as = )
— sinh 28 sin 26 cosh28 - sinh2Bcos 29
lgan] =1, (3.2)

and 3, 9, and ¢ are functions of #={— £. 3 and 8 are
arbitrary functions of #, while ¢ is determined by
2¢" =u(p’? + 872 ginh? 28), (3.3)
We see that the two gravitational degrees of freedom
are here explicitly represented by the functions 8 and 6.
Thus, the conformal 2-structure, as a function of the

preferred parameter », embodies the radiation field in
this representation of plane gravitational waves.

The problem of gravitational waves with cylindrical
symmetry was first solved in the case when they also
possess reflection symmetry (and thus only one degree
of freedom) by Beck, and rediscovered by Einstein and
Rosen. The cylindrical waves without reflection
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syminetry, and thus possessing both degrees of freedom,
were discovered by Ehlers, and independently by
Kompaneets. A detailed discussion, with references,
may be found in a paper by one of us. ! The metric, in
the form given by Ehlers, is

ds? = exp(y — P)(dt* — dp?) - pg apdx?dx®, (3.4)
where
p~lexp2¥) p 'y exp(2¥)
EAB = s
plx exp2¥) p~x? exp@¥) + p exp(~ 2)
iEAB‘ =1, (3.5)

and ¥, X, and y are functions of p, f only. ¥ and X obey
coupled nonlinear cylindrical wave equations

(3. 6a)
(3. 6b)

b =3p~ exp(@¥) (2, - X)),
rx=2p"1x , + 40, ¥, - X, 7 ,),
where
Hf= p-‘(Pf,p),p =foe
is the cylindrical wave operator; ¥ is determined by &
and X through the equations
(3. 7a)
(3. 7b)

¥, =pl¥L+ \11.2,) +ip "t expldw)(xh + XL,
¥, =20¥ ¥, + zp~lexp@¥) X o X, ¢

whose conditions of integrability are precisely the
coupled wave equations (3. 6) for ¥ and x. Thus, once
again it is the conformal 2-structure g 5 which em-
bodies the gravitational degrees of freedom of the
cylindrical waves. Note that while Eqs. (3.6) have been
given in a form appropriate for discussion of the usual
Cauchy problem, i.e., using one spacelike coordinate
p and one timelike coordinate #, by introduction of
coordinates v=1~p and v=¢+p we can cast these equa-
tions into a form appropriate for consideration of a
double-null initial value problem, a Bondi—Sachs prob-
lem, etc. The conformal 2-structure will then be given
as a function of the appropriate parameter, depending
on whether we look at a spacelike, null or timelike
hypersurface. Of course, on a spacelike initial hyper-
surface, the velocities (or momenta) of the conformal
2-structure must be given as well, in keeping with the
usual feature of the spacelike Cauchy problem, i.e.,
the “doubling” of the data needed on spacelike portions
of the initial boundary (see the Appendix).

Thus, we see that in both the known cases where
exact radiating solutions can be explicitly given with
as much generality as the symmetry conditions imposed
will allow, it is indeed the conformal 2-structure,
as functions of the appropriate parameter or param-
eters, which exhibits the gravitational degrees of
freedom. It might be argued that these solutions are
highly specialized, and that this may not necessarily
be the case when considering more general sifuations.

In linearized gravitation theory, it is well known that
it is the transverse traceless part of the linearized
deviations from the flat metric which explicitly embody
the radiation field in the simplest way. 5 Here, the
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A
null rays x = const

FIG. 2. The initial surfaces and their respective data for the
double-null case,

removal of the trace of the transverse components is
the linearized version of the removal of the conformal
factor of the 2-metric; so that the standard treatment of
linearized theory again uses the conformal 2-structure
to embody the two degrees of freedom of the radiation
field. This suggests the generality of our results; but
we shall not enter into any further details of the linear-
ized theory, since we are able to verify our conclusions
for the exact theory by considering several types of
initial value problems. In the next section we recall the
double-null and Bondi—Sachs type of initial value
problems, and show that in both cases the initial data
needed to characterize a solution uniquely is again the
conformal 2-structure on some 3-hypersurfaces.

4. DOUBLE-NULL AND NULL-TIMELIKE INITIAL
VALUE PROBLEMS

We review first the double-null initial value problem,
as formulated by Sachs.® The problem, here, is to find
a set of functions given on a pair of intersecting null
hypersurfaces U and V, together with some lower-
dimensional data on their intersection }, (a two-dimen-
sional spacelike surface), which will serve to completely
characterize a solution to the Einstein equations in the
region R lying to the future of both null hypersurfaces
(see Fig. 2), From the general nature of the double-
null initial value problem (see the Appendix), we expect
that we shall have to prescribe a pair of functions on
each null hypersurface, since the gravitational field
has two degrees of freedom.

Sachs shows that one can embed each of the hyper-

surfaces U and V in a family of null hypersurfaces,

u =const, v=-const, in such a way that » is a preferred
parameter along the null geodesics on V, and v is a
preferred parameter along the null geodesics on U
(remembering that every null hypersurface is ruled by
a family of null geodesics), Two additional coordinates
x* are then chosen on, and continued off, the initial
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null hypersurface in such a way that the x* are con-
stant along each null ray on the null hypersurfaces u

= const (it is this latter condition which introduces the
asymmetry between u# and v in the metric given below).
With this choice of coordinates, the general line element
takes the form

ds® = — exp(2g)du dv + exp(2h)g 45 (dx* + C* du) [dx®

+CB gdu) 4.1)

with

|Zas| =1, g=0onVandV, C*=0onV. (4.2)

The conformal flatness of any 2-metric, mentioned in
Sec. 2, is used to pick the x* on } so as to make g4
take on the form

Zaz=040n2, . (4.3)
Sachs goes on to demonstrate, by means of an analysis
of the field equations, that the following data suffice to
determine a solution to the field equations in the region
R,

2an=8as(xC,0)onV, Zin=ga5(° v)onl, (4.4)
and the following additional data on Z
h, CA,v’ h'u, and h’v. (4.5)

The data on U and V are again the conformal 2-struc-
ture of the family of spacelike 2-surfaces u =const, on
V and v=const, on U, as functions of these preferred
affine parameters respectively. Of course, as Sachs
points out, since these are null hypersurfaces, one may
better think of exp(2h)g.p as giving the distance between
two null rays at a point, rather than between two points.
The data onZ is also interpreted geometrically by
Sachs. For example, giving z onZ serves to fully deter-
mine the inner geometry of Z, since it is known con-
formally already; 4 , and & , give the two mean ex-
trinsic curvatures of Z with respect to its embedding in
V and U, respectively. The most important point to
note, for our purposes,is that an appropriate choice of
coordinates has enabled Sachs to put the information
about the two degrees of freedom of the gravitational
field into the conformal 2-structure of the two initial
null hypersurfaces. In fact, the initial value problem
for this double-null case has been solved recently by
Miiller zum Hagen and Seifert, ' who have obtained some
strong theorems for the existence, uniqueness, and
stability of the solutions.

The null-timelike type of initial value problem has
been considered in two variants. For our purposes, it
will be simpler to consider the second case first, as
worked out by Tamburino and Winicour.® They consider
the initial value problem on a timelike world tube I" and
the initial forward null hypersurface Ny, emanating from
some two-dimensional spatial slice S; across the time-
like tube (see Fig. 3). The initial hypersurfaces thus
consist of the future portions of I" and Ny, both hyper-
surfaces issuing from their intersection S,. Coordinates
are introduced in the following way: Sy is coordinatized
by a pair of coordinates x*. The family of timelike
curves issuing from S; and lying within I'; which are
geodesics with respect to the inner geometry of I', are
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FIG. 3. The initial surfaces and their respective data for the
Tamburino—Winicour case.

used to coordinatize I. Each geodesic is labeled by the
x* of the point of S, from which it issues, and the arc
length along each geodesic is taken as a timelike coordi-
nate # (=x% on I'. The intrinsic metric of I in these
geodesic normal coordinates is then given by

ds*(T)=— du® + gap du® dx®. {4.6)

The family S of geodesically parallel slices to Sp, u

= const, are then used to generate a family of forward
null hypersurfaces N, of which N, is the initial one.
These surfaces are labeled by », and each null ray on
such a surface, issuing from a point on S, is also la-
beled by the x* of that point. Finally, the fourth coordi-
nate » (=x!) is introduced by choosing it as the
luminosity distance along each null ray,

| x4x | =AY, @.7)

where f(x*) is some given function, depending on the
exact choice of variables x* used for the spacelike 2-
surfaces, u =const, »=const, With this choice of co-
ordinates, the line element of the four-dimensional
region between I' and N, is given by

ds? = goodi® + 2[gg1dudy + gy adudx*)
+ g apdxtdn”, (4.8)
where

|45 | = [Fe?) P 4.9)

On I, » is some given function of # and x* which is
determined by the condition that (4. 8) reduces to the
form (4. 6).

An analysis of the field equations, paralleling that
given by Bondi ef al.,® and by Sachs,? then shows that
a solution to the Einstein field equations in the region
between I' and Ny is determined by the following initial
data:

(4.10a)
(4. 10b)

ZapOnN;, as afunction of (r, x4),
ZaponT, as a function of (u, x*),

with the lower dimensional data
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Zu0s 804,100 Sy, as functions of (x*). {4.11)

Hence, again, we see that in this coordinate system it
is the conformal 2-structure on the initial hypersurfaces
which embodies the information about the gravitational
degrees of freedom.

In fact, Tamburino and Winicour, by analogy to the
approach of Bondi et al. and Sachs, actually use the
time derivative of g4z on I'; this is the analog of the
“news functions” of Bondi. In the case when there was
no incoming radiation initially present, it bears the
news about behavior of sources of the gravitational
field inside the timelike tube I' that can affect the fields
outside the tube in the region under consideration,
Clearly the two choices are equivalent: The news func-
tions correspond to the conformal extrinsic curvature of
the family of 2-surfaces S with respect to I', but this
amounts to the same thing as giving the intrinsic con-
formal 2-structure of the family as a function of the
parameter that takes us from one member of the family
to the (geodesically parallel) next one.

The approach of Tamburino and Winicour also illus~
trates, in part, the limitations of what we are attempt-
ing here. The data (4. 10) is not, in fact, specifiable
with complete freedom as initial data. For example,
the data set on a small region of I' will, because of the
timelike character of I, automatically determine the
data on a large region of I'. Tamburino and Winicour
suggest that this may in some sense limit the functional
form of the data which may be specified on I', Thus,
although this approach gives us considerable insight
into the structure of the field equations, it would appear
that this particular initial value problem is not well
posed. We now turn to a formulation given by Bondi
et al.® and Sachs, ’ which does not appear to have this
same limitation.

The Bondi—Sachs analysis is quite similar to that
outlined above (and of course preceded it in time),
except that the timelike tube is pushed off to infinity in
the null directions defined by the family of null surfaces
(see Fig. 4). This results in an asymptotic initial value

i+

FIG. 4. Penrose diagram indicating the initial surfaces and
initial data for the Bondi—Sachs case.
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problem for the hypersurface Ny and the future null cone
at infinity ¢*, as defined by Penrose. " The form of the
line element adopted by Sachs (who treated the case
where both gravitational degrees of freedom were
present, after Bondi ef al. has considered the reflec-
tion and axially symmetric case with only one degree of
freedom) is similar to the form (4. 8), but with some
specializations of the six nonvanishing components of
the metric to facilitate computation. The x* are picked
by analogy with angular polar coordinates, so that Fla?)
= sinf, and g,; is explicitly parametrized in terms of
two functions ¥ and 8 so that

Zap dx* d® = exp|2(y + 6)]d6* + 4 sinb sinh{y ~ 5)d0do

+ sin?0 exp[ - 2(y + 6)|do?. (4.12)

In addition various boundary cum coordinate conditions
are imposed as v — along the null hypersurfaces u
=const, partly to ensure the existence of future null
infinity. (it was originally hoped that these conditions
might also limit the class of systems congidered to
those representing outgoing radiation only, but it now
seems clear that while all outgoing radiation solutions
are included in this class, solutions with sufficiently
weak incoming radiation fields are also included. )

To summarize the results of their analysis of the field
equations under these conditions, the following data are
found to be necessary to determine a solution to the
field equations in the neighborhood R or ¢* posterior to
N, (see Fig. 4):

(4. 13a)
(4.13b)

5 and ¥ on N,, as functions of (v, 8, ¢),
¢y and ¢; on ¢, as functions of (w, 9, o),

where ¢y and ¢, are the “news functions” given by

3 . _0
@5 pn 00 =g, i ()
u=const u=const

In addition, three functions on the “2-sphere S; at
infinity” [analogous to (4.11)], which are defined by
appropriate limiting processes, must be specified. One
of these, M{u, 0, $), was named the “mass aspect” by
Bondi, since its integral over S; gives the Schwarzs-
child mass of the solution; while the other two functions
N(u, 8, ¢) and P(u, 9, ¢) are related to the “dipole
aspect” of the field,

So once again, we see that it is essentially the con-
formal 2-structure on N, (in the neighborhood of ¢*) and
on ¢* that embody the information about the degrees of
freedom in the gravitational field. In the next section we
shall show that a similar analysis of the spacelike
initial value or Cauchy problem is also possible.

5. CAUCHY INITIAL VALUE PROBLEM

As is well known, '® when the Einstein equations are
analyzed with respect to a family of spacelike hyper-
surfaces, H, generated from an initial one, Hy, by
dragging it with a transvecting vector field, V¥, they
break up into two sets: Those projected once or twice
into the normal to the hypersurface—the four con-
straint equations, and those projected twice into the
hypersurface—the six evolution equations. When the
metric tensor is similarly decomposed into its com-
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ponents with respect to the normal field, it is found

that the evolution equations determine the second Lie
derivatives with respect to the unit normal, N*, to H of
the hypersurface components of the metric. This
suggests that the Cauchy data on the initial hypersur-
face H, be taken as the metric or first fundamental form
of the initial hypersurface: ‘g,, in coordinates adapted
to the surface; and its first Lie derivative with respect
to N* which {up to a factor ~ 3) is the second funda-
mental form of the initial hypersurface: &, in adapted
coordinates, However, the four constraint equations
then give four relationships between the first and second
fundamental forms which this initial data must obey.
The contracted Bianchi identities then indicate that the
propagation of the initial data off H; by the evolution
equations guarantees that the propagated data satisfy

the constraint equations on any other hypersurface in
the family #. The Einstein equations thus form a sys-
tem in involution, 1

It might still seem that we have an excessive number
of functions to describe the gravitational field: the six
'g» and the six k,, (=- 3Ly 'g,,, where Ly denotes the
Lie derivative), subject to four constraints. However,
the freedom of choice of the coordinates on the initial
hypersurface shows that three of these functions contain
essentially information about the coordinate system,
while the freedom to choose the initial hypersurface,
when the characterization of this initial hypersurface
is re-expressed in terms of the 'g,, and &, shows that
there is an additional relation between them (which
again merely represents coordinate information). Thus,
we arrive at the need to specify four functions per
space-—time point on Hy, which in the above formulation
are the remaining two “three-metric elements” and the
two corresponding “velocities” (or equivalently
“momenta”), to characterize a solution to the field
equations. This again exhibits the typical “doubling” of
the data needed on a spacelike portion of the initial
hypersurface (see the Appendix).

We shall restrict our attention in this paper to the
four constraint equations. We shall show that the con-
straint equations can be solved, formally at least, by a
two-plus-one breakup of the initial hypersurface H; with
respect to a family, S, of spacelike 2-surfaces and a
transvecting vector field which drags points along from
one member of the family to the next {see Fig. 5). Once

Y unit timelike normal

N

(enlarged)
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the “lapse” and “shift” functions®® fixing the family of
2-surfaces and the relation between points on them has
been specified, together with one other function specify-
ing the initial hypersurface, then the conformal 2-
structure of the family of 2-surfaces S, as a function of
the parameter characterizing the dragging by the trans-
vecting vector field, together with its Lie derivative
with respect to N* (the “velocities”) is the freely
specifiable data. The constraint equations may then be
solved for the other variables needed to completely
specify the first and second fundamental form of the
hypersurface. In this way we establish that the initial
data characterizing the two gravitational degrees of
freedom on a spacelike hypersurface (the Cauchy pro-
blem) may be taken as the conformal 2-structure as a
function of an appropriate parameter, together with the
corresponding velocities. This we now demonstrate in
some detail.

Let the initial hypersurface H; be given by the
equation

& (x*) = constant. (5.1)

We adapt coordinates to the initial hypersurface: & Ex“,
so that the surface H, is described by the three coordi-
nates x°. We now introduce a family, S, of two-dimen-
sional hypersurfaces in H,: ¢ =const. We can always
think of this family (at least locally) as generated by
dragging an initial 2-surface, S;, with a transvecting
vector field »°%, lying in H,. As we shall discuss in the
final section, this suggests the possibility of taking the
initial 2-surface as a closed surface, bounding a region
inside of which sources of the gravitational field may
be enclosed, which would lead to consideration of mixed
Cauchy problems. *! However, nothing in our analysis
(admittedly local and rather formal) prevents the taking
of the initial 2-surface as an open surface. Then,
adapting coordinates to the family of hypersurfaces,

bxx!
and to the vector field,
2 X 5‘1' ,

the (intrinsic) metrie ’g, of H, takes the form

" Ax° dx® = p*(dx') + g 4p (dx? + 0 dx!) (dx® + 0% dx!),
(5.2)

FIG. 5. The initial hyper-
surface Hy, the initial 2-
surface S;, the family S,

and the various vector fields.
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where
D=P(xa), UA:UA(X"), gap =8as &%),

Then the family of 2-surfaces, S, is given by x! =con-
stant, x* are coordinates in each 2-surface of S, p
represents the lapse function (i.e., pdx! is the normal
distance between two neighboring 2-surfaces of $), and
04 represents the shift function (i.e., o%dx! is the
vector between the point on the neighboring surface
reached by v* and the point reached by going in the
normal direction—see Fig, 5). It proves advantageous
for our breakup to use Lie derivatives with respect to
w®=pn’, where n* is the unit normal to S in H,, This
choice is merely one of convenience, but it does possess
the following advantages: First of all it satisfies the
normalizing condition w® ¢ ,=1, giving the same pro-
jection operator as »® does; thus, applied to the metric
it projects out the co- and contravariant 2-metric, i.e.,
Zap and its inverse, Finally, any rigged hypersurface
in an affine manifold has a unique connection induced on
it, dependent on the rigging; the induced connection with
w”® as the choice of rigging field turns out to be identi-
cal to the metric connection of the induced metric g,p.

We use the rigging vector »* to construct the projec-
tion operator Bj into S,

B} =055 —u'e , (5.3)

with which we can decompose 'g,, into six parts. Three
of these parts, namely the projections twice into S,
consist of the family of 2-metrics induced on S, namely
Zap; we break this quantity up further by extracting its
determinant which we denote by exp (})). {This choice
of conformal factor makes the ensuing equations rather
simpler to handle. In general, as indicated earlier in
Sec. 2, we may extract any conformal factor for which
the determinant of the remaining part is a fixed function
of x* only.) Thus

£a4B :exp(%)\)g?_,w, gan=1, (5.4)

from which it is clear that g 5 has only two independent
components. The remaining projections of 'g,,: Twice
into the normal, and once into the normal and once into
S, yield p? and o respectively. We have now decom-
posed 'g,, into six parts

p27 UA, >" (Z»;AB: (5-5)

where the first three quantities are clearly connected
with the choice of a coordinate system (or more geo-
metrically, with the adaptation of a coordinate system
to a family of rigged hypersurfaces in Hj). We next
break up 7, in an analogous manner. We define the
quantities

h=hgw'u®, hs=B%u hy, has=B4B2h,, (5.6)

where BY is the projection operator of (5.3) with its
covariant index restricted to the coordinates on each
2-surface. (Note that % is not the trace of &, in our
notation, nor of k,5. We denote the former by rg, the
latter by h4.) We then extract the trace of hap, relative
to gan, and a conformal factor, in order to define the
quantity

Tiap =exp(— 30 (hap — 34808). 6.7
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We have now decomposed #,, into six parts which turn
out to be just the velocities of the components (5.5) of
lgab

h==3Lyp?, h*=-3Lyo*, hi=-3L, Fsn
(5.8)

We now insert these decompositions of the first and
second fundamental forms into the four constraint
equations

Gy, NN’ =0, G,, N*B;=0,

:—%LNEAB-

where By is the projection operator into the hypersur-
face Hy. Written in terms of the first and second funda-
mental forms of Hy, these take the well-known form

Yy (h® - "g®h) =0, °R+h%®hy, - (hS)F=0. (5.9)
The resulting equations are
M) L8+ Ghi - ph)L ) - pH*P 5 — p exp( =~ £))
T loh?) =0,
(I L, () + sp™ ' L X + exp(— $0)T5[p exp(GNIE]
= (o0, 4 ~ 20 (p"'nB) 4 =0,
@) LI +3(L N - p L)L N - o exp(~ EV[PR]

+ exp( - 20)[2p*0°\ + 2097 + p? exp(GA)HAPH 4z

- ZhAhA - p2 exp(‘% >\)rl“mﬁ,‘ua] + Zhhﬁ + épzhﬁhg =0,
where
Hyp=-3p"L,gan, HZ.EABITIAB, V2 =g*T Vs,
(5. 10)

and all barred quantities are built out of g,5 and its
inverse 2. (Of course, we could equally well formu-
late these equations in terms of Lie derivatives with
respect to v* or #%.)

We then consider the following as initial data:

(5.11a)
(5, 11b)

Zap on Hy, as a function of (x!, x*),

Tap on Hy, as a function of (x!, x4),

i.e., the conformal 2-structure of the family S, as a
function of the preferred parameter x! specifying the
family, and the corresponding velocities, also as a
function of the preferred parameter. These four pieces
of information then embody the two gravitational degrees
of freedom for the usual Cauchy problem. As mentioned
earlier, we take p and o* as given in the above equa-
tions, since they simply specify the family of 2-sur-
faces and the relation between them (being the lapse and
shift functions) and thus fix the parameter x!, In addi-
tion, one more function must be specified on Hy; this
corresponds, however indirectly, to the specification

of the initial hypersurface H; (and hence is again coordi-
nate information). Restricting attention to a scheme of
formal integration in which we assume the solution in
question is analytic, three choices for this additional
function then suggest themselves, namely A, &, or A,
Corresponding to each choice, we need also to specify
some lower dimensional data on S;. The three formal
integration schemes are outlined in Table 1.
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TABLE L.

Functions specified on: Case 1 Case 2 Case 3

Hy

Zaps hag, P, o* and A h i

(functions of 3 variables)

So PR as N hay A, Ly A(=0

(functions of 2 variables) (= 0), hy L, A(=0) 4 M Ly M= 0)

Formal integration by 11— % (algebraically) I—L, 4 I— % (algebraically)

iteration proceeds by: I-L, 14 I—~L, hy U—L,h,
U—~L,h, Im—Lix I— L2

Let us consider the scheme in more detail in Case 1,
for example, Equation IIl serves to determine
algebraically on S;. Then I determines L, k4 on Sy, which
is equivalent to knowing %4 on the “next neighboring”
surface to Sy, S; say. Similarly II determines L k4 on
S, and hence k4 on S;. Thus #*, and k4 are known on S
and assuming k%, + 0 we can repeat the above procedure
on S;. Continuing in this way we can formally generate
a solution of the constraint equations. The other cases
are similar. These are not the only ways in which the
equations may be viewed as formally generating a
solution, but they do provide examples of the possibility
of regarding the conformal 2-structure as the freely
specifiable dynamical information, If we now assume
that such an integration scheme leads to a knowledge of
all the unknown quantities on Hy, then we can construct
the first and second fundamental forms by using

"Gap = eXPEN BB ap +0°0, 00, (5.12)
and
Rgp :Il¢,a¢,b + (Bffl’,b + B?‘b,b)hA
+exp($0) B BE (s + 38.4518). . 13)

The use of the evolution equations to construct a four-
dimensional solution into the future (or past) of H, then
proceeds as usual,

Finally, we mention the way in which some particular
simple choices for the nondynamical initial data on H
are equivalent to particular coordinate conditions.

p=1:1Inthis case w®=»?, the unit normal vector
field, and hence S; is dragged into geodesically parallel
surfaces.

0# =0: Points on the surface of any member of S are
dragged normally into the neighboring surface of S, i.e.,
no “shear. ”

(1) x=x({x!): This means that X will in general be a
function of x° and x! only in the four-dimensional mani-
fold. We cannot in general impose a simpler condition
on A, since A=0 leads to 4 =0 and the integration
scheme (for Case 1) breaks down: Similarly x =A(x?%)
only, leads to L =L s} =0 which turns I into a con-
straint between /1,5 and 2,. An example of the occurence
of condition (I) is found in the standard treatment of
plane waves (see Sec. 3 or Ref. 13).

(IT) #=0: This is equivalent to Lyp=0, and if this
condition can be propagated in time it means that p will
be time independent,
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(IT1) 24 =0: This is equivalent to LyA=0. The sur-
face area of each S; in S is given by [s; exp(z\)dx, and
hence if this conditidn can be propagated in time it
means that the surface area of each S; will remain con-
stant in time. An example of the occurence of this con-
dition is found in the standard treatment of cylindrical
waves (see Sec. 3 or Ref. 14). It might be termed a
“Bondi-type” coordinate condition, since it includes
the determinant condition (4. 7).

6. APOSSIBLE UNIFYING APPROACH

It is well known from the variational principle formu-
lation of the “Newtonian” approach to the usual Cauchy
problem18 that there is an intrinsic connection between
the dynamical equations and the dynamical variables.
More precisely, we start by using M to construct a
projection operator into Hy so that, in particular,

gr="g""+ NN,

where ‘g"", the projection of the contravariant metric
twice into Hy, is the induced (contravariant) 3-metric
on H,. Then variation of the Einstein Lagrangian,
VZ¢'R, with respect to ’g“” leads to the equations.

BZB'Z%GHV =0,

6.1)

(6.2)

i, e., the six evolution equations; and variation with
respect to N leads to the equations

N*BYG,,=NN"G,, =0, (6.3)

i. e., the four constraint equations. Thus, in this formu-
lation, the dynamical variables generate their dynamical
or evolution equations. However, since there are only
two independent dynamical degrees of freedom we
should only expect two independent dynamical equations.
In fact, investigations by one of us®® of the Bondi—Sachs

-— 7
O ‘
the two null directions in T

FIG. 6. The spacelike 2-surface S;, and an orthogonal 2-plane
element 7.
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characteristic initial-value problem demonstrated that
in this case it is precisely the conformal 2-structure
that generates the true dynamical equations. This
suggests that instead of considering the three-plus-one
breakup of the field equations, as above, we consider a
two-plus-two breakup, 2 in the hope that we may be
able to cope with all the various initial value problems
simultaneously.

We therefore consider a spacelike 2-surface S, and a
field of timelike 2-plane elements orthogonal to S, at
each point of it (see Fig. 6), spanned by two vector
fields

et X=0,1)

X
whose character depends on the type of initial value
problem under consideration. We can then continue
these vector fields off S; and use the resulting four-
dimensional family of vector fields to drag the initial
2-surface and fill out some four-dimensional region.
If the two vector fields are chosen so that their Lie
bracket vanishes, the order of the dragging will be
immaterial. We now project the metric ¢*¥ into S, to
obtain

gﬂ-v =”g.l-l-v +g)?;

e’ ()}: f,=0, 1)’
Y

(6.4)

RN

where “g"” is the 2-metric induced on S;. Then varia-
tion of the Einstein Lagrangian with respect to “g"*” will
generate three equations and variation with respect to
e)fz‘ will generate seven linearly independent equations.

We next separate out a conformal factor y from “g",
"=, (7] =1 6.5)

such that the resulting *” is the conformal 2-structure,
If we now consider variations with respect to g"* and ¥
separately, then, in adapted coordinates, we find

(6.6)
(6.7)

5§AB = Gyp - %A_TAB‘ECDGCD =0,
5'}”"§ABGAB =0,

Of course, (6.6) only consists of two independent
equations, as contraction with g*® reveals. Then in each
of the three types of initial value problems we have con-
sidered in this paper, we find that the equations (6. 6)
are precisely the dynamical equations for the evolution
of the conformal 2-structure. That is, the only terms
involving second derivations in the e%, e‘if directions
which occur in (6, 6) are of the form

ngLiLg §AB-
X Y
Indeed, for the appropriate choice of vector fields (see
Fig. 7) we find, in adapted (possibly anholonomic) co-
ordinates at any point that the only terms involving
second derivatives with respect to 0,1 coordinates
which occur in (6, 6) in the three cases are

(1) Double-Nuil: In this case e are both null vectors,

and X
01
E
- b
10
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(1) Double-null (i1) Null-Timelike

(iii) Cauchy

FIG. 7. The two dragging fields e for each of the three initial
value problems.

where £ means that an equation holds in adapted coordi-
nates; the only second derivative with respect to 0,1
which occurs in (6. 6) is g4z, 01.

(2) Null-timelike: In this case, e is timelike and e
is null, and 0 !

s
Xy X .
& = H

the combination of second derivatives with respect to
0, 1 which occurs in (6.6) is 2g45,01 — 845,11+

(3) Cauchy: In this case, &" is timelike and & space-
like, and 0 !

g)?;; .
0 -1

the only combination of second derivatives with respect
to 0, 1 which occur in (6.6) is g4p,00 - a5, 11. Reference
to the Appendix will show that this is just the form the
two-dimensional wave operator should take in each case.

These preliminary results suggest that it is possible
to pursue this two-plus-two breakup further and eventu-
ally unify all the various approaches to the initial value
problem. One of us (J.S.), with another collaborator
(Mr. Ben Rosen), has pursued this approach further,
and investigated the full two-plus-two breakup of the
ten field equations. The results of this study will be
published elsewhere,

7. CONCLUSION

General relativity is a gauge theory and hence, in
common with other gauge theories, it possesses the
property that the potentials (or various concomitants
of them) are not uniquely determined by the physical
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field but rather, by virtue of the gauge group, the in-
formation about this field may reside in the potentials
in a variety of ways. Our thesis, in this paper, is that
by an appropriate choice of coordinate system, the
minimal information which determines a solution of the
Einstein (vacuum) field equations, that is the gravita-
tional degrees of freedom, may be cast into that part of
the metric tensor which we have termed the conformal
2-structure, We have shown, at least formally, that
this prescription works in the cases of the exact solu-
tions for plane and cylindrical gravitational waves, the
Sachs investigation of the double-null characteristic
initial value problem, the Bondi—=Sachs and
Tamburino—Winicour investigations of the null-time-
like characteristic initial value problems, and the usual
spacelike Cauchy problem, We have also suggested that
this may herald a new unifying approach to all the
various initial value problems, namely by considering
a two-plus-two breakup of the field equations.

There are, however, considerable limitations to that
which we have undertaken so far. As we have discussed
before, our analysis is purely formal and, apart from
the rather restricted case of analytic solutions, we have
really only considered the question of uniqueness. The
deeper, and more difficult, questions of existence and
stability remain yet to be investigated and indeed further
analysis may reveal that this approach does not in fact
lead to a well-posed problem (at least in all cases). For
example, as we have already pointed out, there appear
to be considerable problems attached to the Tamburino
—Winicour type of analysis, Nonetheless, our work so
far suggests, at the very least, that this approach may
well be worth pursuing further. One major task then
would be to investigate the equations (I), (II), and (III) of
Sec. 5 to determine, for example, whether or not they
can be cast into an elliptic form and thereby attack the
questions of existence and stability for the case of the
Cauchy problem. Closely related to this are problems
of a global topological nature: For example, do we
require a global foliation or can we proceed with an-
holonomic 2-surface elements? In the case of the three-
plus-one decomposition for the formulation of the
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Cauchy problem it is known that anholonomic three-
surface elements and a vector field with nonvanishing
curl may be used (see work of O Murchadha and
Kulhanek). *»% There is every reason to expect that
similar anholonomic extensions of the two-plus-two
approach will be possible. This subject is under study.
Another interesting global problem would be the con-
sideration of solutions with closed spatial 3-surfaces,
to see whether our approach could succeed there.

There are also interesting possibilities for consider-
ing other types of initial value problems. Our consider-
ation of the Cauchy problem has been purely local, of
course, and confined to consideration of a purely spatial
bounding hypersurface. Yet the singling out of an initial
2-surface on such a hypersurface in our approach
suggests a very natural extension of our approach to the
consideration of a mixed problem, in which data would
be given on the spacelike exterior of the initial 2-sur-
face as well as a timelike tube of which the initial 2-
surface was a cross section {see Fig. 8). One would
conjecture, on the basis of the discussion of the Cauchy
and null-like initial value problems in this paper (as
well as the mixed problem for the one-dimensional wave
equation discussed in the Appendix), that the conformal
2-structure and its Lie derivative in the normal direc-
tion would have to be given on the spacelike portion of
the boundary, as well as the conformal two structure on
the timelike tube, to uniquely determine a solution in the
region they bound (see Fig. 8).%

There is also the question of how this work relates
to other approaches, notably the “conformal 3-geome-
try” approach, first suggested by Lichnerowicz®® and
Choquet, ?" and brought to considerable fruition by York
and O Murchadha?® among others. There is no doubt that
their approach is both very elegant and successful; for
example, they have some very powerful theorems
governing existence and stability. However, we feel
that the conformal 2-structure approach is still worth
pursuing because of its possible unifying property; more
specifically, because it appears to also apply to (indeed
is perhaps better suited to them) characteristic initial

_ FIG. 8. Conjectured initial data for the
a8’ Ly 925 mixed initial value problem.
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value problems; whereas the conformal 3-geometry
approach does not seem capable of such an extension,
since there is no Riemannian 3-geometry or conformal
3-geometry on a null hypersurface. There is certainly
nothing wrong with the conformal 3-geometry approach,
but it does fix attention on a feature which is more
reminiscent of nonrelativistic theories, i.e., Galilean-
type theories with naturally preferred spacelike hyper-
surfaces. We would suggest that null hypersurfaces are
more characteristic {pun intended) of relativistic
theories than spacelike hypersurfaces; and therefore
there may be some advantage to an approach which can
handle null surfaces. Another lesser point is the practi-
cal one that, for some classes of solutions, one may
often readily identify the conformal 2-structure but not
be able to solve the partial differential equations needed
to isolate the two degrees of freedom of the conformal
three-geometry approach,

Perhaps the biggest outstanding problem relates to
the question of the possible quantization of general
relativity. Opinions differ as to the physical significance
of such a step, but presumably, to achieve this mathe-
mathically, one needs to formulate the problem correct-
ly. Conformal 3-geometry seems to suggest the use of
superspace (or some restriction of it), which is once
more a generalization of the quantum approach to
special relativistic field theories in which the evolution
of waves from one spacelike hypersurface to another is
singled out—which again seems to stress the features
of the theory more closely related to those of non-
relativistic theories. More recently, a good deal of
attention has been focused on approaches to quantum
field theory which single out families of null hypersur-
faces and examine the dynamics with respect to these
hypersurfaces. Again, this suggests the possible
advantage of an approach to general relativity which
enables one to consider null hypersurfaces naturally.
Moreover, scattering experiments, which are our main
source of information about elementary particles, can
be idealized by imagining the target to be surrounded
with detectors, which then count for some period of
time. This means, of course, that in the relativistic
theory they give us data on a timelike world tube (and
even in the nonrelativistic theory not on a spacelike
hypersurface). Thus, a formalism which can readily
handle data on timelike hypersurfaces might be expected
to be generally useful in quantum theory.

In at least one approach to quantization one needs the
two degrees of freedom of the gravitational field isolated
{i.e., with the constraints eleminated); and, as
Ashtekar and Geroch have emphasized, ¥ it is not enough
to have the phase space of the classical canonical
variables. One needs to have this phase space as a
cotangent bundle over a configuration space in order to
apply the canonical quantization procedure. It is natural
to hope that in general relativity that “properly” chosen
variables (assuming that such variables exist) will have
a simple geometrical meaning even in this case. It
seems worth investigating whether the conformal 2-
structure, and their Lie derivatives or “velocities,”
can provide such a natural configuration space for the
gravitational field, since they have such a local geo-
metrical significance.
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APPENDIX

We shall consider briefly in this Appendix the one-
dimensional scalar wave equation, which serves as a
simple prototype for illustrating various types of initial
value problems. *! The one-dimensional wave equation
(c=1)is

¢,tt - d),xx:O?

where ¢ = ¢ (¢, x), and it admits as general solution the
d’Alembert solution

(A1)

¢ =f) +g(), (A2)
where

u=t-=x, (A3)

v=t+x, (A4)

and f and g are arbitrary functions. Using this result we
can write down the general solution in a two-dimensional
region R (see Fig. 9), in terms of the initial data, for
the three sorts of initial value problem considered in
this paper, as follows:

(1) Double-null: ¢, ,,=0,
Initial data:

o =9@) on v=vy (=uy)
o =x{v) onu=uy (v= vy with x(vy) = vluy).
General solution:
By ) =) + X () - Plug) = nq, v=09).

(2) Winicour—Tamburino (null-timelike): 2¢ 4 — ¢,,, =0
Initial data:
¢ =Plu) on x =% (u>uy)
d=x{x) onu=uy (x> x) with x{xo) =)
General solution:
pluy x) = x[x + 2l = ug)] = xlwo + 20 = ug) ] + P 00)

(u=uy, x=xp).

(3) Cauchy: ¢, — ¢,,,=0 We first consider the finite
Cauchy problem.

Initial data:
o =vx) on t=1t; (x; <x <1xy)
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(ug,vyl

(ug,xg)

(i) Double-Null (ii) Null-Timelike

FIG. 9. The region R for each of the four initial value problems.

¢, e=X(x) on t=1y (¥ <x Sxy).

General solution:

b, )= 2l + b= 1)+ pl—t+ 1]+ 3 [ Cx(xdx

x=t+t

(to—xy St~xStym1y, ty+xySt+x<ty+m).

The solution is only determined by the data in the region
shown in Fig. 9(iii). The infinite Cauchy problem
follows by taking the limits x{ =~ ©, x, —+ =, Note the
way in which the initial data “doubles” in the Cauchy
problem as compared to characteristic initial value
problems.

Thus, appart from the fact that the scalar wave equa-
tion has only one degree of freedom, the number of
functions which may be specified freely as initial data
for each of the problems considered is entirely analo-
gous to the number required for the Einstein vacuum
field equations.

We may also consider a fourth type of problem, not
discussed so far for the Einstein equations as far as
we know

(4) Mixed Cauchy and timelike boundary problem
Initial data on spacelike part of boundary:
o=y(x)ont=t; (x;<xso)
o, s=x(x) ont=ty (x;<x <),
Data on timelike part of boundary:
d=Mt)onx=x; (tgst<eo).

This is seen to break up into a semi-infinite Cauchy
problem plus a Winicour—Tamburino type problem

[see Fig. 9(iv)]. In this sense it offers nothing new;

but physically it is clearly a well-posed problem, as the
example of a half-infinite string shows: To determine
the future behavior of such a string, its initial position
and velocity must be given, as well as the motion of the
end point for all times after the initial time.
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In gauge theories of weak and electromagnetic interactions, it is generally assumed that the addition of
extra groups [simple or U(1)] commuting with the standard Weinberg-Salam SU(2) ®U(1) group,
generates new degrees of freedom for the model, simply because there are new coupling constants in the
game. This assertion is not true in general. When looking at the effective Lagrangian of the physical
system (— q > much smaller than any mass of the massive vector bosons), we see that a coupling constant
completely disappears if the generators of its corresponding group do not enter in any surviving unbroken
subgroup [U(1) for Weinberg-Salam model]. In those cases, the novelties are provided only by the
quantum numbers of the fields and especially by the arbitrariness on the choice of “unphysical” Higgs
fields. This effective Lagrangian is defined and constructed in the case where the initial and final
symmetry groups are direct products of simple groups and U(1) groups. Some of its remarkable properties

are investigated.

INTRODUCTION

The mechanism leading to the spontaneous breakdown
of a gauge symmetry in a field theory! is well known by
most of the theoreticians working in elementary parti-
cles. In particular, everyone knows the form of the
fundamental Lagrangian of the gauge theories and the

procedure to obtain the Lagrangian for the broken theory.

But at present state of experiments, this fundamental
Lagrangian has no direct use for phenomenologists who
need what we will call an effective Lagrangian,

This effective Lagrangian has a part of the type cur-
rent X current which is constructed by taking the second-
order processes occuring with the exchange of a mas-
sive vector boson and by supposing that we always make
experiments where the transferred momentum - ¢ is
much smaller than any of the masses of those massive
vectors.

In this work, we apply ourselves to construct this
effective Lagrangian,

In a first stage, we shall give the definitions of the
coupling constants of the broken theory constructed with
the old ones, There are two types of new coupling con-
stants (Sec. VI, 814). They couple the conserved cur-
rents to the zero mass vector bosons. Those of the
second type are all in the form cos?¥(Sec. VI, §15).
They appear only in the part of L, which is due to the
massive vector bosons.

In a second stage we construct the currents which are
coupled to the massive vector bosons (Sec. VIII). They
are combinations of well-known quantities (initial gen-
erators): The coefficients of the combinations are the
cos®¥’s which were constructed previously.

Finally (Sec. IX) we give the effective Lagrangian:
It is obtained by the diagonalization of a matrix con-
structed with the “unconserved” currents defined in
Sec. VIII. In Sec. X we draw the conclusions which are
based on the properties of this effective Lagrangian:

(a) the electromagnetic-like coupling constants appear
only in the part of L,,, due to the zero mass vector
bosons.,

(b) In the other part of L,,,, all coupling constants
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have disappeared except the cos®¥’s.

(c) Some initial coupling constants have completely
disappeared from the game.

(d) There is a kind of scaling for L _;: The physical
results are dependent only on the ratios of quantum
numbers of the fields [or the matrix elements of the
generators].

. NOTATIONS

We are interested in a spontaneously broken gauge
theory based on the symmetry group G which is a
direct product of » simple groups S ;, and » groups U(1);
we shall denote them U,,:

G=81,8 S5, ® 95,8 U, BB Uy,

The physical problem is described by a basic interac-
tion Lagrangian constructed with multiplets of physical
fields—(a) the Dirac spinors ¥ ,(x) transforming under
a global gauge transformation under irreducible repre-
sentation of G (generally the lowest faithful one);

(b) one multiplet of vector bosons transforming under
the adjoint representation of G. The number of its con-
stituents is equal to the dimension of G—
and multiplets of “unphysiecal” fields—

(c) the scalar Higgs fields ¢,4(x) grouped into one big
multiplet ¢(x) transforming under a generally reducible
representation of G. We list here the mathematical
quantities which will be used in the text.

For each simple group S (,:
d, is the dimension of the group;
G}y are the infinitesimal generators (i=1,..., d,);

gi(;‘k’ are the completely antisymmetric structure con-

stants (the metric of the group is proportional to the
unit matrix);

A, are the vector bosons;
2y 18 a coupling constant.

In the same manner, we define for Uy,,:
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G (p the infinitesimal generator,
A¢, )y, the vector boson,
&(,) the coupling constant.

The symmetry of the Lagrangian under the local gauge
transformations of G will be broken by a Higgs—Brout-
Englert mechanism? in such a way that the Lagrangian
will still be invariant under local gauge transformations
of a gubgroup H of G.

We will restrict ourselves to a subgroup H of G which
has the same structure as G, a direct product of m sim-
ple groups S{;, and of s groups U(1) noted Uy,,.°

H=S8(;,8 +® S{) Uy ® > DU,

We list here the notations which will be useful: for
S(’a)7
d; is the dimension of the group;
¢, are the infinitesimal generators (i=1,...,d});
hi(;’,: are the completely antisymmetric structure con-
stants (the metric is again taken as proportional to the
unit matrix);
B{,, are the vector bosons;

h ¢, is the coupling constant;
while for U{,,,

H (, is the infinitesimal generator;
B¢,). is the vector boson;

I, is the coupling constant,

H. REVIEW OF GAUGE THEORIES

We start with the basic interaction Langrangian L.
It is invariant under local gauge transformations of G:

1 1
L=-g D Tr{a0, Al g DAy A

aky

+i 23 Ta¥* Dy ¥ o + 23 (D*6) (D) + V()

where
AR =0,A00 -0, AL° — g [AL, A7),

The Al#) are constructed with the adjoint representation
of S ()"

Af® =2A4,Gdy, Tr(Géy?=1,
1
A:H(Ja) =aMA(a)v_ avA(a)u’
D=2, +i2J g ;(G o) Ak,
a

+i 4:_) 82 \G (X )Acgue

V(o) is a quartic polynomial of ¢ invariant under lo-
cal gauge transformations of G. We now apply the Higgs
mechanism, and we try to rewrite L so as to see the
local invariance of L under H. ¢ has a nonvanishing
vacuum expectation value {¢): V(¢) has a minimum for
¢ ={(¢p)#0, We want a theory describing fields with a
vanishing vacuum expectation value. We define n(x)
=¢(x) = {¢). Then {n)=0.
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We write L in terms of n(x) instead of ¢(x). The
terms (D*¢)* (D,¢)+ V() are replaced by

(D*n)* (Dyn) + (DPn)* (D, () + (D*())* (D*n)
+(D*()) (D PN + Vi),
where V'(n) =V +{d)).

The fourth term is a mass matrix for the fields
A, and 4,,,, destroying the local invariance of L un-
der G. It must be diagonalized and the remaining part of
the Lagrangian must be rewritten in terms of the
eigenstates of the mass matrix.

We obtain then a new Lagrangian which must be proven
to be invariant under local gauge transformations of H.

1. DIAGONALIZATION OF THE MASS MATRIX

§1. H is a subgroup of G. The infinitesimal genera-
tors of H must be independent linear combinations
of the infinitesimal generators of G.

H(ia) = ZG{k) B(jx‘;a) + EG(k) B(kfz)’
Jk k (1)
H,y= %} Gy By + ;Gm Birar

When we consider a physical problem, the coefficients
B8 are known and given,

§2. H is the little group of invariance of (¢) (genera-
ted by all the combinations of the initial generators
which annihilate (¢)).

Hi,(0)y=0, Hy,{$)=0. @)

No other independent linear combination of the G’s
can annihilate (¢). In physical problems, usually G and
H are given and in turn ¢ and {¢) constructed in order
to have the results (1) and (2).

§3. The vector fields Aj,, and A,,, are real, thus
the mass matrix 2, [D*(¢)]" [D,(¢)] is symmetric and
its eigenstates are orthogonal combinations of the A’s.

§4. Some of the eigenstates of the mass matrix have
a null eigenvalue. In order to see this, let us discuss
more precisely the mass matrix

25 (D*() (D))

n
Aloru
MZ
2
_A(a)u.J

Each matrix element of M?/2 is a scalar product of
two vectors belonging to the set I'={g,,G¢, (),

g!(a)G(a)<¢>}“

If we diagonalize M?/2, we have

:Zu> [A(ia)”’ A(a)“]

[y 2 (1= (aroror & o0t 4]
ot ) Lot a)
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with #2/2 a diagonal matrix. Each of its diagonal ele-
ments is the squared norm of a vector belonging to the
set I/,

r ={E,Yj Oy iyi €T}
j

Proof:
(Mz/z),-,-ZE Ot (v, Yk)ohiz(;"?’j Oji» ?Vkoki)
ik

= | [Z740u I

One obtains a null eigenvalue if and only if the vector
Ejyjoﬁ is the null vector. This means that 25y ,0,; is
a linear combination of the generators of H applied on

(@)

The preceeding points §1 and $ 2 ensure us that the
number of null eigenvalues is exactly the number of
generators of H.

Going from the kinetic part of the initial Lagrangian
for the fields A to the kinetic part for the vector fields
B in the broken Lagrangian, one sees that the B’s must
be orthogonal combinations of the A’s. The eigenstates
of the mass matrix being also orthogonal combinations
of the A’s, we have the result that the eigenstates having
an eigenvalue zero are orthogonal combinations of the

i
vectors B{,, and B,,.

§5, All other states having an eigenvalue different
from zero are noted C;,. We shall use the following
notations for the matrix of orthogonalization O:

P i j § VE
Ala *j; Otim By + ;O(Qm)B(m)-*_Z';’O(am)c(m)’

A(a): ZJO ; Bgm) + ?O(am) B(m) + ?O(am)c(mﬁ

o tam)

IV. THE “BROKEN"” LAGRANGIAN

§6. The nonkinetic part of the Lagrangian is construc-

ted with expressions D,x, where y is any field A, ¥, 7.

We have just to look to these expressions written in
terms of new vector fields B and C. Using (3)

— ; i ii ’ 0 j
Dux _al-l-x +i iazj}n [g(a)G(’a)O(aJm) +g(a)G(a)O(ui)]x Bim)u
+iiE (201G éyOdm) + 8ta) Giar Otamy 1X By

am

+i 27 (80600 wm) * &or Gtar Otam) JX Cimpn (4)

tam
7. The part proportional to C,, is noted
i ?K(m)xc(m)"
Thus we have for D,
Dux :D:Lx +i;K(m)x C(m)u"

The local invariance under H is achieved by imposing
that the two parts separately transform as x does.

§8. The correct transformation of D’y is obtained if

DLX = auX+i E"h(a)H(ia) X B(‘a)u +i ?h,(a)H(a)x B(a)M°
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By comparing with (4), we have the equalities

i ij ’ ralik )
Z g(a)G(ta)O(am) + ;g(a) G(a) O(am)

ia

= h(m) H{m)’
%)g(a) G(ia)o(iam) + ?gza) G(a) O(am)
=y Hiy - ®)

§9. With all these substitutions we obtain for the
broken Lagrangian

L:—}Z ETI.JLBLID)’ B(qu}_élzBl 2;*)1/
Hy

oo (1) 8y
-3 E Clivan €0y T iETy(m?’” D ¥y,
iPv (273
'&W(a)?’u&m)‘l’(mcwu + Zuz (@4n)* (@ un)
+ V’(Tl) +I(779 B,, Cu):

where [ is a quartic polynomial describing the interac-
tion betweenn, B, and C,,.

V. THE DIAGONALIZATION MATRIX: “SOME
RESTRICTIONS” ON THE DEFINITION OF THE
SUBGROUP

§10, In all these developments we are interested in
the definitions of the new coupling constants h,, and
) nd also of the matrices K,,,, giving the coupling
of the massive vector bosons to the currents ¥ ,, v, ¥,

In order to do this, we exploit the relations (5). By
replacing there H{¢ , and H,, by the expressions (1), we
obtain the following identities:

. Remy aii ) oo
Oum) = ﬁ(,a]m)’ O(tam) = = B(‘am)’
8w L)
O i =tmzE s o - ﬂm;g 6)
lam)—gl B(am)’ (am)_gl (am) (
{a) (a)
[i, @ are indices referring to the groups S, (i=1,...,d,)

[or Ugy); , m are indices referring to the subgroup
Sty G=1,...,d,) [or U, )]

Those relations can mean some restrictions on the
coefficients S defining the subgroup H. We shall see that
it is not the case.

§11, We shall prove the following identities in the
next paragraph. After each identity, we discuss its
meaning:

(@) B,,,=0: No generators of U,,, can enter in the
definition of a generator of S; .
(0) 238 By = 07, 05N

kTam*

—When a generator of one S,, has been used for the
construction of one S¢,,, it cannot be used in another
SZn);

~a matrix B,,, can be different from zero only if

Sin is a subgroup of S(,,; then by a choice of the genera-
tors, B, is proportional to the unit matrix of dimen-
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sion d} completed with (d, — d’) lines of zeros; the co-
efficient of proportionality is a,,

¢) 22;Bt.n,Bh, =0: When a generator of S,, has been
used in the construction of Si,, it cannot be used again
in the construction of Si,, it cannot be used again in the
construction of Ug,,.

{d) By a choice of the generators in the center C, of
S, and the generators of U, and of Ug,, we claim
that it is possible to have

n

ZB(km) Blem = Ni(m O
and

Bam Biamy =Xy (m Ot

{am) F(an) (aY(m) Ym*

When a generator of S, or U,,, has been used for the
construction of Uy,,, it cannot be used again for the
construction of Uy,,.

§12. The proof is made using the commutation re-
lations*:

i .

[H(m» H(Jm]:é;kz h{f,;” H(kp)’
[H(ip):H(n)]ZO,

[H(ﬁn H(,,)]:O,J

The three relations lead to

? a3 Béapy Bl ‘Z h B nys M
Eg(m)cbc Béan Baam =0 (p#n), (8)
Z R By = 9
;,; 8afe ﬁ(::np)Bb(mn) =9 (10
E £V By Blam =0 (11)

(a) Relation (9) implies E( =0,

(b) Multiplying (7) by B¢,, and using (8) (n#p), we
have

(»)
E ht:k B(mb) 6(mn) -

This implies the first part of §11 (b). Multiplying (7)
by 8&,,, we obtain

{m) (9
E 8ivd Blpy BEl BGan = Eht}k Bénoy Bénne

The first term is a completely antisymmetric tensor
in the group S¢,,. For a simple group there is only one
completely antisymmetric tensor which can be construc-
ted. This means 2 B¢, B¢, =22,0", and we have
proven the second part of §11(b). (c) Multiplying (7) by

¢ .y and using (10), we have

R [ —
Z;; Ry 5 Bénwy Béam =05

which proves relation §11 (¢).

§13, We give in Fig. 1 a symbolic resumé of the con-
clusions of §11 on the matrix g:
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(a) A generator of an initial group S,, or U, can be
used at most once in the construction of a subgroup or
a line of g has at most one element different from zero,

(b) A generator of a final group Sy, or U{,, can ori-
ginate from at least one initial group and must be con-
structed with at most one generator in each given initial
group.

V1. DEFINITIONS OF THE NEW COUPLING CONSTANTS

§14, The electromagnetic-like coupling constants:
We see that the columns of 8 are orthogonal in a very
particular manner [§13 (a)]. Thus the orthogonalization
of the columns of O defined in § 10 is automatic. We
just must be aware of the normalization of the columns,
This leads to the definitions of h,, and kg,

k(k) ?gz(a)
(12)

(k) _Z?_)‘a(k) 2 )‘(a)(k)-
The summations are taken over the indices with a_,
different from zero.

§15, Other new coupling constants,

First we attach an index % to a subgroup S, and an
index (k) to a subgroup Uy,,.

For each g, there is a vector normalized to 1 noted
%, with (,); = (k,/ g(;, M- This vector belongs to R™
where n, is the number of A;, which are different from
zero (n, <n).

2]
10}
[

w ‘ FIG. L

2y

Y xm ¥3)

‘i k)

Mg

' . . : 7y U’ ).
TR T T W - ¢ N
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We use a recursion procedure to define n, -1 angles
¥,; and a system of y,— 1 vectors orthogonal to X, in R™
[an orthogonal basis of R™ is é; with (§,);=5,,].

(a) ¥,, is the angle between %, and &
cosVy = (£, 8)=hy A/ 80y
In the plane (%,, ¢,) we distinguish two vectors:

—*; is the (normalized to 1) projection of %, in the
space R™"! orthogonal to é;:

52.!’;: <0’ )ﬁz_’.“, hL) }-Lk)'_;
&) &my / SINYy,

—F, is the vector (normalized to 1) orthogonal to %,
in the plane (%,,é,)

% . PY a1l
ky = - sin¥, &, +cosV¥,, X,.

(b) Knowing ¥,;, k, and %! we define in the plane
(%, 2,..)

~i

Y, ;aby cos¥, ;= ®i, 2i1),

k,,, as the (normalized to 1) vector orthogonal to
zi, 2" as the (normalized to 1) projection of %} on

R™#1 orthogonal to 8, &,,..., &,;-

(c) The procedure stops when for i=n,, cos¥,, =1,
The procedure is also applied for each index (k). We
shall see later that the cos¥,,’s play the réle of new
coupling constants.

VII. CONSTRUCTION OF THE ORTHOGONALIZATION
MATRIX

§16. We construct an orthogonal matrix V. The first
columns of V are the same as those of O. [The matrix
(h/ g)B constructed in §14]. Each of the first columns
of O is attached to an index %, with this index we can
construct »n, - 1 vectors I?e,.. For each of the first col-
umns of O, we construct »n, — 1 new columns of V by
replacing each nonzero element

h h
<g x &n

by (Ze,.)j where i=1,..., n, -1 and by keeping zero
everywhere else, The same is done for each index (k).

§17 Counting the number of lines of O it is given by

24y d,+7 But the special form of 8 says (see §13) that
this number is also equal to 207, din, + 2,1y + Moy
where »n, is the number of generators in G which do not
contribute to the generators of H. There are )., dy+s
columns in 8. We have just constructed with those first
columns 25, d(n, 1) + 2, (n,, — 1) new columns for
V. Thus it remains to define », columns to complete V.
For each missing generator of G we construct a column
by putting 1 on the line corresponding to this missing
generator and by putting zero everywhere else,

§18. Thus we have p= Za din, = 1) Tpy (2gy) — 1) + 1,
massive vector bosons. The matrix V which has been
constructed in §16, 17 is not very different from 0. This
last one is obtained by rotating the p last columns of V
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by an orthogonal matrix of dimension p. We shall note it
by O(p).

VHI. CURRENTS COUPLED TO THE MASSIVE
VECTOR BOSONS

§19. At this stage we have constructed some ortho-
gonal combinations of the real massive vector bosons
Ciny- We call them C ;)

E(m) :i.Zl;Af-) iM)‘(ium) + ?A(a) fj(am)
= ;c(k)[o(p)]km [13:8 o(p)].

The matrices V and O(p) were defined in the preceding
chapter. They are coupled to the infinitesimal genera-
tors of G in the following manner:

f? ComEimy = ; CieKier

with
K(m) =.Z%g(a) G(‘a) V:am) + ?gf.) G(u)V(am)'

We are now able to write the elements v in terms of the
matrix elements of the matrix 8. For each index % re-
ferring to a subgroup S{,, we have the first columns of
V given by

B
"“‘ B(dk) e ek}

Vi = O(u) = Ny

with each of these columns we find (r, - 1) new columns
of V indicated with ) by

Viah= (k) i=1,...,n,-1.

This expression leads to the coupling Is;, for the vec-

~

tor C.i,
K i)=§g(¢)c(b¢) (R;) BELy/ A e

Now (I}‘).=O for i< a (§15). The summation begins at
a=1. Moreover, this summation is made over the
groups S.,, which contribute to Sj,,:

e 5 — 8
K(i_—(u

b i) EGU)B(m

g
+ él 7\ £ (ki)a§c?¢) B(bljk)

The construction of %; has been made (§15) such that
(éi)i - Sin\IIM,
a>i.

(k)),=cos¥,(&}), for n,>

Introducing those definitions and putting in evidence a
coupling constant

9 gg ) in2 b bi
K= qu,; X, {sin \I’ki;c(i) Biins

A,
2 g_(ﬂ )TLE Sln‘l’h COS\I’M (xk) ZG(a) B(ak)}
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But for i <a<n, we can also sec that

i _ Aug cos¥,, 1
= o(e) - Z7° ki _ ~
(xk )a )\ukg( i) Sll‘l‘I’ki (xk)a

2

Thus the coupling to 6‘ i becomes

4 o~ Bu 2
Kody= ~ siny,, ——{sm ‘I‘mzcmﬁ(m

- cos?Y,, .Z}.x; Glay Blin}
= 13)
or

K= qu,m_x n {EG(;)BM)

- cos?y,, GZ{ bz Géo Blint.

For index (%) referring to the subgroup U},, we obtain
a similar formula,

~ Zii
Kpy=— omg2til— {EG("” By — €087 ¥

sin¥ ) Ay 2

(14)
Tk
x [g‘; Zb)G<ba) Blaw * aZG(n) Beam b
for the coupling to the vector C,,(i=1,..., ny ~1 is

never a U’ subgroup index). The #, Iast columns give
the couplings to the vectors C(, oy OF C(O o

K(‘a.m:g(a)G(i.) or K(o,a)zgfnc(a)- (15)

§20. We want to isolate quantities which can play the
role of coupling constants, so we write

~

K& =komKin or, symbolically K., =k, K, (16)

with the definitions for the four types of couplings giv-
en below, When

— £i)
Kehy =Ky then ke, = - Stn¥,,x,,
~ ~ _ g s
Koy =Kary oum == _sin\ll—u_(k:ix' " am

K(lm)—K(jiO)’ Biioy = 8eirs
k(‘ibm):E(ow Roiy = 8i-
This leads to a very simple form of the couplings to
the massive vector bosons [by comparing (16) and (17)
with (13), (14), and (15)]
=26, By
- cos™¥y; {E bEG(Z) Btk (18)
Kl = ?an Biin
- cosz‘y(k)i{:zﬂ? G Bl +§G(-) Bamd  (19)

Kily=Gdy and Kig ;, =Gy,- (20)
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IX. THE EFFECTIVE LAGRANGIAN

§21, The basic Lagrangian which was written in §9
is of minor interest to phenomenologists. Our final
aim is to describe a part of physics which is accessible
to the present energies, By this we mean that we re-
strict ourselves to an effective lagrangian of the type
current X current; the massive vector bosons are ex-
changed with |¢*| negligible with regards to the masses
of vector bosons.

The part of the Lagrangian due to the zero mass
vector bosons is

L+ LG =~ %Z,; Tr{Byum Bih}
- 423(1)#-1 Gy Filyt 0, ¥ ‘Zl;h(t)@}’“
H?n‘I’B‘(nu‘;hfn‘T‘;VHH(t)‘I’B(x)u- (21)
By LX,, we mean the kinetic part of L, while LS,
stands for the interaction part with conserved currents.

While the interaction part due to the massive vector
bosons is defined as
L, =/ D [Ty, KOG, [Fy*K ¥} +h.c.,
1

where G,/J2=
of Ciy,

1/M; is the inverse of the squared mass

M2/2=[K (o] K (D).

§22. We claim that this last part of the effective
lagrangian can be written
w= (1/2&)? [Ty K P KD Ty K, ¥] +h.c.,
(22)
where

(K%)= (K (D] Ky ()]

The coupling constants %;, have completely disappeared
from this expression [see (18), (19) and (20)]. We just
remember of the old coupling constants g and g’ by the
expressions cos?¥ which are contained in the definition
of Ki;,. All generated cos®¥ are included in it.

Proof: The matrix
(B12/2); ;= Ry o 3 K Ly (D] [K 15y (D) I B By (KD

is not diagonal, By diagonalization we obtain the eigen-
states C(,,

Cin=2201Cu
k

with eigenvalue M2/2, The matrix O is the matrix G(p)
defined in §19. Then we obtain the following two
relations:

(ozvﬂo‘) =M%, andK<,)=2k(iK(i)O§,.
1
Remember that

EK(,)Cu):Z._\/ k(i)K(i)c(i%
1 i
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Using the definition of 1V72/2, the first relation is
written

2 Z/ Oimk(m)(KZ)mlk(l )ij =M2i(’ij:
m,l

which implies by inversion

1

1 e 1 2
MZ —ZmL,IlOimk(m)(K )ml k( O

And replacing, in L!,,, G; by its value,

1 = 1 = N
L, Zﬁ%)[‘l’"/uK(n‘I’]m 8, T K] +h.c.

1 1
:'27-— L [‘I"XMK(,)‘I/]O“"F’")

imlj

X(Kz izj)[‘_l")’uK(j)\I’]*+h.C.

mlk

and using K¢, =7, k(;)K(;)0;;, we obtain

Llu—TLI[‘I/YMK(t)\I’]k(t)OHOtmk (Kz)r-nln

1

e 080k [ KL ¥] +h.c.
n

Ly —TL[‘I’%KQﬁI’](KZ)
X[E')’IJKG )‘I’]‘ +h.c.

X. GENERAL PROPERTIES OF L 4

§23. Now we count the number of coupling constants
which appear in LS, + L% ,. Originally we were in pos-
session of n coupling constants of the type g(;, and »
coupling constants of the type g(;). They have been used
to redefine new coupling constants: m of the type hq),

s of the type k{;, (12), and some number of cos’¥,,
(§15). The following possibilities can occur (§13):

(1) A subgroup S{;) or U{,, 1s constructed with only
one group S¢;) or U, Then g(,) _h( . The new coupling
constants k [or &’] appears only in L,,, [(21)]. The old
coupling constant g¢;) can also appear as a “coupling
constant” k¢ (17) but disappears in L%, {(22)].

(2) A subgroup S{;) or U, is constructed with more
than a group S¢; or Uy, [n; groups]. This case gives
right to a relation (12) defining a new coupling constant
h [or B’} and (n; - 1) coupling constants of the type
cos \Il,, (§15). An old coupling constant can appear as a
k-type coupling constant but disappears in L, [(17)].
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The coupling constants & {or k'] appears only in LS,,
while in LI, all cos®¥;; appear [(21) and (22)].

(3) An initial group S¢;, [or Uy;)] can be “completely
broken”: There is no subgroup which is constructed with
its generators. The old coupling constant g¢;) [or gfj)]
becomes trivially a “coupling constant” of the type 2y
or ke [(15), (17)] but disappears in LL,, [(22)] and it
does not appear in L¥ nor in L®. The coupling constant
£ Lg{j>] has completely disappeared from the Lagran-
gian we constructed in §21.

§24. Looking at the form of LI,,, we can see a kind
of scaling for the physical results. Let us suppose that
for each generator K{,;, we have fixed a scale u;: This
means that all matrix elements of K{(,, are proportional
to ;. By the same reasoning we did in §21 to suppress
the coupling constants k(;) of the Lagrangian, we obtain
for L', a result independent of the (.

Thus the physical results for processes of the type
current X current will only depend on ratios of matrix
elements of each K{;). Thus we cannot believe that such
a theory can provide equivalent processes with cross
sections differing by orders of magnitude. Such differ-
ences can only naturally proceed from the matrix (K4
defined in §22, but this matrix is, apart from the fac-
tors cos’¥, entirely dependent of the Higgs sector.

We thus claim that the really interesting features
(the explanation of processes involving same type of
physical particles interacting with the exchange of mas-
sive vector bosons but with cross sections differing
by orders of magnitude) of such theories become almost
entirely from the Higgs sector and have very little to
do with a choice of the groups G and H.

CONCLUSION

Throughout this work, we have been interested in
writing an effective Lagrangian of type current X cur-
rent for spontaneously broken gauge theories.

We have seen that almost all the old coupling con-
stants which were in the initial symmetric theory are
recovered in the broken theory either in the form of
an “electromagnetic”-like coupling constant [our ¢,
and h{;,], either on the form of a term cos*¥. The
“Fermi”-like coupling constants are functions of those
cos®¥’s and of an arbitrariness in the theory: the choice
of ¢ and its vacuum expectation values.

An old coupling constant disappears in the broken
theory if the group corresponding to it is completely
broken: None of its generators enters in the definition
of the generators of the entire surviving subgroup.

The arbitrariness in the Higgs sector of the theory
has very much to do with results of experiments pro-
ceeding by the exchange of a massive vector boson: The
scaling properties which are exhibited by the effective
Lagrangian suggest us that differences of orders of
magnitude between the cross sections of “equivalent”
experiments come almost entirely from the choice we
did in the Higgs sector and not really from the choice
of groups.

R. Incoul 2467



ACKNOWLEDGMENT

The author is grateful to Professor J. Nuyts for his
constant help all along this work.

IFor a review of spontaneous breakdown of field theories, see
the classical work: E. S, Abers and B.W. Lee, Phys. Rep.
C9, 1(1973).

2468 J. Math. Phys., Vol. 19, No. 12, December 1978

’F. Englert and R. Brout. Phys. Rev, Lett., 13, 321 (1964);
P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964).

3Here we caution the reader that a more complicated situation
could occur with the semidirect product of groups—our
analysis does not apply to those more general cases.

4The proof which is given here has been suggested to us by
Professor Nuyts. An alternative proof can be obtained by
considering A{}) as a matrix element of the adjoint represen-
tation of Hf, and g{I? A@k,) as a matrix element of another
representation of H(‘p,. Using Schur’s lemma in a complicated

way leads to the proof.

R. Incoul 2468



The retarded Josephson equation
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The retarded Josephson equation, which takes into account, in a simplified form, retardation effects of
the Werthamer equation, is a nonlinear, nonsimultaneous, causal integrodifferential equation. It will be
solved for kernels which are essentially the asymptotic kernels from BCS theory. Of physical interest are
the rotational solutions, especially the characteristics and dynamics, which describe the steady state of a

Josephson junction.

. INTRODUCTION

The Josephson equation can be derived by means of
Maxwell’s equations together with the frequency relation

9= (e=le|>0), (1.1)
and the current phase relation (CPR), which connects
the current perpendicular to a planar junction j(¢) to the
phase difference ¢. This CPR is a nonlinear, non-
simultaneous relation, which is invariant by time trans-
formations and obeys causality

t
jlol= [ dt' K@t—t;0(), o). (.2)
The current therefore vanishes as long as the phase
difference is zero, If the two sides of the Josephson
junction are interchanged, ¢ —~— ¢, the current changes
its sign, j{— ¢]=-jl¢]. If voltage changes are slow or
small, then second- and higher-order derivatives of
@(t) are neglected and the CPR becomes

This is the first-order adiabatic approximation (AA),
since only the first-order term ¢ (voltage) is retained.
If the voltage itself is small, the linear adiabatic ap-
proximation (LAA) is sufficient,

](*P) = ko(‘ﬂ) + (».0/?1(‘?)-

The Josephson equations for these different approxima-
tions (AA, LAA) has been discussed in the literature
under various conditions, i.e., for local or extended
junctions, for capacitive or inductive loading, and for
various inputs. We consider here a capacitive local
junction with current input, which will be written in
dim?n,sionless units. The classical Josephson equa-
tion™"

(1.3)

(1.4)

BP+ ¢(1+ycosy)+sing=a, (1.5)

where 8 is the capacitance parameter, v the interference

term anisotropy, and « the dc current applied, is a
result of the LAA, The equation in the adiabatic

approximation AA is
BP +io(P) — i1(P) cosg +jy (@) sinp =0, (1.6)

These differential-type Josephson equations have been
used predominantly for practical calculations (see,
e.g., Ref, 7).

The retarded Josephson equation®? is the simplest
integrodifferential equation based on (1. 2). It can be
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considered as a nonsimultaneous generalization of (1. 6),
B+ P+ [ ar F(t')sinp(t—1") =0, (1.7
0

where the retardation in the CPR is given by a memory
function (kernel) F(t), which is assumed to be normal-
ized. The most complete equation for a junction has
been given by Werthamer, !°

w T i = Ot=1)
B@+f0 dt <G(t)sm 5

+F(t’)sin¢++(t—f’—)> =0, (1.8)

It takes the time dependence of the voltage fully into
account. The Werthamer equation (WE) has been solved
in the zero-temperature case. " The kernels F, G can
then be given analytically. !* They are functions
oscillating with the gap frequency and decaying very
slowly.

The equation (1.7) can also be considered as the
special case of (1.8), which neglects the regular part
Gy in G(#) =G(#) + Gy8’(f — 07) and instead of a half
[o(t) + @(t-t')]/2 takes a full retardation ¢(f - ¢') for
the second integral term into account. The first
assumption assumes a linear quasiparticle (dissipative)
term, which is well realized for junctions working just
below the transition temperature. The second assump-
tion should be considered as a mathematical simplifica-
tion which is more easily visualizable.

The retarded Josephson equation (RJ) can be trans-
formed into higher-order differential equations, if the
kernel is a solution of a linear differential equation
of arbitrary (finite) order. Two kernels of this type
were investigated earlier. 13 In order to be near to the
Werthamer problem, essentially the asymtotic form of
the kernel has been used for the present purpose.

The characteristic will be discussed over the whole
range of 8 values, especially the singular frequencies,
being submultiples w,= wg/ n of the gap frequency w,
=2A/% (& energy gap), will be investigated in great
detail. Together with the characteristic the dynamic of
the junction will also be elucidated indicating a special
feature not present for the instantaneous case. To
support numerical results, limit results, especially for
large B8, will also be obtained.

Il. MATHEMATICAL PRELIMINARIES
The integrodifferential Josephson equations [(1.7)

© 1978 American Institute of Physics 2469



and (1, 8)] become simple differential equations of higher

order, if the kernels F(f) and G(¢) are finite Dirichlet
series of type

l ”u
F()=22 a, -l

wsir=1

2.1)

where n=7},"(n, is finite and related to the order of the
differential equation.® The kernels entering can, fo
some extent, be approximated by a Dirichlet series, !?
The major deficiency of such series is their behavior
for long times, since the physical kernels oscillate with
the gap frequency but decay like 1/¢, i.e., with infinite
decay time X, =0. The simplest non-Dirichlet kernel
for the retarded Josephson equation, which has the
properties mentioned and does not generate a singular
equation (1.7) is

2 .sinwgl i

Fi)y=_"— 2.2)

Apart from general analytical results, the numerical
treatment will use the kernel (2.2) with w,=1. A more
general problem would be the three-parameter case
with arbitrary @, 8, and w, or the equivalent problem
with o, 8, and an arbitrary coefficient for the first-
order term ¢ in (1. 7).

The unilateral Fourier transforms of (2.2) are

_f(w):fowsz(z)e‘“':j(w)+ii(w), (2.3)
jw) = a(w? - w?), i(w):%ln g—fiw)" s (2.4)

where j(w) is an even step function and i(w) is an odd
function with a logarithmic singularity for w =w,. Thig
is in contrast to the Riedel singularity,* which enters
in the even tunnel function j(w). A model for F(f) con-
sistent with the Riedel singularity will be discussed in
Sec. VI.

We want to find rotational solutions ¢(#) to the RJ
equation (1.7), i.e., periodic solutions with a linear
time term. Introducing the variable x = wf with w=27/T
and 7 the period, ¢(x) fulfills the periodicity

olx +271) = @(x) + 27,

which as a Fourier series is

o) =x +2 a,(cosnx — 1) + b,sinnx, 2.5)

n=1
where for convenience ¢(0)=0 is assumed, since time
origin for the steady state can be freely chosen. Then
the Fourier expansion of sing(x), which is now a (true)
periodic function is

sinp(x)=2_ A, cosnx + B, sinnx, 2.6)

n=0

where A= — SmyA, because of ¢(0)=0, This defines
the multivariable functions A,(ay, by, ag, by, ++-) and
B,{ay, by, @y, by, - - ), which express the nonlinearity of
the problem.
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Using these functions, (1.7) can be written as

Bwle?, —wn a, jw), —ilw)
wn Buwin? b, ilnw), jhw)
A"
X , n= 1, 2, . (2. 7)
B"
and
wHAj=u0, (2.8)

where the right-hand side of (2, 7) is the integral term
in (1.7). In order to solve {2.7) and (2.8), the infinite
system has to be truncated; introducing the 2N com-
ponent vector Y= (a, by, -+,ay, by), there are two
methods to find a solution:

(1) The iterative melhod, which in analogy to the
iterative solution of Fredholm integral equations, starts
with an initial solution Y, puts it into the integral term,
i.e., into the right-hand side of the first N equations of
(2.7), and finds an improved value Y,. The solution up
to a given precision is found by repeated iteration. N
has to be increased until relevant digits no longer
change.

(2) The Newlon method considers (2.7) as a transcen-
dental system of 2N equations for the unknown Y. In
contrast to the iterative method, it converges fast, but
only if initial values Y, are near to the solution. For an
optimal calculation one starts with the iterative and
ends with the Newton method.

On the other hand, there are two procedures possible:
either (a) o, 3 is given and w, ay, * -+, by will be deter-
mined, or (b) w,B is given and &, ay,--., by is calculated.
Since the characteristic o(w, 3) is a unique function,
procedure (b) has to be preferred; (a) is useful only in
regions with positive slope dw/da > 0. Since in case (a),
the characteristic decays into disconnected branches,
the solution, which needs a fairly good knowledge of
approximate initial values, has to be traced down from
large $ values, where analytical asymptotic solutions
are known, to the 8 value considered.

I1l. THE ASYMPTOTICAL SOLUTION

The asymptotical solution for 8>>1 has been discussed
earlier (see Ref. 9) in connection with various (averaged)
approximations in the RJ equation, Here the character-
istic has been investigated up to an order, where con-
tributions appear that account for w=w, = w,/2,

_ ilw) | jlw) 1 (3i(w)jlw) | #(w)  i(w)
MR TR TR ('gaf' T8f T 20t
i(w)jw) +i2w)j(w) 1 )
- 16(&)6 ) +()(Bl_ . (3. 1)

This expansion is good for large 8 and w not too near
the singular frequencies w,. For w=w, the first- and
third-order terms contribute mainly, whereas for w= wy
the last third-order term becomes singular. In order to
extend the validity of (3.1) into the singular frequencies,
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certain dominant terms in all orders have to be taken
into account (see Appendix A). In the limit 8 —~«, the
characteristic o(w, 3) becomes w=u except for w =w;y,
where the singularity degenerates to a double lateral
peak extending to o =0. 41813 (w, =1).

This asymptotical solution for 3> 1 can also be ex-
tended to the critical current o, (8) which is defined as
the limit

@ (B) =lima (w, B).

w9

3.2)

The general result has been derived in Appendix B of
Ref. 9; it becomes rather involved if i(w)/w has a
logarithmic singularity in w=0.

In the case [(2.2)—(2. 4)] considered here, the
critical current is

00(3)7% (1-%1"(0)) , (3.3)

where i'{(0)=2/7.

IV. THE CHARACTERISTIC

The average voltage (¢) =(1/T) [} dtp=21/T=w
versus current @, i,e., w(a,p), is called the character-
istic of the RJ equation. It has the symmetry w{~ a, )
=-w(a,f), since for ¢ ~—a and ¢ - ¢ Eq. (1.7)
remains invariant.

The characteristic w(o, 8) will be discussed numeri-
cally for the kernel (2.2) with w, =1, It shows a very
special behavior for the singular frequencies w,=1/1
where the integral in (1.7), extending over a periodic
function, should diverge indicating a self-resonance of
the kernel (¢ period 27) with the solution ¢(f) (f period
27l). Nevertheless, the value o(w,, 8)=o,(8) remains
finite, since the I/th order Fourier coefficients of
sin@(f) vanish (see Appendix B). The (finite) singularity
of w{e, B) near the singular frequencies w,; can be
dissolved by using the regularizing transformation

lw+1
lw-1

in the vicinity w=w,. For small 17, the characteristic 7,

1 {w) =sigllw-1)/1n

(4. 1)

FIG. 1. The regularized characteristic n,(a) near the first
singular frequency w, for various g values.
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versus o behaves linearly,
alw, B)= o, (8) - A,(B)n,,

and the slope |dn,/da | =1/A,(B) decreases with in-
creasing f.

“4.2)

For w, =1 the regularized characteristic is shown in
Fig, 1. « has two minima (lateral points), which be-
come more pronounced and tend to w=1 or 7, =0, if 8
is increased. For smaller 3’s they approach each other
again, flatten out and finally join for §=0. The
characteristic for =0 and w>1 is exactly w =o (see
Appendix C).

The regularized characteristic for 3=1 is given in
Fig. 2. It shows five curves with five different ordinate
regions, which are connected (by dots) in the points,
where, between neighboring singular frequencies, the
current has a maximum. The upper current minimum
lies at n;~ 0.1, which means [w=1, 0001, whereas the
lower is still nearer to 17,=0 and higher in o, There
is an absolute current minimum at @ =0, 667 for
w=0, 5001, which plays an important role for the hys-
teresis if the current is reduced quasistatically,

Figure 3 shows the characteristics w(¢, 8) for 8
ranging from 0 to = in a plot with displaced origin. As
mentioned before, §==is w=0 for w#1, with an
infinitely narrow lateral double peak at w =1 extending
to ¢ =0.41813. For =10 the curve has a hyperbolic-
like shape if one disregards the special behavior of the
singular frequencies. This shape is generally explained
by simple approximative models to the RJ equation.?
In this case, 8 is also large enough for the asymptotic
solution (3. 1) to give reliable results. Also, the
asymptotical critical current (3. 3) for =10 becomes

,,,//

5

(€XS) 08 1.0

FIG. 2. The regularized characteristic n"(a) for = 1. Differ~
ent regions connected at @ maximum (dots).
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FIG. 3.
10, =, and F(t)=(2/7¢) sint with displaced origin (scale belongs
to case g=),

The (usual) characteristics wlx, 8) for =0, 0.1, 1,

a@.~0,3172 in agreement with the extrapolated numerical
result, The curve 8=1 is identical to Fig. 2. The
double-peak structure of the singular frequencies cannot
be seen in this conventional plot, in particular the lower
(w=w; = 0.00°++) @ minimum disappears completely.
Nevertheless, all curves 0< 3 -< * show the double-peak
structure at w,, although the lower peak becomes a
small nose for small 3. For $=0,1 even the ¢ maximum
o,(B) which was clearly visible for $=10, 1, immerses
in the lower branch. For =0, w=«o for w> 1, and for
w, { =2,3,---) there are single peaks which seem to
diverge numerically.

For technical reasons, the characteristics could not
be traced down to w =0 since, for smaller w, more and
more Fourier coefficients (N large) have to be taken for
a certain accuracy. It is therefore difficult to form any
conclusions about existence and value of the critical
current o .(8). This question has been investigated for
some simple Dirichlet kernels, 13 where the RJ equation
becomes a differential equation of higher order,

Another problem in connection with the characteristic,
is the hysteresis arising when the current is changed
quasistatically. If the Josephson junction is at rest,
i.e., ¢=0 and the input current is slowly increased,
the solution is stationary and stable at ¢ =¢, =arcsin ¢
for o <1 with {(¢) =w=0. For @ % 1, the solution be-
comes rotational, i.e., the w value jumps from w=0
to the rotational characteristic of Fig. 3, for f=1 onto
the upper (w > 1) w; branch, where it remains as long as
o does not go below the upper @ minimum. If it does,
the frequency, which is related to the energy of the junc-
tion, falls onto the next branch below or down to w=0,
if a rotational solution is no longer possible. This is
certainly the case, if @ is below the absolute @
minimum, which is at @ =0, 667 for §=1. A similar
hysteresis structure holds for other § values; the small-
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FIG. 4. The phase trajectory ¢’ () =(1/w) @(wt) versus ¢(x)
for =1, w=3 and @ =0, 73875.

est current, where the junction resets to w=0 always
very near to {but larger than) a singular frequency, be-
cause of the general shape of the characteristics.

V. THE DYNAMICS

The dynamics of the solution is contained in the set
of Fourier coefficients or in the function ¢{x) with x
=wt. It is too extensive to give a detailed description
of @(x), but there are a few general features which can
be stated more easily. As shown earlier® 3 the voltage
¢'(x) may become negative in the steady state. An ex-
ample for 8=1 and w=1/4 with @ =qa,(1) =0, 7388 is
demonstrated in Fig. 4. The voltage ¢’ has then three
negative and one positive minima. Therefore, the phase
trajectory ¢’(p) has a triple loop which encloses the
unstable equilibrium ¢, =2.3104, A similar behavior
has been observed for the other singular frequencies
w,, where there are ! minima in ¢’(x), only 0 or 1 being
positive (up to fifth order). As a measure of higher-
order harmonics which enter into the solution, the
number M of minima of ¢’{x) can be used. For large w
down to a little above wy, M =1; from there down to a
little above w;, M =2, etc. The boundary (a little above
w,) is almost independent of 8, if B is not too large, If
B is large, the first harmonic is sufficient to describe
¢’ (x) everywhere except near the singular frequencies,
Near w, higher harmonics are required, the more the
higher I; this again increases M in the vicinity of w,
with the order of the singular frequency, whereas
everywhere else M =1 seems to be sufficient.

9

VI. THE CHARACTERISTIC FOR RIEDEL
SINGULARITIES

The problem discussed so far [(2.2), (2.4)] has the
logarithmic singularity in the odd function i(w), whereas
BCS theory predicts it for j(w). 4 Agsuming

. _Wg W+ w, 6.1

Hw) =55 1n ﬁ_{w_wg (6.1)
the corresponding Hilbert transform® is

oo 1 £7 jlx)dx 1w, 2

z(w)_ﬂfm ——————w_x—ZwA(w - w?), (6.2)

where [ means the Cauchy principal value of the integral,
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It is easy to verify that these functions, according to
(2. 3), belong to the kernel
sinw,s

F(t)=w, [ ds == w,si(w,t),
t

(6.3)
being an integral sine function, 16 which is normalized
because of (6.1). The asymptotics for long times,

NEOSUJ:I‘ , (6. 4)

F(t) .
are in agreement with the asymptotics of the BCS theory
for T=0,% and for T > 0 (see Appendix D). Note that

(6. 4) taken as F(f) would lead to a singularity in the
integral term of (1.7).

The RJ equation will now be solved for the kernel (6. 3)
with w, =1, The characteristics for =1, 10 and © are
plotted in Fig. 5. The straight line w=2a is given by
8= (dashed curve), since similar limits to those
derived in Appendix A and Sec. III can be considered.
The characteristic for =10 is again hyperbolic with
cusplike singularities in w,, This result can be inter-
preted by means of the asymptotical formula (3. 1),
which gives @ ~ w ~ 7/4w’g for w> 1 and, since i(w)=0
for w<1, o~w+j{w)/2ws® for w< 1 with the singular-
ities in w, pointing to the right. In contrast to Fig. 3,
the discontinuity in w=1 originating from i(w) being of
order 1/8 is well visible. Again, the asymptotical
critical current a(8) from (3.3), with '(0) =0 giving
«,=0,40286, is in good agreement with the value ex-
trapolated, Finally, the characteristic for =1 is
shown. It has qualitatively the same behavior as Fig. 3,
except near the singular frequencies which consist of a
cusplike singularity pointing to the left. It would need a
more detailed investigation to understand how the direc-
tion of the singularities changes by going from =10 to
g=1.

vil. FINAL REMARKS

The retarded Josephson equation has been solved
for two different non-Dirichlet kernels, which are in
asymptotical agreement with the BCS theory. As a
result, the characteristics of the rotational solutions,
which are essentially hyperbolic, show a very specific
structure at the singular frequencies, where the period
of the integral kernel is commensurate with the period
of the solution, If the tunnel function i(w) has a
logarithmic singularity and j(w) is bound, this struc-
ture consists of two lateral peaks, i.e., ¢ minima lying
extremely near the singular frequency w,. In the op-
posite case, where j(w) is logarithmically singular
(Riedel), the structure has one cusplike peak. For
small damping, i.e., large B, the solution can be well
understood by means of asymptotical expansion. The
steady-state solutions again show negative voltage
parts, which can be qualitatively understood as a con-
sequence of retardation. The number of negative re-
gions of the voltage and therefore also the number of
loops in the phase trajectory is of the order of the
nearest singular frequency, if w® w; and 8 is not too
large.
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APPENDIX A. LIMIT BEHAVIOR OF
CHARACTERISTICS NEAR w, = 1/n FOR
LARGE 8

For w=1 and 8> 1, the asymptotic expansion (3.1)
gives

x x
O=1l-g+—+-""

2t (A1)

where X =i,(w)/B=(1/78) In2/lw-11 is assumed to be
of order 1, If X" is included, Xy(a) with Xy(1)=0
follows as a root of the polynomial (A1).

The limit behavior X{(a) for N —« can be derived
from the RJ equation for the Fourier coefficients (2. 7)
by taking the limits w1, 8—<=, and X fixed:

diz—XBl, b1 :‘XAh (AZ)

a,=b,=0, n=2,3,..., a=w+A,.

Using a; =p cosy, by =p siny,
Ay =Jy(p) cos[(p cosy) - 7],
Ay =Jy(p) sin[(p cosy) - 2v] - Jy(p) sin(p cosy),
By =dy(p) cos[(p cosy) - 2¥]+ Jy(p) cos(p cosy),

and (A2) gives
@) peosy=r=>

a=1+J,(p), X=- (A3)

B
2J1(p), p<0’

M Hp)=dyp), p=py=1.84118:=>

04 10 a

FIG. 5. The characteristic w(x,g) for g=1, 10(full),
= (dashed) for F(t)= [7 dz (sinz)/z ~ (cost) /t.
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4 Podilp 1 1. 69498
a_1_29j0—b)—o—%x_1_——)—(«———. (A4)
An investigation of X (o) shows that X;(1) =0 and X{(1)
=-2; X, increases with o decreasing until oy =0.41813,
where X (o) =2,91297 and X{(¢{) =». For a > a,,

Xy (a) continues with Xy; (o) =X (), X{(a)=5.0062
and being a hyperbola.

The characteristic w{a) in the vieinity w2 1 is there-
fore

w=1 ;0- 2 exp| - 78X (a)], (a5)
-

where Xi(a) holds for w> wj(x), i.e., beyond the o
minimum, and Xy(@) for 1< w< wi(a). For ws 1 the
results are analogous.

The solution X () also agrees with the regularization
found near the w, singularities,

-1

§w+l ]
nw-—1

o, B)=&,(8) - z,,m)[m

nw+1_
nw-1

=2
) . (A6)

+0 <ln

since for 8 —~=, @,(8)—1, and A{(8)~5.34 § has been
found numerically, whereas (A4) would give 4;(8)
~1,69498 73. This proves that, in the limit g8 — =, the
wy singularity shrinks to an infinitely narrow (in w)
lateral double peak extending to ¢ =0y,

An investigation into the wy singularities under
similar assumptions is not straightforward; this can
also be seen by the 1/8 expansion, where the first term
contributing to w, is

a=%—4j(1/2)5(§3‘i)+...,

indicating that another quantity X has to be used.

A numerical calculation of (A8) verifies its validity
for all w,, where @ y(8) ~1/N and A,(8)~ ayB for large
B. In the same limit, the ¢ minima «}(3), @,(3) have
been investigated. In contrast to =1 they vanish com-
pletely giving rise to w=0o for w#1,

APPENDIX B. FINITENESS OF THE CURRENT FOR
W=wy = 1//

For w=1/1, the RJ for the Fourier coefficients (2.7)
becomes

A,=0, B, =0,
pwtnt, -wn\ [a, jhw), - ilnw)
wH Buw*nt b, ihw), jlow)
AL (B1)
X b
Bn
n=1,2,+0+,1=2,1-1,1+1, 1+2,:++, a=w+A,.
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Equation (B1) has been calculated numerically for 2N
equations n=1,2, .-+, N with 2N unknowns, a,, b, with
increasing N. As a numerical result o, ay, by 09, by, "
exist, and can be calculated to any degree of accuracy
if B8 is not too small (dots in Fig. 3 for §=0 character-
istic), i.e.,

a(w=1/1,8)=a,(B). (B2)

If w~w,, an expansion with respect to 1/i{lw) or small

+
lwt+l (B3)
lw

My (w) =sigllw - 1)/1In| —— ]

is possible, giving for X = (o, a,, b,, A,, B,)
X=Xg+nXy+n* Xy +ee, (B4)

where X, is the solution resulting from (B1). 7 is small

only when w is extremely near to w, (e.g., w=1+10-10

7y ~1(1n10)1000~ 0. 434x 1073), which means that only
the first equation of {B1) changes, giving

B, -wI\ [dt - B!
T =
wl  Bwit/ \ b Al
Tjlw), -1
+
1 Tji(lw)
Al
X . (B5)
B

If instead of w, 7,(w) is used as ordinate for w= w,, the
singularity, being a cusp in w,;, is made regular,

APPENDIX C. THE CHARACTERISTIC FOR =0 AND
w>1

Because of (2.4), jlnw)=0for w>1and n=1,2,++;
therefore (2.7) for $=0 becomes
0, —wn a, 0, -—ilw) A,
= {C1)
wn, O b, ilhw), 0 B,
for n=1,2,.... This allows for the special solution
ay=a;=--+ =0, since sing(x) is then an odd function
with

A"(O,b1,0,b2,°--)30, n=0,1,2,---. (Cc2)
Therefore, by means of (2.8), w=0o, whereas

ilnw)

b:
" nw

Bn(oybigoybb"'); n:1,2;"' (03)
gives a nontrivial ¢(#)

APPENDIX D. THE ASYMPTOTICS OF THE KERNELS
FOR t > o AT TEMPERATURE 7

The pair-retardation kernel in the Werthamer equation
at temperature 7 with an energy gap A is

F(t) ﬁﬁzﬁ“" (t, T)o" (£, 0) + ¢" (t, T) ' (¢, 0)], (D1)
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where

o0

A E
— 1 ;A [ — p——
¢(t,7)~¢ +ig" = R E i tanh 3T

X exp (t% t) .

By means of the method of steepest descent, it is found
that for large ¢

(D2)

#(t, T)~ tanh 57-(t, 0). (D3)

In the case T =0 one easily finds
At
ot o)- L gy (‘ﬁ) ,

the Hankel function of the first kind, which asymptotically
becomes

1/2
L fat oW
#(t, 0) 4M>exp [ (ﬁ.+4)] . (D4)
Inserting into (D1) finally gives
2.
F(t)~—;m59%‘-"£, (D5)

with w, =2A/% and j,, = (7/2)(6Gy/e)tanha /2T, Analo-
gously for the kernel G:

6=y, e, 00+ v (, DY (0], (D6)

- E
T, T) =¥ +i9" =f'dE\/E2-A2 tanh %exp (z%t) ,
a

2
(D7)
A
£>> 1/280% (¢, T)~ tanh o7 ¥t 0), (D8)
Zdp(t,0)
——e N3 VT
¥(t, 0) NPT o, 0), (D9)
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Gl)~2j, 08¢, (D10)

i.e., F(t) and G(¢) in the Werthamer equation (1. 8) have
the same asymptotics for large ?.

The Werthamer equation would then be
COSW, !

Cﬁ 2”ﬁ += J,,,sm'-f t'———‘— cos <p(t2—t)
(D11)

where the linear term comes from the linear quasi-
particle characteristic. Also in (D11), the integral
would not exist because of a singularity in # =0.
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Evolution of a stable profile for a class of nonlinear

diffusion equations. Il
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First, explicit formulas are found for all the eigenfunctions and eigenvalues of a Sturm-Liouville problem
associated with the class of nonlinear diffusion equations studied previously. The formulas for the
eigenfunctions are proportional to Gegenbauer polynomials whose argument depends on the separable
solution shape function. Next, rigorous bounds on the asymptotic amplitude are found in terms of integrals
of the initial data. These bounds are the best possible bounds of the given type since they produce the
exact result for the separable solution. Finally, results of numerical experiments are reported for D~n?
where § =1, —1/3, —1/2, and —2/3. The rigorous bounds are compared to the perturbation estimates
from the earlier work and to the computed values of the asymptotic amplitude.

PACS numbers: 02.30.Jr, 05.60. +w
I. INTRODUCTION

A previous pa.per1 introduced the nonlinear diffusion
equation

2 (a(n)g’—;> =f(x)%ﬁt for 0<x<1, (1)

where n is a particle density, x is the spatial variable
in one dimension, and ¢ is the time. The factor f(x) is

a strictly positive function of x. The diffusion coefficient
D(n)~ n° where 6> - 1. Two regimes of the parameter

8 should be distinguished. When 6> 0, the diffusion
coefficients, and, hence, the diffusion rate, decreases
as n—0. Therefore, we may call this “decelerating
diffusion. ” When — 1< 6 <0, the diffusion coefficient in-
creases as n — 0 so we may term this “accelerating
diffusion.” Alternatively, we could label the two regimes
as “ slow diffusion” and “fast diffusion” respectively.

For convenience, a new dependent variable m =n'*®

was introduced so (1) becomes
My =F&) ), 2)

where g = (2 + 8)/(1+ 5). It was shown that the separable
solution of (2), m(x, t) =S(x)T(t), was stable against
small perturbations when f(x) = const because all per-
turbations decay like T?(t) where p > 4. Recall that

8" (%) + M(x)S* (x) =0, @®)
with S(0) = S(1) =0 and sup S(x) = 1 by definition.

The conjecture that arbitrary initial data evolves to-
ward the separable solution of (2) has now been proven
for f(x) a bounded positive function and all ¢ > 2. See
Ref. 2,

The present paper contains several new results in-
tended to supplement the work of Ref. 1. First, for flx)
=1, we find explicit formulas for all the eigenfunctions
and eigenvalues of the Sturm—Liouville problem
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1! (x) + K, S, (x) = 0. )

The u,’s are the expansion functions of m(x, {) used in
the perturbation analysis of Ref., 1. The functions #,(x)
and u(x) were known previously. Each u,(x) is shown

to be proportional to a hypergeometric function (or
Gegenbauer polynomial) whose argument depends on the
separable solution shape function. Next, we find rigor-
ous bounds on the asymptotic amplitude of the separable
solution. For fast diffusion (¢ > 2}, these bounds give
upper and lower bounds on the extinction time #* (the
finite time at which the solution vanishes identically).
For slow diffusion (1 <¢ <2}, the results are limited to
rigorous upper bounds on the asymptotic amplitude.
Next, the results of numerical experiments on various
nonlinearities (7 =3, 3,3, 4) are presented. The pre-
dictions of the perturbation analysis of Ref. 1 are ana-
lyzed in light of the new rigorous bounds. Finally, a
method of obtaining a high accuracy numerical represen-
tation of S(x) when ¢ is an integer and f(x) == const is
presented in the Appendix.

1I. EIGENFUNCTIONS AND EIGENVALUES

In Ref. 1, it was recognized that, with f(x) =1, the
first two eigenfunctions of (4) are expressible in terms
of S(x), the solution of (3). In particular, uy(x)=S(x)
with «g= X and u;(x) = S(x)S’(x) with «; = {g +2)x. Note
that (S")? =p*(1 — S% where p is a known constant,

To obtain the general relation between #,(x) and S(x),
we will change independent variables from x to y=S%(x).
While 0 sx <1, we have 0 <y <1 on the half interval

0<x <4, It is straightforward to show that (4) becomes

d 1 3 1 du
- ) - - - = [ [t RS
y-y )dy2 (3 )+[<1 (1) <2 (1> Y } ay ot

=0, (5)

where €, =«,/p%". Note that (5) has the form of the
hypergeometric equation, However, the correct bound-
ary conditions for our problem are #,(0) =0 for all »
and u,(x =3) =0 for n odd while (du,/dx)(x =3)=0 for un
even. The hypergeometric function does not satisfy
these boundary conditions. Therefore, we try the fol-
lowing ansatz for u,,

1, (y) =y™(1 = y)°F(y). (6)
Substituting (6) into (5), we find
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y(1 = y)F" + [(8+27) = (@ + 27 + 2s)y]F’ + [e, - a(r +s)
—2%s—#{r-1)—s(s=1)JF+rB+r-1)y'F
+s(@-p+s-1)(1-y)'F=0, (1)

where o =3 —1/¢ and 8=1-1/q. F(y) will satisfy a new
hypergeometric equation if the last two terms vanish.
To satisfy u,(0) =0, we must have »> 0. Therefore, B
+7-1=0o0r r=1/q. When n is odd, we must have s
>0, @ —B+s-1=0or s=3. When z is even, we must
have s= 0.

Now when » is even, F satisfies
1 3.1 1
(-2 q 2 q)” 2q

®)
When » is odd, F satisfies

s () (i) )
=0 ©)

After transforming back to x, we find that

,,(x)
=S(x)F (—E, —’?—i—l+l; 1+1;5“(x)> for n even, (10)
2’ 2 q q
%, (x)
= o 1S(x)S’ el 1,1
=p15(x)S (x)F( 5 ,2+1+q,1+q,S"(x)
for n odd, and (11)
kp,=3n+1)gn+2)x foralln=0,1,2,---. (12)

In (10) and (11), #, has been standardized so that #}(0)
=p.

We wish to normalize the u,’s so that u,(x) = S(x) and

fu?,(x)S“'z(x)dxzc = fS"(x)dx. (13)

In order to compute the normalization, it is helpful to

recognize that the particular hypergeometric functions
in (10) and (11) are related to Jacobi polynomials. It is
well known® that

Tn+1)T(a +1)
T'n+o+1)

XP@A(1-2y),  (14)

Fl-n,n+a+1+80+1y) =

where I'(-) is the gamma function and P‘*:" () is the
Jacobi polynomial. Following Bavinck,* we define

R":® (cost) = P'*1B(cos8)/F'*;P (1) (15)
and
[} 2041 [} 2841
w' % (8) = (sing cos— ) (16)
2 2
Then it is known? that
[ a0 =R ORGP cost)F = [0, (17)
where

(a,0 Crnt+a+p+1)In+ta+pf +1)'(n+a +1)

w'n Tn+B8+ DI+ DI{a + Do +1)

. (18)
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Combining these expressions, we find after some alge-
bra that

jiiﬂf,(x)sq'z {x)dx
0

I

Cn

_ r(1/q;§7);(1/q + 1)r(<n; 1)) r.(; N 1)

1.1 n, 1.1 n 1 -
X 4 o —+-+ .
[<"+q 2) P(Z q+2> F (2 q 1)] 19)
From (19), we obtain the remarkably simple formula

C :CO= (20)

g+2°
It follows that the #,’s are correctly normalized by
taking

AR

10, () = (?) 71,(x). (21)
n

The u,’s are related to the Gegenbauer polynomials as

well as to the Jacobi polynomials. In particular,
1, (x) & S(x)C T/ /2 (1 = $)V2) for all n, (22)

where C‘,',’ (+) is the Gegenbauer polynomial. The reader
who is interested in studying the general properties of
these eigenfunctions (i.e., location of zeros, product
formulas, asymptotic behavior for large n, etc.) will
find the books of Bavinck! and Szégo® to be especially
helpful.

The formulas presented here for u,(x) have been
found useful in numerical experiments when a monitor
of the nth Fourier coefficient of wi(x, t) is desired.

I111. RIGOROUS BOUNDS ON THE ASYMPTOTIC
AMPLITUDE

In order to establish rigorous bounds on the asymp-
totic amplitude A, for slow diffusion (1 <g < 2) and on
the extinction time #* for fast diffusion (2 <gq), it is
useful to consider the following integrals:

ay(t) :c'1fm (x, ) ()87 x)dx, (23)

Blt)=c [m*Hx, Hf(x)S(x)dx, (24)

Q) =c' [m®x, ) (x)dx, (25)

R(t) =c'1fmz(x, Hdx, (26)
and

c= [flx)s*(x)dx. (27

For the formal calculations that follow, we assume only
that f(x) is a positive integrable function,

First considering 8(f), we find
d -
Eﬁ(t) =c 1fmdex:c"fmSmdxz— ray(1), (28)
where we have used Egs. (2) and (3) and integrated by

parts twice. Using Holder’s inequality, it is not diffi-
cult to show that

ay(t) < [p(O]Y =P, (29)
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Thus,

d )
- BB <ABOI 0, (30)

from which it follows upon integration that
8 (8) = *(0) - apt, (31)

where p= (g - 2)/(g - 1). Equation (31) is valid for all
1< g <= except for g =2 (the linear case) which we need
not consider.

For fast diffusion (2 < ¢), the density and therefore
B(t) will vanish in finite time, Equation (31) shows that
the extinction time t* must satisfy

tr, =B7(0)/Ap < t*, (32)

Equation (32) provides a rigorous lower bound on the
extinction time, This argument was first suggested to
us by Varadhan. ®

For slow diffusion (1 <g<2), p<0 and (31) shows that
"' (1) < {p*(0) + 1 [p| £} (33)

If m(x,t) — Slx)T(t) asymptotically (this has not yet been
proven for g < 2 although it is observed in computer
experiments) where T9%() =A% + 1 1plt, we find easily
that (33) implies

Ag<[BO)]/ P =4, (34)
where Ay is the asymptotic amplitude.

Another class of inequalities may be derived by first

noting that

—Q(t) ———R(t) <0, (35)

f—‘f_“z‘—<0 (36)

d
ER(t) - flx)

and

RO == [memds == [ (;7e%an) e,

Applying Schwarz’s inequality to (37), we find

2
d
R <Q() [ 3 . (38)
m= f
From (35), (36), and (38), it is straightforward to show

that

d -2/ q <
—[R1Q )] <0, (39)

Equality occurs in (39) only for the separable solution.

Thus, the quantity in brackets in (39) is always de-
creasing except for the trivial case. Furthermore, the
limiting value as m(x, {) ~S(x)T(?) is

R(HQ™Y () ~ 1, (40)
since

[Skix =~ [S, Sdx=x\[fS%dx=xc. (41)
Equations (39) and (40) clearly imply

AQ¥9(t) <R(t). (42)
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[Equation (42) also follows easily from a straightforward
variational calculation. | Combining (42) and (35) yields

1
_;[Q(Q-Z)/q(t)_Q(a-Z)/q(o)]; A, (43)
For fast diffusion, p> 0 and, since @(*)=0, we have
* <[P/ /xp =1, (44)

Thus, we have a rigorous upper bound on the extinction
time in terms of an integral of the initial data. For
slow diffusion, p <0 and

[Q)I*-/ e < {QUeb/a(o) +a |p [}, 45)
The same ideas used to derive (34) show that

Ap=<[QO)]Ve. (46)
However, (34) remains the best bound on the asymp-

totic amplitude because Holder’s inequality shows that

(8] =D < [Q() ]/ <, @7

The only lower bound known for A, is the trivial one A,
=0,

These bounds do not exhaust the possibilities; how-
ever, they are the best bounds known to the authors at
this time. These bounds are the best possible bounds in
terms of A(f) and @(f) since equality is achieved when
m(x,t) is the separable solution. These bounds will be
compared to the perturbation results of Ref. 1 in the
next section.

IV. NUMERICAL EXPERIMENTS

In Ref. 1, a perturbation analysis was used to derive
an approximate formula for the asymptotic amplitude
Ay in terms of the initial data. The resulting formula
was

7* B(0) - ad(0) \'/" _
A, =ay(0) (1 +5 —%(O—)L—> = Ay, (48)
where
B(¢) zc'lfmz(x, £)f ()S2=2 (x ) x (49)

and ¥ =¢ - 2. For fast diffusion, (48) may be used to
estimate the extinction time, Since #* is related to 4,
by t* =A}/Ap for the separable solution, we define the
perturbation estimate to be

L, =AL/xp. (50)

For our numerical experiments, we take f(x) =1.
Then, to provide an independent estimate of the asymp-
totic amplitude and extinction time, we consider the
integral

N(t) = fn(x, t)dx = fm"'1(x, t)dx, (51)

which has the physical significance of being the total
number of particles. When m (x, #) = S(x)T(F), N(t)
=yT%1(#) where ¥y =4/gp is a known quantity and T(¢#)

= (A% - apt)/7. In general, the amplitude A, is given by

Ag={[N/vP +rpt}! 7 (52)

for the separable solution. For fast diffusion, we find
from (52) that

=t +[NO/YP/ (53)
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TABLE I. Values of the rigorous lower bound ¢;, perturbation
estimate {,, extinction time #*, and rigorous upper bound
t, for numerical experiments on (2) with 4=3 and flx)=1. The

TABLE IIl. Same as Table I with g=§. Note that A=10. 8286,
p=2,9433, and y=0,5436 for this case.

formulas appear in Egs, (32), (50), (53), and (44), respective- Case t t, b* ¢,

ly. The initial data for the first four cases is given by m(x, 0) © 0.2835 0.2835 0.2842 0.2921
=y a;sin( + 1)rx, where (ay, a,, a3, a,) equal: () (1, 0.4, 0, 0), (i) 0' 2761 0' 2762 0' 2762 0: 9823
(ii) (1,0,0.3,0), (ii) (1,0, —0.3,0), and (iv) (1,0,0,0, 225), (i) 0. 2863 0.2862 0. 2865 0. 2901
For the fifth case, mlx, 0)=1, (iv) 0.2801  0.2801 0.2802  0.2830
Case t, t . t, (v) 0.3104 0.3115 0.3106 0. 3252
(i) 0.1834 0.1837° 0.1847 0.1927

(ii) 0.1673 0.1675 0.1677 0.1750 .

(1ii} 0.1894 0.1894° 0.1895 0.1925 partially explained by the fact that £, always lies between
(iv) 0.1761 0.1762 0.1762 0.1793 the rigorous upper and lower bounds.

(v) 0.2102 0.2104 0.2107 0.2301

for the separable solution. For arbitrary initial data,
we expect (52) and (53) to approach limiting values as
mlx,t) = S)T(t). We will use these formulas to obtain
our numerical estimate of the asymptotic amplitude and
extinction time.

We decided to study four values of the nonlinearity:
g=3, %, 3,and 4. For slow diffusion, we have g =3
which is the midpoint of the interval 1<g <2 and also
corresponds to the physically interesting case of class-
ical diffusion in a plasma’ (5=1). For fast diffusion,
these values of g correspond to 6 =-3%, — 3, and - %,
Okuda—Dawson diffusion® scales like 6 =- 4. The cases
5=—3 and — % have no known physical significance.
However, an interesting qualitative difference exists
among these last three cases. As f — *, we find

m,(x,t) =0 for 0> 8> — 5, m,x,t) — = (1/2)S(x) for 6=-%,

and m,{x, ) ~= for — 3> 6> -1,

In Table I, the results for ¢ =3 are presented. We
immediately observe the empirical relation #; <¢, <(*
<t,. It turns out we can prove {, <t, for g =3, The
formulas for ¢, and ¢, in this case are

t, =28Y%0)/x =2E1%(0)/, (54)
whereas
t, =[B(0) + a3(0)]/ X, (0). (55)

Recalling that 2 <y +y~! with y =B/, we easily find
that ¢, <¢,. By expanding m(x, ) in terms of its
eigenfunctions, we can also show that

QY1) ={ad(t) + 3ay(N)[B() - af(D)] +- - - }/?
(56)
B(s) - af(t)

=ay(t) + @)

= B(t)/ao (t),

so that ¢, 22B(0)/\a,(0) > £, since B(0) > a}(0) by Schwarz’
inequality. The remarkable agreement of the perturba-
tion estimate f, with the true extinction time t* may be

TABLE II. Same as Table I with ¢g=4.

The results for ¢ =4 in Table II do not show any
simple relationship between t, and ¢, or ¢, and ¢*. The
perturbation estimate is, however, observed to obey
¢, St,. Again this follows from the fact that

Q2 (1) ={db(1) + 6a3 (V) [B(1) - ad(1)] +- - - }V/?

(57)
=a}(0) + 3[B(0) - af(0)],
sO
t, =3{a}(0) + 3[B(0) - 23(0)]}/21, (58)
whereas
t,=3{a}(0) +2[B(0) - a}(0)]}/2x < ¢,,. (59)

In general the perturbation estimate is not as good at
predicting #* for g =4 as it is for g =3,

For g =3 in Table ITI, the perturbation estimate is
again remarkably accurate for all cases. However, we
also see that the lower bound #; is a more reliable
predictor of ¢* since it is often as close as f, but always
remains a lower bound.

Our one case of slow diffusion is ¢ =3, presented in
Table IV. One important difference between results for
this case and the previous ones is accuracy. Because
computing A, from (52) involves taking the difference of
two large numbers as f —*, we cannot expect a high
accuracy estimate of Ay from a short-duration computer
experiment., The values presented were taken at f =0, 1
in the numerical experiment (as were the values in the
fast diffusion experiments) and can be trusted to two
significant figures. Practically speaking, the value of
Ay does not possess as much inherent interest as the
extinction time does for fast diffusion. As f — =,

T =lAg+x|p| ]/ r =1/ |p V1)) (60)

which is completely independent of the initial conditions.

TABLE IV, Values of the asymptotic amplitude A;, the pertur-
bation estimate A,, and the rigorous upper hound A, for numer-
ical experiments on (2) with ¢g=2 and f(x)=1. The formulas
appear in Egs. (52), (48), and (34), respectively. The initial
data for the five cases was the same as for Table I.

Case ty ty t* t, Case Ay A, A,

(i) 0.1382 0.1384 0.1409 0.1493 (i) 0.917 0.941 0.935

(ii) 0.1040 0.1024 0. 1047 0.1138 (ii) 1.001 1. 009 1.013

(iii) 0.1515 0.1523 0.1516 0.1539 (iii) 0.889 0.909 0.901

(iv) 0.1231 0.1221 0.1234 0.1270 (iv) 0.959 0. 969 0.970

(v) 0.1612 0.1563 0.1622 0. 1880 (v) 1.277 1.227 1.302
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The lack of dependence of the asymptotic state on the
initial data is a general characteristic of slow diffusion.

We may conclude from the results of these numerical
experiments that the perturbation estimates A, and i,
are valid approximations to the asymptotic amplitude
A, and the extinction time * for a wide range of non-
linearities. However, still better estimates may exist.
In fact, it was found here that the rigorous bounds were
occasionally better estimates.

In conclusion, we remark that one of the most inter-
esting questions which remains to be answered is just
how the initial data determine the extinction time for
fast diffusion, We conjecture that it may be possible to
derive a formula for t*. The rigorous upper and lower
bounds on #* presented here are a first step in that
direction.
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APPENDIX

In order to use the formulas for the u,’s derived in
Sec. II, we need an accurate numerical representation
of the shape function S(x). A general method of succes-
sive approximation for arbitrary ¢ was presented in
Ref., 1. When ¢ is an integer, another method has been
found to be more convenient.

Consider the power series

S(x) =px 2 (= 1) 1", (61)
n=0

where p? =2)/q and @, =1, Substituting (61) into (3) when
flx)=1 and ¢ is an integer yields a recursion formula
for the «,’s. For example, when g=3,
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M oo
et =30+ 1) Bt 4)§ Op0 p, (62)
and, when ¢ =4,
X 2
P > O pemap @O e (63)

o =4+ 1)@ +5)5

The resulting representations of S(x) were used in the
numerical experiments of Sec, IV. By computing the
first fifty o ’s and using the ratio test, we found that the
expected radius of convergence of the power series, with
g =3, was for all x <1 and, with 4 =4, for all x <0, 707,
Since S(x)=S(1 - x), we only need to compute S(x) for

0 <x <3, which is well within the radius of convergence
of the series in both cases.
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The total and partial wave scattering amplitudes in the Schrodinger equation with a short range potential
have been derived. The Dirac equation for a short range potential has been exactly solved analytically for
all partial waves for positive energies, and an expression for the S;,, wave phase shift has been explicitly

deduced.

I. INTRODUCTION

We know that the Schrédinger equation undergoes
analytical treatment in all partial waves for the Coulomb
and square-well potentials, The short-range nuclear
interaction V(r)=- V,(1/7 ~ 1/a) for » <a and V(»)=0
for » > a for which one gets exact analytical solution for
all partial waves was analyzed by the authors!® for
positive energies in the context of the neutron proton
scattering. In the present work, we have derived the
total scattering amplitude £(6) and the partial wave T
matrix in momentum variables for the above short-
range potential having a sharp cutoff at » =a. The
separable representation of the T matrix for negative
energies is also suggested through numerical solution
of the Lippmann—Schwinger equation,

As is well known, the Dirac equation in the Coulomb
field of a point charge can be solved exactly, ® Further,
for nuclear charge Z > 137, the corresponding solutions
of the Dirac equation are not well behaved as they oscil-
late near the origin, Popov® has studied the Dirac equa-
tion for an electron in a Coulomb field with Z > 137,
which results in a collapse to the center in the point
charge approximation, Here we have solved the Dirac
equation analytically for the scattering of a spin 1/2
particle moving in a centrally symmetric force field,
V) =-V,(/¥-1/a) for v <a and V(r)=0 for +> a.

1. SCHRODINGER EQUATION WITH SHORT-RANGE
INTERACTION

The Schrddinger wave equation with the above- men-
tioned potential becomes for » <a

v+ (K% - 3/r)=0, 1)

where B=- @m/FY) Vy, K =K*~¥, ¥*=2m/i?)
(Vo/a); all other symbols have their usual meanings.
Substituting ¥ = exp(iK’z) G we get

V3G + 21’1('2—2’— - Bg =0, where z=7cosé.
A solution of the type G= G(r —z) satisfies the above
equation and we get (with P=7- z)

2\d*G [ 2dG . [z dG B
.z 4 z_ . EG =
2( 7’> dr? +1’ dr 21K'<7f 1) dr rG 0. @)
Here
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pd’G 4G .., 4G B _
FrET zKpdp 5G=0. 3)

Following Mott and Massey,? we G=,F,(-ic,1;iK'p) for
¥ <a, where a=B/2K'. Since we require an incident
wave of unit amplitude, we take for the total wavefune-
tion representing the scattering as

Y, 0)=e"* T +ia)e!X % Fi(-io,1;iK'p). (4)

In the limit a—=, ¥(r, 6) represents the exact wave-
function for pure Coulomb scattering. At r>a, ¥(r, 6)
should behave as an incident plane wave and a spherical-
ly outgoing scattered wave; that is, ¥(r, 6) = exp(iKz)
+f(8) exp(iK7)/7, for = a, where f(0) is the total scat-
tering amplitude. Matching the two solutions at the
boundary v=a, we get

£(0) =[exp(~ ma/2)['(1 +i@) exp(iK’a cosb)

X Fy(~ia,1; iK'a{1 - cosf)) ~ exp(iKa cosb) la expl(iKa).
(5)
In the high energy limit, we get
F0) =[exp(- m1a/2)f (1 +ia)
X exp(~ iY’acos/2K),Fy{-ia, 1; ik a(l - cos8)) - 1].
In the extreme high energy limit,
A8~ [expl{— ir*a cos8) — 1]a exp[- iKa(l — cos8)).

It is worth mentioning that in the limit a—~, f(8) does
not go over to that for the Coulomb scattering amplitude
since the distortions of the incident plane wave and the
spherically outgoing scattered wave which are the
characteristic features of the long-range Coulomb in-
teraction, are not reproduced in the amplitude in the
above limiting case. For forward scattering, we have

F(0) as
F0) =exp(- 1a/2)0(1 +ia) expli(K’ - K)a] - a. (6)

Consequently, unlike the pure Coulomb interaction case
for =0, it is not singular. Using the optical theorem,
we get the total cross section @ as

Q = (47/K) Imf(0)
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4maa T L2
=K exp(- Ta/2) (a sinhmr)
Xcos{ (K’ - K)a +argl (ia)} ("N

which is not divergent for a <=,

From the well-known relation of () to the total on
shell T matrix, we can calculate the partial wave T
matrix elements by partial wave analysis as

Z (21 + 1) T, (K, Ky; K9P, (cosb).

1=

T(Kl, KZ’

Hence
T, (K1, Ky; K°)

1 +1
= -éf T(Ky, K;; K2)P,(cosb)d(cosf) =A, - By,

-1

where
nait ) ,
A== - r(1+ia)exp(-iKa-n1a/2)
+1
X j expliK’'au) Fi(-ia, 1;iK’a(l - p))P, (1) d
.1
and
h2 +1
By =- %Z——z exp(- iKa) f exp(iKap)P, (1) d
=1
Further,

_ T C(+ia)
T o 3!

+1 1
d
X RTL)
f (1= %) art
1

! expliKa - 1a/2)

WhFi(-ia, 1; - iKa(l - u)du,

Using the Kummer transformation exp(~x),Fi{q, ¢; x)
=,F(c~a,c;-x), we are finally led to the on-shell
partial wave T matrix as

T, (K,, Ky; K7)

x{expl - iKa(1 -

= -2 exp(~ 1/ 2)T (1 + 1+ i)' (K'a)

Xexp(iK'a) F1(l +1+iq, 2] +2; - 2iK’a) ﬂﬁa
exp(-—iKa) anaitit .
(2pz+ DT e pi KO expl-iKa). (8

In the limit a - = s0 as to correspond to the Coulomb
case, our partial wave on-shell 7 matrix, however,
does not approach a well-defined limit.*® For the investi-
gation of the binding energies of the three-particle sys-
tems by the Faddeev equations, one needs the partial
wave two-body T matrix for negative energies, as an
input. Hence it will be interesting and useful to study
the partial wave T matrix of such short-range potentials,
in separable form, which are used as inputs in the
Faddeev equations. To derive a partial wave T matrix
in the form of a separable expansion in momentum
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variables K; and K, for two-particle negative energies,
we may use the normalization

T,(Ky, K»; E)

exp(id,)sind,
=gt

% , Where E=K} =K}
i

is the two-body center of mass energy and §, is the /th
partial wave phase shift. * Consequently, the partial
wave L1ppmann—Schw1nger equation off the energy sheil
runs as (Ki# Ki+ E)

T, (K, Ky, E) =

V, (K1, K»)
1 (° VK, KDNT(K' Ky E) Ly oon
+ o f KL K'dK
0 (9)

for negative energies E, the kernel is nonsingular. We
can now write

Tl (K].: Kz,' E) =

Ebnl (KZJ E)¢nI(K1; E)

where b,’s are the coefficients in the expansion and

¢ (K1, E) are the solutions (eigenfunctions) of the
homogeneous Lippmann—Schwinger equation with eigen-
values M, (E) such that

Ay (E) 6, ()

w© V K. II KII EKI/ nl
" f (K, K?an(E K (10)
0
Using the orthonormal property

1 “ 1 1 27 " 1
?7 f d)"'l(K ’ E)(PnI(K ’E)K dK : K_’TZE = 6nm

we get
T, (Ky, K»; E)

-;/ 1- (Ij()E) ¢nI(K1’ E) qbnl(K?s E)"
It is to be noted, however, that the Schrodinger equa-
tion does not undergo exact analytical solution for
negative energies with our short-range potential because
of the finite cutoff in our potential at » =a as discussed
in our previous work. % Consequently, to obtain exact
analytical solutions ¢,,(X, E), one has to solve Eq. (10)
numerically. However, an approximate analytic form of
®n, (K, E) may be obtained from the Fourier transforms
of the corresponding approximate bound state solution
U, (#) of the Schridinger equation where () represents
approximately (neglecting terms ~ 1/a%) the hydrogen-
like bound state eigenfunctions. Hence the correspond-
ing approximate momentum space eigen function can
be represented through the Gegenbauer polynomials

+1
Clti(x)
where

Clyl(

qwl

=[r(g+21+1)/T(g)r (2l +2)]
XFlg+21+1,1~-¢q,1+3/2;3(1-x))

as
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vom!/?

MBS BTV

. BB
QS,,,(K, E)~ KZ _ (E _ Vo/a)
x Ci K2+E—V0/a> n>1
nai+l KZ—E+Vo/a ’ E<0,
(21+3) /4
| opres nln=1- 1)!] He (_E+ ﬁ)
B, (E) = [2 T{n+1+1) o a

l11. DIRAC EQUATION WITH SHORT-RANGE
INTERACTION

The Dirac equation’*® for a spin 1/2 particle with
mass m and (relativistic) energy E is Hp=[Bm + a-p
+ V() o =Ey, where all other symbols have their
usual meanings. Since the angular momentum and the
parity (relative to the centre of the field, taken as the
origin) are conserved in a central field, we have to seek
solution of the Dirac equation in the form

f("’) gjlm
) = ,
g(r)n“m(__ 1)(1-1 +1)/2
g1t TV
77;1'1":11 ' —’V— ilm
and

or o .

fo ro imEimsinfdbde =1,

where ! =j+3, I’=2j-1. Using the orthogonality of
&;1m and 7;,,, since they belong to different eigenvalues
of B, we arrive at

g  1+K _

R f=(E+m=~V)g=0 (11)
and

dg 1-K

a8 E-m=V)f=

oyt [T E-m=V)F=0 (12)

for ¥<a, where K=-{I+1) for j=1+3 and K=1 for
j=1-%. Equations (11) and (12) will yield scattering
state solutions so long as E >m,

Similarly, for »>a, we have

af + 1+Kf—(E-Hn)g:O, (13)
dr v

dg 1-K

E;+ - g+ (E-m)f=0. (14)

Defining the new quantity E’ as E' =E - V/a, Egs.
(11) and (12) may be recast into the Dirac equation for
the pure Coulomb field with the reduced energy E’ as

% M (1:K>f—(E’+m+ Vy/7)g =0, (15)
1- ’
% <_T_K> g+ (E" < m+ Vo/r)f =0, (16)

for »<a. For small 7, the terms in (E'+m) may be
ignored leaving
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K, V,

(fT)"";f— — &=0, (1
(gr) - §g+ l;—"f=o. (18)

As the functions f and g occur in an equivalent manner
in (17) and (18), we write f(#)-r=a? and g(r) .7
=1¥, where a and b are now two constants and
Y =K?. V% 1f VE<K? v is real and for the well-
behaved solution at » =0, we take ¥ to be positive. The
corresponding solution either does not diverge at =0
or does so less rapidly than the other. It should be
noted, however, that if V3>K? ¥ becomes purely
imaginary, the corresponding solutions oscillate
violently near the origin and the subsequent steps in the
calculation carry no meaning, similar to the corre-
sponding Coulomb problem with the Dirac equation. 78
Now, a{y +K)=1Vy and aVy+I(y-K)=0, whence

Fr)=[Vo/(r + K)lg(v) ~ 7.

With
N=2xr, A==ip’,p' =+VET Tyl
F=VE +*m exp(= n/2)7 Y hy(n) + hy(m)} =0y, (19)

g== iﬂexp(— 7]/2)71’-1{’11(7’) - hg(n)} =y, (20)

for ¥ < a. These forms of f and g are justified because
of their behavior near the origin and that they switch
over exactly to the corresponding solutions of the pure
Coulomb scattering problem when E’=E, Hence from
(15) and (16), we are finally led to

El
nhi + ( - V; )h,+ ( ——V—)‘i"-l>h2:0, (21)
V,E' V
nhy + <y+ ;’\ -n>l12+ <K+ §m>h1:0, (22)

for < a. The solutions of these equations which are

finite when =0 are given by

V.E’
A

(M =AF 1- 2y +1;m)

hy(M =BF(y + 1 - V,E'/X, 27+ 1;m).
Substituting 7=0 in (21) or (22), we get

B- YHVE'/ip’
- K+ V[)n’l/ip’

for »>a, we have

2\ 1 fE+m\ 172 . In
f: (?{) ; (T) sSin (p’}’— ? + 61{) (23)

2 1/21 E-m 1/2 ] ll,"
g=- <}> ; <—2E~> sin ([)1’—-7+ 5;() , (24)

where 8 is the phase shift and p =+ (E? - m®)Y/2, Tt is
interesting to observe that the potential having a sharp
cutoff at » =a precludes that both f and dg/d» or g and
df/dr can be continuous at such a point. That is, the
required conditions for matching the functions on the
two sides of the discontinuity is the continuity of the
functions flr) and g(») themselves. Matching the solu-
tion f{r) or g(») at » =a from the two sides, we have
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Ul rea =102 og, (25)
U1|r=a:1/'2]r=a' (26)
|

E'-n
l( m) 1/2[@1& _K> Fily=iv', 2y +1; = 2ip’a) - <

E'+m

« [(z Vom
pl

E-m\1/?
= <E+m> cot(pa+64), where v =V, E'/p’.

!

1V. CONCLUSION

The exact scattering solution of the Schrédinger
equation with such a short range potential yields the
scattering amplitude which serves to study and compare
it with the corresponding Coulomb problem when a -~
for which exact solution is also known. The short range
interaction we have investigated, which is an approxima-
tion to the Yukawa potential, la may be used to simulate
the effect of screened Coulomb type interaction and as
such it may be used to investigate analytically the high
energy scattering of electrons and the polarization of
electrons by heavy atoms like mercury, gold, etc.,
through Dirac equation.
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L
“;0, 4—7> 1F1()’+1+iu’,27+1;—2ip'a)]

iV E
_K> Fily=av', 2y +1; = 2ip'a) + (“;)", -'y> Fily+1-iv', 2y +1; - 2ip’a)

Combining (25) and (26), we get for j=1/2, 1=0, i.e.
for K=-1, the S;,; wave phase shift as

-1

’

@7
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Analytic continuations of the Lauricella function
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The Laplace transform of the product of three confluent hypergeometric functions is expressed in terms of
Lauricella’s function F,(a,a,,a,,a;3 b,b,b3 x,y,z). Two analytic continuation relations of the F,
function are obtained by making use of its Barnes integral representation. One analytic continuation leads
to a set of one term transformation relations and in the second, F, is expressed in terms of eight
Lauricella Fg series. Analytic continuations are given for the Fj series, thereby allowing one to obtain a
new analytic continuation for the F, series. Our result is useful for calculating the F, function when
|x| +[yl +|2| = 2, which occurs in the analysis of the electron scattering from the nucleus.

I. INTRODUCTION

Radial matrix elements of the radiative transitions
between the states of a relativistic electron in a Coulomb
field can be expressed as a Laplace transform of the
product of three confluent hypergeometric functions:

I= [ drexp(~ar)r®' Flay, by, yy)
0

X 1F1((12, bz, k27)1F1((l3, bS! ka?")- (1)

This integral can be expressed in terms of the hyper-
geometric function of Lauricella's? by integrating the
power of the integrand term-by-term to obtain

I=T(a)aF4(a, ay, ay, az, by, by, by; ky/B, ky/B, k3 /),

(2)
where F 4 is the Lauricella’s hypergeometric series
which is defined as
Fale, ay, ay, as, by, by, b3; x, , 2)

=z o
( )mm;(aﬁm(az)n(lls)z (x)m(y)n(z)l. (3)

=m'"' 1=0 (b1)m(b2)n(b3)1m!n!l!

The Lauricella F, series is absolutely convergent if
lxl+Ipl+izl<1,

Rozics and Johnson® have given analytic continuations
of the Lauricella function F, when one of its variables
(say x) is greater than one and the remaining two are
less than one. Also, the integral [Eg. (1)] can be ex-
pressed as infinite series of Appell’s F, functions which
are double infinite series., For problem of electron-
nucleus scattering this integral [Eq. (1)] can be reduced
in terms of a finite series®® of Appell functions. Analy-
tic continuations, as given in Refs. 5 and 6, for Appell’s
F, series have been used to compute the Lauricella
function F,, and Sud ef al.® have developed a technique
to evaluate the radial matrix elements of the radiative
transitions. In this method the integrals are expressed
in terms of a maftrix generalization of the gamma func-
tion, 78 By making use of the recurrence relations
satisfied by the matrix gamma function, the number of
basic integrals that are required for the various electron
scattering process are reduced to 2 minimum. This
results in considerable saving of calculation time. The
elements of such a 8 X8 matrix gamma function are
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Lauricella function F4. This has led us to investigate

in details the analytic properties of the Lauricella func-
tion. We give in this paper two analytic continuations for
the F, function. In Sec. II we shall obtain eight one~term
transformation relations for the F, function and with

the help of such relations we can continue F, to a differ-
ent region of x, y, and z space. A second continuation
relation (given in Sec, IV) expresses the F, series in
terms of eight Lauricella’s Fy series which have non-
overlapping convergence domains. The Lauricella
hypergeometric series Fj is defined as,2

Fp ([ll: @y, a3, by, by, b3;Cix, ¥, 2)

(al)m (a2)m(a3)l (bl)m(bz)n (bg)lx"‘y"z'
[

.

myn, 1

“)

which is absolutely convergent for Ixl <1, lyl<1, and
lz|<1. Analytic continuations of the Fj series are
given in Sec. V, which combined with the above result
gives a new analytic continuation of the F, function. In
Sec. III we give an analytic continuation of the Fy func~
tion which has been used to derive the second analytic
continuation relation for the F 4 type of function. Finally
in Sec VI we present a summary and our conclusion.

ll. ONE-TERM CONTINUATION RELATION FOR
F4 SERIES:

We shall obtain one-term continuation relations? for
the ¥, series by using the Barnes integral representa-
tion which is explicitly given as,

FA((Y: Ay, (o, a3, bi: b2s b3; XY, Z)

_ 1 T(b)T(5)I(bs)
@1i)° T(a)T(ay)T (a;) ()

fo

T(a +s +t+u)T{a; +s)T{ay + ) T{as +u)
Xfffds‘”d” r(b1+s)r(52+t)r(b23+u) ’

_ie

XTI~ s)T(= O (= u)( - x)*(= p)*(= 2)". )

The integrand has the following sequences of poles: the
increasing sequences of poles

s=n, f=n, and u=n, wheren=20,1,2,-:.;
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the decreasing sequences of poles

S=—ay~n, t=—ay-n, and u=-a3~-n, where

n=0,1,2,-

The F 4 series is obtained by closing the contours in the
t, u, and s planes on the right-hand side of the imagi-~
nary axis, and integrating by making use of the residue
theorem. The Barnes integral representation for the

F, series is given ag!

F2(a3 ay, ay, by, bysx, y)

_ T30y

Tla T (a)T(@) (Zm)2 /f ds dt

F(a +s +1)T{ay +s)T{ay + HT (-

(b, +s)T(by + 1)
(6)

Thus by using the relation (6) we can express the
integral representation for the Lauricella function F,
as a single integral which is explicitly given by

FA(O’ ai, &y, a3, bb bZ! b3; Xy ¥, 2)

___TI(by) i T(a +2)T{a; +1)T( - u)(- 2)*
Tanil(@T(a) J T(b; + 1)
XFz((Y+1/l, ay, g, bl; b25x5y) (7)

We will use the following transformation relations for
the Fy series!:

Fyla, ay, a3, by, by x,y)

-~ X
=(l-x) Fy (a:bi_al: a2,b1:b2:;—:~1‘9 %7)

)
=({1-y)°F, (a,anbz—az;bl:bz,l 3 ”‘}‘_>

- X
:(1—x*y)°‘F2 (O(,b1—(l1, by — a3, b1;b21x+y 1°

;—J_J. (8)

Substitution of the above transformation relation in Eq.
(7) and integrating the resulting expression by closing
the contour on the right-hand side of the imaginary axis
with the help of the residue theorem, we obtain the
following one-term relations for the F 4 type of
Lauricella function:

FA(O[: ay, dy, Az, bls b‘l, b3; X, ¥, z)
=(1-x)"F, (01; by ~ ay, ay, as; by, by, bs;

x y z
x=1"1~-x" 1-x

=(1-y)"F, (01, ay, by — ay, as; by, by, bs;
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S)F(—t)(—x)s(—y)‘.

x Y z
1-y7y-1 1—:v>

= (1 - Z)-QFA ((Y, ay, ay, b3 - Qs b17 b?) b3;

x vy =z
1-2’1-2 z-1

:(l—x—y)"" FA (a;bi—ab b2-a2; asz; bb b2) bB;

x y z
x+y=-1 x+y-1" 1-x-y
=(1-z-x)*F, (ﬂ’, by = ay, @y, by — ay; by, by, b

x y z
z+x-1" 1~z-x"’ z+x-—1>

=(l-y-2)*F, (0’, a1, by = @y, by — az; by, by, by;

x y z
l—y=2’ y+2-1" y+2-1

=(l-x-y-2)*F, (”Jh-au by = Gy, by — as; by, by, b3}

/o

x y z
x+y+z-1 x+y+z-1 x+y+z-1

I1l. AN ANALYTIC CONTINUATION OF THE Fp
FUNCTION

In this section we will obtain an analytic continuation
of the Fy type of Lauricella function in terms of eight
F, series where the variables of the F', series are the
reciprocals of the corresponding variables of the F,
series. The integral representation for the Fy function
is given as

1
@iy

_ I'(c)
T(ay)T(ay) T(as)T(b,)T (by) T(b3) f f f ds dt du

< T(a, +s){a, + DT{a, + 1)T(b; + 8)T(b, + HT{b, + )
T{c+s++u)

Fglay, ay, as, by, by, bys ¢ %, 9, 2) =

X T{=$)T(= DHT(=u)(~ x)5( = v){(= 2)%, (10)

The integrand has the following sequences of poles:

{a) an increasing sequences of poles: s =n, ¢ =n, and
u=n, where n=0,1,2,...; (b) a decreasing sequences
of poles: S=~ay=n, t=—ay~n, u=—az—n, S=~by-n,
f=—by-n, u=-by—n, where n=0,1,2,-... The
analytic continuation of the Fy function is obtained by
closing the contours in the #, #, and s planes on the
left-hand side of the imaginary axis, and integrating by
making use of the residue theorem. The expression so
obtained is given by
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111
Fa(au @y, as, by, by, b3; ¢; e ;)

=flay, a4y, @y, by, by, by)(~ 2)°1( = p)2( = 2)%F ,[(1 + @ + ay + a3 - ¢), ay, @y, a5, L+ ay — by, 1+a=by, 1 +az—byx, 9, 2]
+ flay, ay, by, by, by, a) (= 21— 9)%2( = 2P3F 4[{1 +ay +ay + by — €), a1, @y, b3, 1 +ag = by, 1+ ag = by, 1 + b5 - agsx, v, 2]
+flay, by, as, by, ag, b3) (= 2)*1 (= 9)%2(= 2)BF 4[(1 + a; + by + a3 - ¢}, ay, by, a3, 1 + a3 = by, 1+ by —ag, L + a3 - by;x, ¥, 2]
+ F{ay, by, by, by, Gy, ag)( = %)% (= y)22(= 2)P3F 4[(1 + ay + by + bg =€), ay, by, by, L+ ay = by, 1+ by — @y, 1+ by — azix, v, 2]
+£(by, ay, ag, ag, by, by) (= xP1( = 9)2(= 2)BF 4[(1+ by + ay + ag = ), by, @y, az, L+ by = ay, 1+ ay = by, 1 + a3 - by, y, 2]
+#(by, ay, by, Gy, by, az) (= x)P1(— 9)%2( = 2)%3F 4[(1 + by +ap + b3 — ), by, @y, bg, 1 + by = @y, 1 +a; — by, 1 + b3~ ay;x, v, 2]
+7(by, by, as, a1, Gy, bg)(= )1 (= )?2( = 2)BF 4[(1+ by + b, + ag — ¢), by, by, a5, L + by = ay, 1 + by — @, 1 + a3 - bs;x, 3, 2]

z]

+£(by, by, b3, ay, A, az) (= x)°1(= Y02 = 2)P3F 4[(1+ by + by + b3 =€), by, by, by, L+ by —ay, 1+ by = ag, 1 + b3 — a3;x, 9,

2

(11)
where

T{c)T(p =M (0 = u)I(7=v)
L)L (@ I(1)T(c-A=p - v)

and [larg(—1/x)1 <7, larg(-1/y)i<7, larg(~1/2)I<7].
V. THE F4, FUNCTION EXPRESSED IN TERMS OF Fg FUNCTIONS

We can apply Eq. (11) to the following eight F series which have special relations among their variables and
parameters:

O, u,v,p,0,7)=

111 x=1 1=-x 1-x
Fp (at,az,ag,bi,bz,b3;1+a1+a2+a3—c;;, ¥ ;), Fg (1—b1,a2,a3,1—a1,b2,b3;2—b1+a2+a3—c; v ' 2 )’

1~ -1 1~
Fg (a1, 1=by,03,b1,1—ay,b3;2 + a1 - by +a;—¢; xy’y_,__y>}FB (Qiyaz:1-bx;bbbz,l—(73§2+f11+a2-b3—05

¥ zZ
1-2z 1-2z2 z-1
5 } y ) z 3
x+yp-1 x+y-1 1-x-
Fg (1—bi,l'bz,aa,1—41,1—02,53;3—b1—b2+03—0§ i s ij T y>,
1l-y-2z +z~=1 y+z-1
FE (al,l—bg,1—ba,bl,1—02,1—03;3‘5‘(11—[72—2)3-—6; 2 ,y )y ):
x y z
+x-1 1-2z~ +x-1
FB(1-171,02,1—1’3:1—01,b2,1—03;3—171"'(12—’73—6‘}2i s ;x}zazc >,

(12)

3 y 3 z

By making use of the one-term continuation relations for the F, series, as given in Eq. (9), the eight F, series
obtained from use of Eq. (11) for each of the F series in Eq. (12) can be written in terms of eight F, series
explicitly appearing in Eq. (11). That is, we have a 8 X8 matrix connecting eight F, series and eight Fj series.
This matrix can be inverted to give the following results:

Fy+z- fy+z=1 x+y+z-
Fg (1-1;1,1-1)2,1-b3,1_a1,1-a2,1-a3;4_b1-b2-bs-c;x yta-l xtyts-1 xtyts 1).

111
FA(I totmytay-o,a, 0,0, b, bZ) b3;x}y: Z):AFB (ab(z29 asz, 1 +a—- bi, 1 +a; - b, 1+(I3— b3;(¥;;y ;7 ;)
x=1 1-x l—x) '

H 2

+BF; <b1-ai,a2,a3,l—ai,1+a2-—b2,1+a3-b3;b1—2a1+a; p p,

+CFB (a1,b2—a2,a3,1+a1—bi,1-—a2,1+a3—b3;b2—2a2+a; l;y,v;l, 1;3)
l-2 1-2 2-1
+DFB ay, dy, b3—a3,1+a1—b1,1+a2—bg,1—a3;b3——203+0;

b4 3

y H4

x+y-1 x+y-1 l—x—y)
b 3 z

+EFg (bl—al,bz-az,a;;,l—at,l—az,1+a3—bg;b1—2a1+b2—2a2+a; . y

l—y—z ytz=1 y+z-
+FFp (a1,bz—a2,b3—a3,1+a1—-b1,1—a2,l—ag;b2—2a2+b3-—2a3+a; yoz yte-l ytz 1)

x 7 y 7 z

+GFB (bi—a1,a2,b3-a3,1—al,l+a2-b2,1—a3;b1—2a1+b3—2a3+a; N 3

z+x=-1 1—z-~x z+x—1)
x y z
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+y+z- +y+z~1x+y+2-1
+HFB(bl_ai’bz_a,z,b3—a3,1—a1,l—az,1—(13;b1-201+bz—2a2+b3—2a3+d;x yxz l’x yyz ’x yZZ >,
(13)
where
A (x)*1(y) 2 (2)™78 (= 2)%01(y)"2(2)"3(1 — x)P1-2e1+a-1

L(by — a))T(b; - ay)T(b3 = a3)T'()’ B= T(a;)T (b — a)T(bg - a3)T'(b; — 2a; + a)’

(x)—a1 (y) 2 ( z)“s'bs (1 z)b3-2a3 a1

(x)"“l( - y)a‘l'bi (z)-a3 (1 - y) by-Zag+a-1 s D=

C= - - -
T(b, - a)T{ag)T (bg a5)T (b — 20, + @) T{b, - a))T(b; — 3)T (a3) T {bg — 2a3 + 0.‘)
( x)ai‘bl( y)az-bz (z)-a3(1 x— y)b1-2a1*b2-2a2+a—1 e (x)-al ( _ y)a2-b2 ( - z)a3-b3(1 -y~ Z)b2-2a2+b3-2a34-a-1
F(ai)I‘(az)F(b;; - tl3)r(b1 201 + bz - 202 + O) ? - I‘(bl - ai)l"(az)I‘(a;i)F(bz - 202 + b3 - 2a3 + O) ’
Ce ( x)"i'bl (y)-az( z)as-b3(1 -z x)b1-2a1+b3-2a3+a-1 e (_ x)“i'b1(— y)az-b2( - z)u3-b3(1 —x—y- z)b1-2al+b2-2a2¢b3-213ca -1

I‘(ai) r(bz - dg)r(aa)r(bi -_ 2611 + b‘; 203 + Ol) ’ F(a1)1"(a2)1“(a3)1'(b1 - 2(11 + b2 - 202 + b3 — 203 + d)

V. ANALYTIC CONTINUATION OF THE Fz FUNCTION

In this section we will obtain analytic continuations of the Fy series which are useful when its variables are as
follows:

(a) x=1, y<1, andz<1(b) x=1, y>1, andz<1 (c) x<1, 1<y<2, and 2> 2.

The Barnes integral representation for the Fg type of Lauricella function is as given in Eq. (10). This can be ex~
pressed as a single integral representation by identifying the terms for the Appell’s hypergeometric function F; and
is given as,

ki _ u
I(c) 1 / 4 T{as +u)T(bs + 1) (= u)( - 2) Fylag, ay, by, bysc +1:, ). 14)

T T(ay)T(b;) 278 oi “ T(c +u)

The contour in the u-plane parallels the imaginary axis, except that where necessary it is indented so that poles of
T'(ag +u), T(b;+u) lie to the left of the contour, and the poles of I'(—u) lie to the right of the contour. The real
parameter k is chosen such that 2Z=Re(a; + by — ¢) + €, where € is a small positive number.

Appell’s hypergeometric function has a number of analytic continuations. We make use of the following one which
is valid for Iyl <1 and [1-x"1<15:

Fylay, ay, by, by;e5%, 9) = @1+ @y, (15)

@4 and @, are explicitly given as

Q oy Lle)Tlc — ay = by) (ai),,.(bz),.(az),,(ai +1=c)p (1 =)™y
=" "Tc-a)Tlc-b) 5 c~b0),(a + b +1—-c),_min!

F(C)F(a1+b1—C) Z (ag) bz) (1 "';L)__(C-al)nun(l x'l)"'[y(l x'l)] (16)

 ArB4=C - Ceay=b
Qa =" (1 = 2)™* ™ == Y F ) o a). (0 Fcma —by)min!

m,n

Substituting this continuation relation into Eq. (14), we obtain two integrals in the u plane. We will write these as
Fgplay, 0y, as, by, by, bs;cx, ¥, 2) =1; +1;, where Iy and I, are given explicitly by the following:

F(C) Rede u -t F(C +u - a = bl)
L= I'(a3)T(bs)2mi —Z;,, du Tag + )T (by +3)T (- u)( = 2)* ()™t T(c+u—a))T(c+u-—by)

XZ‘ (01)m(bz)"(az)n(a1 +1l-c— u)&_,l(l —x-i)m 2"
mn lc+u=blag+bi+1-c-u), minl’
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Te)x™c(1-x)"1%1 1 ki w1 u
12=F(a3)r(ba)1“(a1)r(bi) Z_M-/k:"w duT(az +10)T(by +u)T( - ) (= 2)* (" = 1)* T{ay + by - c —u)

(), (09),(1 = 21) e + 2t = A punl = 7)™ [y (L = x™ )"
L = 2(u+c1-a1)n(1+c4:u-a1-bl),,,mmzn: . (17)

myn

Two different analytic continuations of the Fp functions can be obtained by either closing the contour in the # plane
on the right in both terms, or by closing the contour on the left for /; and on the right for ;. By using the asymp-
totic behavior of the gamma function, we find the conditions for absolute convergence of /; and /;, when the contour is
closed on the right in  plane to be Re(a;+b;—-¢c)<1, Izl <1, and Relag+by+a; +b;-c)<2, lz(1-x"")1 <1, re-
spectively. The conditions for absolute convergence for /; when the contour in the # plane is closed on the left is
Rela;+b;5-c)<1, 11/z1 <1,

The integrand of I; has ascending sequences of poles at ¥ =#» and u=ay +b;—c +1 +=r lying in the right-hand
contour, and decreasing sequences of poles at u=~a3—n, t=-bs;—n and u = a; + by — ¢ — n lying on the left-hand
contour where n=0,1,2,---, The integrand of I; has ascending sequences of poles lying in the right-hand contour at
u=nandu=a;+b—c+1+nfor n=0,1,---. Note that the particular separation between the left and right contours
depends on the choice of % given following equation (14), but since the original integrand contains no singularities
at a; + by - ¢ +n, the final result is independent of the particular choice of 2. When closing both contours on the right,
the sequences beginning at a; +b; —~ ¢ +1 cancel and we can write Fylay, ay, @s, by, by, b3;c;x, v, 2)= A +A,, where A,
and A,, obtained by explicit integration in the # plane and use of the residue theorem, are given by

A1 = x4 T{c)T{c - ag = b1) (a1)m(a2)n(bz)n((13),(bs);(aﬁ' 1- C)m-n-l {1- x'1)"‘y”2'
Ll -a)T(c =) (c=bnilag+by+1=c),, minll! ’

r{c)T'(a,+b,-c) 5 (2,),(b5) (a3),(b3),(1 - ay),,(c - 1) sy (L= 2" [p(1 = ™) "1 - x'i)]_'

A — 4 84~C 1_ <:-z11-l>1
2 =171 - x) T@)Th)  wias (c=adna G Fom ar= b inil!

. (18)

For lz|>1, we need to close the contour in the » plane for I; on the left and for I; on the right. Doing so we can
write

Fplay, ay, ag, by, by, by;e;x,9,2) =cy+ ey + e +oq+ o5

where these are explicitly given as (19)
Ci = 1—‘(C)F(a1 + b1 = C)xal-c(l - x)c-al-bi Z’ (1 - al)m(aZ)n(aS)l(bZ)u(bS)l(c - ai)hmm(l - x-l)m[y(l - X-i)]"[z(l - x-l)]l
T'(ay)T(b,) oy 1 (¢ — 1)y, {l+c=ay=by)memm 1011} ’
_F(C)F(a1+b1+a3—c+1)1"(a1+b1+b3—c+1)l"(c—1—(11—b1) b -1 by -
€= T (@) (b T (@) T (b;) At el
(1= ay),la)), () (1 +a; + b, + a3 — ¢),(1 + ay + by + by — )
X m n\Y2/n 1 1 3 1 1 1 3 1 -tym(,, «1y]n -1y
Z., A+ 5001 @y @ + @y + by = ) I 111 (B0 @), @ =) 3 (@ =2 P21 - 27D,
S:F(C)F(b3—a3)r(c—a1—bi—a3)x'“1(—z)“'_3 g (ai)m(bz)"((lz)n((lg)z(l +aI +a3—6)m-m,(l —X-i)m}.’”(—z)'z
F(b3)r‘(c—a1—03)r(c—bi—(ls) myny 1 (1+(13'—b3),(1 +ai+b1+(13—-C),;,_,,,,,((:-bi—(13)n_,m!n!l! ?

ey = T(e)T (a3 - b3)T (¢ = ay — by — by)x~®1(— 2) 723 5 (@) (03) 1 (a9)(B3), (1 + @y + b3 = €) sy (1 = 27"y (= 2)!
L(ag)T(c — ay - b3)T(c ~ by — by) momt (L by—as)(c~by=by), ,(L+ay+b;+by—c), . ominll!’

o I ()T (ag+ by + a3~ c)T(ay + by + by — c)T(c ~ ay = by)a®1( = z)*1°01~¢
5 F(al)l"(bi)f'(a3)r‘(b3)

e Z (al)m(b2)n(a2)n(1 - bi)m-rHI (C -y - bi)l(l - x-l)myﬁ(— Z)'I
myn, 1 (al),,_;(l)m-nol(l +c- aq -~ bI - (13),(1 te—-a;- b1 - b3)t1’ﬂ tnt °

VI. CONCLUSIONS scattering in the presence of a point nucleus of charge
z. The incident and final electron energies (momenta)
The results given in Eq. (9) provide one-term trans- are E((P;) and E,(P;), where P=(E* - »*)'/? and the
formation relations for the F, function. To demon- energy lost by the electron is w = E; ~ E;. The radial

strate this more explicitly, consider the case of electron integrals describing this process in the distorted-wave
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Born approximation can be expressed in terms of
Lauricella’s F, function with variables.

_2p, _ 2py N
TP AP tw YTP B +w 2™ FTB ¥R +uw

x

Moreover, x +y+z=2, and, therefore, the Lauricella
function F 4 needs to be analytically continued., The use
of Eq. (9) leads us to F, functions having the following
new sets of variables:

2P = 2P, nd z—= 200
Pi~P—w YT P+w-p; ? P,+w-P,’
(i
x 2P . 2P2 nd _ 2w
Pi+w-Py YT P-P —w’ 2 TP vw-Py
(I11)
e o
P1+P2—w’ P1+P2—w’ w—Pi—P{

This in itself does not lead to convergent series for
the F 4 function, but the different combination of vari-
ables provided by one term transformation relations
opens avenues for seeking new continuation relations for
the F, functions.

The use of Eq. (13) transforms the F, functions in
terms of eight F 5 functions thus providing a new analytic
continuation of the F, function. In the problem of
scattering that we are considering here, this leads to
Fj series of four different sets of variables (two series
for each set) which are,

{0

P1+P2+w P1+P2+ZU d P1+P2+w
2P, * _ ap, 2w

I

P!—Pg—w P2+W—P1 and £2+u)—P1
2P, 2P, ’ 2w ’

(111)

Pi+w-Py Py~-Pi-w an Pitw-Py
2P1 ’ 2P2 ’ 2w ’
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)
P1+P2—w’ £1+P2"w’ and w—-P, P, )
ZPi 2P2 2w

In set I we have one variable x <1 whereas the other
variables are for w< 3E{, 1<y<2, z2>2 and for w
>2E{, y>2 and 1<z <2. The use of the analytic contin-
uation relation given in Eq. {19) will result in
absolutely convergent series for both regions. The
variable set II is very small for all w except at the end
point P, =0 and hence the Fy function with set I variable
is absolutely convergent except very near the end point
which we do not consider. One of the variables in set III
is always very near unity (z;;;~1) and x5;;< 1. The re-
maining variable y;;; depends upon the energy transfer,
for w<3E,, yinn<1 and for w> 3E;, yi1 > 1. The use of
continuations relation given in Eq. (18), for w<$E,, and
Eq. (19) (for w> 3E,) will result in absolutely convergent
series, The variable set IV needs the same continuation
relations as used for the variable set III. In set IV we
have x;y <1, y;v =1 whereas the third variable is zyy > 1
(for w < 3E4) and z1y < 1{for w > 3E;),

To summarize, we have found a new analytic continua-
tion of the Lauricella F, function when xf + {pl+ {z]
=2. This condition occurs in the analysis of the electron
scattering from the nucleus and may be of use in
calculating the radial matrix elements.
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Yang-Mills equations in Maxwell form?

R. Maciejko

Institut fiir Theoretische Physik E, Technische Hochschule Aachen, Federal Republic of Germany

The Yang-Mills field equations are written in a form analogous to Maxwell’s equations. The inherent
nonlinearities are to be thought of as arising from a medium: The gauge fields then look like waves
propagating in a medium. Some well-known solutions are considered in this approach.

1. INTRODUCTION

It is a nontrivial step to go from an Abelian to a non-
Abelian gauge field theory. It is therefore natural to ask
how much a non-Abelian theory differs from an Abelian
one. The crucial difference is, of course, that the non-
Abelian fields themselves carry the gauge quantum num-
bers or that they couple back to themselves; instead of

Fuv:auAv_avAu (1)
one has
Ffw =9 qu‘; - avA:t+gCabdA£AZ‘ (2)

From the mathematical point of view, the essential dif-
ference is that F is not an exact form anymore! Un-
usual magnetic properties are therefore expected. 't
Hooft’s monoploe’ is just a manifestation of that state of
affairs. The gc,, A% A? term is at the same time interes-
ting and cumbersome, Kogut and Susskind? prefer to
consider an Abelian model with Higgs scalars, propos-
ing the idea that the latter can mimic the gc,,A}A?
term. The role of those Higgs scalars is to provide a
medium with negative dielectric susceptibility such that
electric flux tubes will be created, leading to confine-
ment., We want to pursue the idea somewhat but we wish
to keep a non-Abelian theory. We shall identify the non-
linearities in the Yang— Mills equations with the pres-
ence of a “medium.”

The point is that the complete Yang— Mills field equa-
tions (for any gauge group) can be thrown in the form of
the Maxwell’s equations.® Some partial results were ob-
tained using the idea of the holonomy group.* General
symmetry conditions of homogeneity and isotropy were
found which lead to Maxwell’s equations for microscopic
media. Here, we obtain Maxwell’s equations for macro-
scopic media. The main difference is that the Maxwell
fields E,B,H,D, the polarization P, the magnetization
M, the charge density p and the current j beome ma-
trices because those objects are elements of the gauge
group algebra. The non-Abelian character of the gauge
field tensor is contained in the polarization P and in the
magnetization M.

2. THE YANG-MILLS FIELD EQUATIONS

The gauge field equations are

D, ®*r=0,84Y + [T, , 47 ]=", (3)
where
D, X=23,X+q[T,,X] @)

) Supported by Bundesministerium fiir Forschung und
Technologie.
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and JV is the current due to external fields and may, if
one wishes, contain a term linear in I'V. We want to
write Eq. (3) in the Maxwell form. Split " as follows:

q’uv:fuv+Muv7 (5)
with

f,,=08,0,-3,T,, (6)

M, =qr,,T] M

This splitting is not gauge covariant. The question of
gauge transformation is studied in the Appendix. Intro-
duce the effect of a macroscopic medium with a polari-
zation P and a magnetization M

P:n[royr]s (8)
M =7 XT =7¢,,, [9T? L L, #0 )

kim m e b

where ¢,,,=1 and vanishes if two indices are equal. It is
odd under permutation of two indices. The three-vector
r'={I,} satisfies

M=-Tt=-4, (10)

r,=T’=g. (11)
Then we have, as in the usual Maxwell theory:

B=VXA, (12)

E=-V@-23,A, (13)

D=E+P, (14)

H=B-M. (15)

Remember that the above quantities do not commute in
general! The equations of motion (3) become

v-D=p+1n[A,D], (16)
VXH-3,D=-j+n[¢,D]+n(AXH+HXA). (%))
One can show that 2¥f*»=0 which boils down to
veB=0, (18)
3,B+VXE=0, (19)

Let us define
A=D,T*=9,T*=3,0+V A. (20)
The equations of motion (16) and (17) become
(32 -V)@=p+23,A-V-P+1[A,D] (21
(32-VNA=-j+VXM+n(AXH+HXA) - VA

(22)
+3,P+nle¢,D].
or in Lorentz-covariant form as
Dru :Ju + au (8"1")‘) - a)‘qu - T][I"‘,d)w] (23)
© 1978 American Institute of Physics 2491



where 7} = 99, is the D’Alambertian, We would like to
get some insight from classical electrodynamics of
media. We are still allowed to choose a gauge and a
gauge group. Consider Eq. (23) and rewrite it as

T, =, +3, A =M, - 0T, 1, ]. (24)

In our point of view, M,, should represent the medium
due to the nonlinearities of the field. If we assume that
those nonlinearities are everywhere uniform, the
“polarization” and the “magnetization” behave as co-
variant constants in all directions:

v,M, =0, (25)
Let us choose a less stringent condition of the form
VM, =0, (26)

i.e., we assume that there are no sources for M, .
Furthermore, choose the Lorentz gauge

VAT, =T, =0. 27)
Using Eq. (26) and (27), Eq. (24) becomes
Dru"TI[I“,[FMF“]]—Tl[rl,aur;‘]zo- (28)

If we assume an ansatz where the space— time and in-
ternal degrees of freedom are related as follows,

r,=5xL, (29)
where L, are constant matrices, we obtain
ﬂl"u—n[r‘h,[rx,r’u]]:o, (30)

Such an equation was first obtained by Treat,® where
he used some ad hoc assumptions. We obtain it as a
consequence of a physical condition. This brings some
support to our approach. Now, specify the system fur-
ther: assume that

FO:rz:O’ Fx: (ﬂ(Z, t)X’ I"y:gp(z, t)Y (31)
so that X, Y, Z are related by an SO(3) algebra:
X, ¥l=2, [z,X]=Y, [Y,Z]=X. (32)

One then gets a well known l-space, 1-time dimensional
problem:

Me~-p3=0. (33)

The relevance of the ¢-cubed equation as a limit of
the Yang— Mills equation was stressed by many,® espe-
cially in relation to conformal invariance and the in-
stanton.

For a source-free Yang— Mills field, the uniformity
condition (25) or the ansatz {29) is not so general. We
would like to evaluate our approach and see whether the
quantities we defined previously characterize the known
solutions or not. We see it is so indeed in the case of
two well-known solutions.

3. TWO EXAMPLES

It is interesting to compare the different ansatzes
people used to look for solutions of the Yang— Mills
field equations. Let us first consider the Wu— Yang
ansatz”:

P=rXxLier®y, IT =0 (34)
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where L= (L,,L,,L,) are the generators of the SU(2)
algebra. In our framework, we can describe it as fol-
lows.

(1) It is a static solution: no time dependence.

(2) The scalar current density and all electric com-
ponents vanish

E=P=D=0, p=0. (35)

(3) The vector current density is essentially given by
the vector potential

(36)

(4) All the magnetic quantities are proportional and
point in the same direction of isospace, R=7,L,

j==-r"2T,

M=H=%iB=(er®rR. (37)
(5) The field equations reduce to:
v*B=0, 3,B=0, VxXH=j. (38)

The next step is the version of Prasad and Sommer-
field®;
T=(er?(1 -K(r))rxL, T, =0, (39)
where
K(r)=CrecschCr,
H(r)=CrcothCr -1,

Here also exact solutions have been found. We can sum-
marize it as follows:

(1) It is a static solution: No time dependence.

(2) The scalar current density and all electric com-
ponents vanish,

E=P=D=0, p=0. (40)
(3) The magnetic components have more structure.
The magnetization has the nice Wu— Yang behavior,
M = {er®)1(K(7) ~ 1)*TR. (41)

On the other hand, B and H need a superposition of
two canonical directions in isospace:

B= (e 7®)1(2 - 2K - KH)TR + (e#?)"'KHL,
H=~ (er®)~1(KH + K* = 1)TR + (e#*)"'KHL .

(42)

The conclusion to be drawn from those examples is
that given a simple ansatz for IT', the magnetization re-
mains simple. On the other hand, the magnetic field is
complicated due to the presence of the derivative VXTI,
although it has an Abelian look: (3,I", - 3,T',). The new
approach is to look for a simple ansatz for B=VxT
instead! Work is in progress and will be reported sepa-
rately.

4. CONCLUSION

At the pregent time, the full Yang— Mills equations
are untractable except for very special cases. It is thus
welcome to gain as much physical insight as possible.
The present note is an attempt to stress this point: non-
linearities should be thought of as a medium, We
brought the Yang— Mills equations in a form which re-
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sembles that of a wave propagating in some sort of med-
ium; this is to be contrasted with all the static solutions
discovered so far!

We have shown that a covariant divergence-free medi-
um supplemented by some elementary assumption leads
to a well known case related to the instanton. Using the
Wu— Yang and the Prasad— Sommerfield solutions, we
discover that the magnetic part contains all the infor-
mation,

APPENDIX
Consider a general gauge transformation,
L, =/ (8)T /=1 (6) ~ 1 (3, (O))/-*(6)
with the following infinitesemial properties
6T, =inta, 6 +i[T,, 0],
od,, =il®,,, f].

It is straightforward to show that D and H transform co-
variantly:

8D =¢[D, 6], sH=i[H,¥d]
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On the other hand, all the other fields transform with
a noncovariant piece:

sE=i[E, 6] +iAE, 6P=i[P,6]+iAP,
where
AE=-aAP=[I,3,6]-[I,, V6],
5B =i[B, 6] +iAB,
M =i[M, 8] +iaM,
where

AB=AM=T'XV6+VaxT,
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Note on the entropy production in a discrete Markov

system
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The Prigogine inequalities on the rate of entropy production are derived by information theoretic methods
for a discrete open Markov system. A new inequality is proposed. A comparison is made with similar

results due to Levine and co-workers.

1. INTRODUCTION

The information theory has been used with success
by several authors!™ to determine the time-dependent
orientational distribution function of molecules in lig-
uids and gases from the experimentally measured dipol-
ar and quadrupolar autocorrelation functions. A sim-
ilar method has been applied by Bernstein, Levine,
and co-workers®~® to predict the time evolution law of
averaged values of observables, with practical appli-
cations for vibrational relaxation of a gas and chemical
reactions.

These methods are based on the extremal properties
of the information entropy or of the entropy deficiency,
which bhave been studied extensively by Levine and co-
workers®=® for systems obeying a linear discrete
Markov equation.

The purpose of this article is to show that the ex-
istence of a master equation is not indispensable in
these considerations. In particular, the Prigogine prin-
ciple on the rate of entropy production*"11 will be de-
rived easily by using the characteristic evolution equa-
tion of a Markov system, which even provides additional
informations on the entropy production.

In the first place we shall briefly review the definition
and the properties of the entropy deficiency.

2. ENTROPY DEFICIENCY AND EVOLUTION OF A
DISCRETE OPEN SYSTEM

2.1. Evolution equation

Following the model of Refs. 7, 12, or 13, we con-
sider a discrete Markov system, satisfying the cha-
racteristic evolution equation

Pilt+T) =2pu(t) Yo y(7) (T>0). (1)

Here p,;(#) is the probability of finding the system in
state i at time #, and Y,,,(7) is the transition probability
from i’ to i during the time interval [¢, £ + 7]; thus

E Y{:;(T):l- (2)
i

The Markov process is supposed to be homogeneous,
so that Y;,;(7) does not depend on the origin ¢ of the time
interval.

If the system is in contact with thermodynamic re-
servoirs, it usually tends to thermodynamic equili-
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brium with the reservoirs if they are in equilibrium
between themselves, or more generally to a stationary
state. Thus we admit the existence of a stationary solu-
tion {p;} of (1), satisfying the relation

?pio'yi'i(T) =pi=2p¢ Y (T) (3)
1 i'

or in terms of the transition rates W, =1lim, ;7. ¥, (7)
(i#d"),

Z_?Pio'Wi't :Z;/P?Ww: (3

a relation which replaces the bilateral normalization of
the transition rates for an isolated system, 13-

However we shall use relation (2) rather than (3),
since for our purpose it is not necessary to introduce
the master equation corresponding to (1).

2.2. Entropy deficiency

In order to study the evolution of the system, it is
convenient to define the function

F(O =5 pil0) log%(ﬁ . (@)
i i

With different notations, this function has been intro-
duced by Tolman16; it was used by Levine, Bernstein,
and co-workers®? under the name of entropy deficiency:
indeed when the system tends to equilibrium with a
thermodynamic reservoir, F(f) is the entropy produced
in the system during its evolution from time ¢ to equili-
brium, excluding the entropy transferred from or to
the reservoir.”’

In this case the system interacts with the reservoir
by exchanging »n extensive quantities X1, ..., X" the
equilibrium distribution has the classical form

pi=gz e (-2 05X, (®)
0 r=1

X" being the value of the quantity X" corresponding to
state ¢ of the system.

Thus one may write
Ft)=A(t)-A°=- 24 (6)
using the thermodynamic potential
A°=—-logZ° (7

and its nonequilibrium value
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AN =23 A,,"Z?,')‘X} +Z?/P{ logp,

=23 (XD - S() (8)

with the usual definition of the time-dependent aver-
ages (X”) () and of the entropy S(Z).

Noting that during the evolution of the system from
time ¢ the change in the entropy of the reservoir is

Sp ==~ 2N &X7) =N (XM (D) - (X7)°),

Eq. (6) may be written
F(t)=ASz + AS=A(Sg +S)

which indeed shows that F(#) is the entropy produced
by the inversible process.

However the definition of the function F(#) is not re-
stricted to this case, since the distribution {p;} need
only be stationary in order to established its main
properties.

2.3. Properties of the entropy deficiency F(t)

The physical interpretation of F(#) and its formal de-
finition involves two well-known properties: F(¢) is posi-
tive and decreases to 0 as / tends to infinity.” It is
worth noting that these properties may be proved easily
with the aid of Eqs. (1), (2) and (3) only. Indeed, since
the function ¢(x) = xlogx is concave {(@®¢/dx® > 0) and
since by (2)

Z&%Yi,{(‘r):l (9)
w Py
we have
Pi'Y (p,,(t)) ( s piv Pt'(t)
e Yt \Te=) = o (2 Vi) )
pi([+T 1
( o ) (10)

Multiplying (10) by p; and summing on i give the clas-
sical result

F(t+71)< F(f). (11)

The equality holding only if p;{#) =p; for all {, in which
case F =0. The positivity of F also follows from the
concavity of ¢ since

F:Epfcp(”—‘o) > (_,p:’"’ ) =0. (12)
i Di .y

As it has been pointed out by Levine’ the same proper-
ties would hold if ¢ were any concave function such that
(1) =0. Levine has shown that the present choice,
leading to the entropy deficiency F, is more significant
physically, but we shall see that the quadratic approxi-
mation of F near the stationary state may be mathe-
matically simpler.

3. EXTREMAL PROPERTIES OF ENTROPY
PRODUCTION

3.1. Rate of entropy production

It follows from Sec. 2.1 that F(t) - F(£+T) may be
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identified” with the entropy produced between ¢ and
t+ T and that the rate of entropy production is

dF
g = - E? N (13)
With the aid of classical irreversible thermodynamics,
Prigogine® has proved that do/dt < 0 near equilibrium,
when the linear relation between fluxes and forces hold,
and that dyo/df <0 in the general case, dyo/df being the
time derivative of ¢ for constant fluxes.

By considering the discrete equilivalent of d*F/d#,
A F—F(t- 2F(t), (14)

it will be shown that the method of Sec. 2.3, based on
the direct application of the evolution equation (1), per-
mits us to derive similar results in the framework of
information theory.

T+ F({t+7) =

This approach will partly follow the method of
Levine,? with appreciable simplifications and additional
results.

3.2. System near equilibrium

Let us suppose that the system is at the end of its
irreversible evolution, So that the distribution p{¢) is
not very different from the stationary distribution p;.
Then writing

pit)

one may expand F(f) in powers of x,(¢), the quadratic
approximation of F being

:[)io +Xi(t)

~ 1,
F ()= L’EE (x, ()2 (15)

Like F(#), F,(t) is positive and decreases to 0 as  goes
to infinity. Furthermore, we shall see that F, is a con-
cave function of time:

d&*F

>0 (16)

if the detailed balance relation is satisfied by the dis-
tribution {p}. This relation is realized if {p{} cor-
responds to equilibrium with a thermodynamic reser-
voir'?*® and may be written with the aid of the transi-
tion probabilities

PEY (T =p Y, () (17

or, more conventionally, with the transition rates
‘bc;o W,”:‘DfW”“ (17')

Then we have

F (t /, 2;{ ,( )x,,(t— T)Ygii(T)
=~ 1
= 5 gperelt= D57 10(0) (18)
~ 1
:7_{, 27 T)x {t+7),
so that
AP —F (t-T)+ F (t+7) = 2F,(2)
= Z} (x,(t -T) =%, (t+7)2 20, (19)
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the equality being only satisifed if x,(t - 7)
all 7, which implies F,(¢-T)=F, (1)

and{p QIS

The inequality (19) is equivalent to (16) and may be
considered as a microscopic version of the inequality
of Prigogine. It should be noted that (19) applies if
{pi} is not thermodynamic equilibrium but any stationary
distribution satisfying the detailed balance (17).

=x,(t+7) for
=F (t+7)

3.3. General case

Far from equilibrium, (19) still holds, but F{#) is no
longer an approximation of F(#),

In order to find an equivalent to the generalized in-
equality of Prigogine, one has to define forces and
fluxes, which may be done according to the method of
Levine and co-workers. %’

Let us consider a number of physical quantities X~
associated with the system, and their average values
at time #:(X")(#), which may be measured by real
experiences. In principle, the nonequilibrium probabil-
ity distribution {p,(#)} could be completely specified by
giving the values (X")(#),"**, (X")(#) of N such average
quantities, 13 put Procaccia, Shimoni, and Levine® have
shown that practically the evolution of the system is
determined by the knowledge of a small number of
(X")(t) only, say (X8, "+, X™(#), with n<N; the
remaining quantities change in such a way that the
entropy deficiency F(f) has always the smallest value
consistent with formula (4) and the constraints on {/> }

Z//>i :1,

(r (20)

VpXi=@XN (r=1,2,...,n).

Then with the notations of formula (5), the desequi-
librium distribution {p,;(#)} is given by the semiequi-
librium form

Pty =5, = 7(7 exp (—-57_1/ L(t))q). (21)

The time-dependent parameters Z{¢), N{(t),..., M)
are determined by the constraints (20), and tend to the
equilibrium values Z°, A}, ..., A, as ==,

A () is naturally identified with a force, correspond-
ing to the flux (&/dt){X")(1). [(d/dtX{X")(¢) is a flux in the
conventional sense only if X" is an extensive quantity,
as assumed in Sec. 2.1; this is generally true.

We are now in a position to derive the generalized
Prigogine inequality immediately. Indeed we may write

AF = F(f=T)+ F(t+7) = 2F(t) = A + B, (22)
with
A:Zi) pilt-1) log—%W) +p,(t+ﬂlog%
(23)
and
B= 3 {pi(t-7)+p(t+7)=2p,(t)} log%gl (24)
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The concavity of x logx, which involves the positivity of
F by (12), also involves the positivity of 4; it may even
be asserted that A decreases with time (see Sec. 4.2).

As for B, it may be written, by (21),

B == 55 b {7t D+ Gry(er 126000}, (25)

with
w8 = A0 = \° (26)

Thus B vanishes if the fluxes (d/df)(X")({) remain con-
stant, and we may conclude, with obvious notation,

ALF=A>Q (27)
A F =A<, (28)

The inequalities {26) and (27) are equivalent to the
generalized inequality of Prigogine,

dy

e <0 (29)
and to

dZ

a2 07 0. (30)

Another, still easier way to recover inequality (29) is
to note that

dr Af dp.
- {log%‘)} -%: Z w0 <X*>( (31)
by (5), (21), and (26), and that

d'F VAT Pl dp;
GE ?p‘() (di) +>T/ log % Frat (32)
The first term on the right-hand side of (32) is positive;
the second term may be expressed as

&
- 25 b, (- 7 X

and it vanishes at constant fluxes. Inequality (29) fol-
lows, but (30) is not obtained so easily in this way.

4. DISCUSSION

We shall conclude with some remarks on the preced-
ing results.

4.1, At first, it should be remembered that formula
(21) for the probability p;(#), although convenient for
practical purposes, is only an approximation: such a
probability distribution need not satisfy the microscopic
evolution equation (1) exactly.

Thus the positivity of the entropy production o
= - dF/dt, is given by (4) and (21), does not result
from a rigorous derivation, but from a physical ap-
proximation. Contrarily, the generalized Prigogine
inequality: dyo/di <0 is exact when p;(#) takes the
semiequilibrium form (21).

On the other hand, if the entropy production is com-
puted with the exact probability distribution, its posi-
tivity is mathematically established, but the Prigogine
principle follows from the approximation of F near
equilibrium. However, from a macroscopic point of
view, this principle does not simply express the micro-
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scopic inequality (16), which only holds very near
equilibrium: The domain of validity of the principle is
probably much wider macroscopically than it is in its
microscopic form. This is due to the fact that the
Prigogine inequality follows from the generalized form
(29) in the region where the fluxes depend on the forces
linearly; but it is known*®*° that linear macroscopic
laws does not imply microscopic linearity.

These considerations are made more precise in
Appendix A.

4.2. Finally, we shall note that definition (4) of F(¢)
may be extended by replacing the stationary distribu-
tion {p;} by any distribution {¢;(#)} solution of the evolu-
tion equation (1). It is easily verified the new function
F(qi)(t) obtained in this way is a positive and decreasing
function of #, since the derivations of Sec. 2.3 apply
word for word if (9) is replaced by

q;41)

Z}—mY”()_l (33)
This remark has already be employed to derive (28),
but it may have other applications, Let us suppose for
instance that the external constraints due to the reser-
voirs are changed slowly, so that the “stationary” dis-
tribution {pf} follows these changes, that is to say, it
varies slowly with time, but the relaxation proper to
the system is much faster. Then it is natural to define
the F function with the aid of the quasistationary dis-
tribution {p‘:} This function is positive and decreases
to 0 as does the entropy deficiency defined with a time-
independent distribution {p;}.

This problem is similar to the evolution of a probabil-
ity distribution {p;()}, solution of Eq. (1), towards the
semiequilibrium form p;(#} given by (21). It is shown in
Appendix B, with the aid of the previous discussion that
the entropy deficiency F(1), calculated with {p,(t)} is
always greater than the entropy deficiency F(f) calcu-
lated with {§,(#)} (which is obvious from the definition
of ;) and that

aF _ dF

dt dt =0 (34)

conformly to a result of Levine.’
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APPENDIX A: PRIGOGINE PRINCIPLE AND
LINEAR LAWS NEAR EQUILIBRIUM

The flux of quantity (X") may be expressed with the
aid of the master equation corresponding to (1), as® 1

T =D p) W, K - X

=2 pilt) Ly X7, (A1)
i
with
Lije=W;p - Gii'(Z.J: Wii")- (A2)
2497 J. Math. Phys., Vol. 19, No. 12, December 1978

If p,() has the semiequilibrium form (21), we may
write
n
p_,_.(ot) =exp (— b u,(t)X;), (A3)
pi r=0
with
po(d) =log(Z (1), 2°),
A =002 (r=1,...,n).
As t-=, u.(f)~0, and near equilibrium
pi)=pi (1= 3 ml0 ). (a9)

Then, since 'Z,p,-L“, =0, (A1) is transformed into the

linear relation

(—j’; Oy =5 M (), (A5)
with

E piL (AB)

1

e XSXT,

The Onsager symmetry relation
M =M% (A7)

corresponds to the relation of detailed balance,

piLly =pi L
Now, following the method of irreversible thermo-
dynamics, one sees that by (A5) and (A6)

n d2 n
2 by oy (X = E eyl (X’>- (A8)
r=0 dt r= t

Thus the two terms on the right-hand side of (32) are

equal and positive, and &*F/df* >0, or d*s/di* <0,

APPENDIX B: COMPARISON OF ~ (t) AND F (t)

Let p;(¢) be any probability distribution satisfying the
evolution equation (1), and p;(#) the semiequilibrium
distribution (21), corresponding to the same average
values (X")(#) as p;(¢). p,(?) is supposed to be also a
solution of the evolution equation. Then the entropy
deficiencies F(¢) and F(#), corresponding to p,;(t) and
p:(#), are compared by noting that

F(t) - F(t) = Z) {p (/)logp ( - p;(t) log (t)}
= put 1og 240 4 3 (5,0 ~ By} rog 222
(B1)
Now by (21), the second term in the right side of (B1)
is
ZApiH) - pi (0} - —iﬂ u,(f)Xt-} =0
since
Z 0 Xi= T B ]
Thus
P )
F() - F(t) = Z) piD)1 e sy - (B2)
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According to Sec. 4.2, this expression is positive and
decreases with time, so that

>F=- — >0, (B3)

conformly to the result obtained by Levine’ by a more
general but rather complicated method.
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The purpose of this paper is to investigate the subcriticality and the supercriticality for the neutron

transport in a slab which is surrounded by two finite reflectors. The mathematical problem is to determine
when the coupled boundary-value problem has or has no positive solution. It is shown under some explicit
conditions on the material properties of the transport mediums and the size of the slab length that the
coupled problem has a unique solution which insures the subcriticality of the system. It is also shown
under some different conditions on the same physical quantities that the system cannot have a nonnegative
solution when there is an external source, and it only has the trivial solution when there is no source in
the system. This conclusion leads to the supercriticality of the system. Both upper and lower bounds for

the critical length of the slab are explicitly given.

I. INTRODUCTION

A physically important and mathematically interesting
problem in neutron transport in slab geometry is to
predict the critical length of the slab in terms of the
materials property of the transport medium. This
problem has been discussed by many investigators, and
various methods are proposed.'~” However most of the
discussions are devoted either to vacuum boundary con-
dition or with given incident neutrons at the slab faces.
When the slab is surrounded by reflectors, then in-
coming neutrons at the slab faces are no longer known
and its intensity is intrinsically related to the neutron’s
density in the reflectors. Although the critical size of
the slab is independent of prescribed incoming fluxes
at the slab faces, it may be affected by the surrounding
reflectors. In order to investigate this effect and other
related problems, we consider a nonhomogeneous mono-
energetic slab of length 2a which is surrounded by two
finite reflectors with equal length 4. Then according to
the neutrons balance relation, the equations governing
the neutron densities N, (x, p) in the slab and N,(x, u),
N,(x, 1) in the right and the left reflectors are given,
respectively, by

o,

uéx

1
+N,:%c,~f_1 o,(%, 1, BN, (x, u)dp’

+g;(x, u),

x<1, /J‘E[_ly 1]’ i=1,2,3, (1.1)
where we have taken, for simplicity, the total cross
sections of the slab and the reflectors as one (so that
the values of 22 and b should be considered as optical
thickness). In Eq. (1,1), ¢, is the average number of
secondary neutrons per collision, g, is the external
source, o, is the scattering cross section satisfying the
condition

a
5[ 0, py pNdp’ <1,

and the intervals I; are given, respectively, by
11:["51: (l], 12:[a’ (l+b], 13: [—a— bs _a]'
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Suppose no neutron enters the reflectors from outside.
Then the equations in (1.1) are coupled through the fol-
lowing boundary conditions:

N (a, p)y=Nyla, p)

Nz(a+ b, IJ-):O
(1.2)
Nl(_a, “):Ng(_ a; #) (—1$“<1)1

Ny(=a-b, u)=0 (O<p<1),

The slab problem with finite reflectors has been in-
vestigated by Busoni, Frosali, and Mangiarotti® in re-
lation to the spectral properties of the corresponding
transport operator and by Burkart, Ishiguro, and
Siewert® for the case of one reflector in a linear aniso-
tropic medium. The same problem with two finite re-
flectors has recently been discussed by the author*®
concerning the existence of a solution for a nonhomo-
geneous anisotropic medium. It was shown in Ref, 10
that under certain conditions on the physical quantities
¢;s 0;, a, b, the boundary value problem (1.1), (1.2)
has a “maximal” solution and a “minimal” solution
which can be constructed by a straightforward iteration
process. The existence of these solutions is based on
the notion of an upper solution and the construction of
such a function. A natural question to be answered is
whether the maximal solution coincides with the minimal
solution and whether the system has a unique nonnega-
tive solution. Moreover, it is interesting to know under
what conditions on the physical parameters the coupled
system (1.1), (1.2) has no nonnegative solution. The
first problem involves the question of subcriticality
while the second one concerns with supercriticality.
The purpose of this paper is to investigate these ques-
tions. Specifically, we show, under some conditions
on ¢;, 0;, a, b, that the system (1.1), (1,2) has exactly
one nonnegative solution for every nonnegative source
q;. We also show under some different conditions on
these quantities that this system has no nonnegative
solution when the sources ¢, ¢,, g, are not all identi-
cally zero and it only has the trivial solution when ¢,=0
for every i. Hence the existence of a unique solution in
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the first case implies the subcriticality of the system
while the nonexistence result means that the system is
supercritical, An important aspect of these results is
that it leads to a characterization of the suberiticality
and supercriticality of the system and thus yields upper
and lower bounds for the critical value of ¢, in terms of
the physical quantities o,, a, b. These conditions also
give some interesting interrelating effect between the
slab and the reflectors, and demonstrate the fact that
criticality of the system depends only on the various
cross sections of the transport mediums and the size
of the transport region but not on the external sources.
It is to be pointed out that the conclusions of this paper
include the case of a slab surrounded by vacuum. In
fact, we shall deduce some results for the no re-entry
slab problem as those obtained in Refs. 6, 7.

2. UNIQUENESS PROBLEM—SUBCRITICALITY

Throughout the paper we assume that the functions
g; and [fo,(x, i, p')dp’ are continuous nonnegative
functions on I;X[- 1, 1]. The aim of this section is to
establish some conditions on the physical quantities
o;, ¢;, a, b such that the problem (1.1), (1.2) has ex-
actly one nonnegative solution for every nonnegative
source q;. Since the existence of a nonnegative solution
has alre;idy been shown in Ref, 10, we only need to show
the uniqueness problem. Our uniqueness proof is based
on the intrinsic property of the maximal and the minimal
solution which are obtained through the construction of
two monotone sequences from a corresponding integral
equation by a suitable choice of the initial iterations.
Specifically, if we set

(f;(N ), M)E%cif_zc,-(x, My N0, ph)dp’

+q,x, 1), i=1,2,3, (2.1)
then the integral equation corresponding to the boundary-

value problem (1.1), (1.2) is in the form (cf. Ref. 10):

Ni(x, H):(F,(N))(xy H), XEIi, pE l—ly 1], i:1y2:33
(2.2)
where A/ = (N, N,, N;) and
(FL (A, 1)
expl— (@ +x)/ 1 WD) + [ exp(= DA ()

X(x=Tp, pdr (0<ps<1),

expl(a - 2)/p] @ W )w) + [ 771 exp(= THAN)

X{x=-Tu,u)dr (-1<p<0),

(F,(AMNx, 1)
expl— (x — a)/ 1] [exp(- 2a/ p)(gs(N)) () + (g, (N ) ()]
(N (x = T, ) d7 (0<

{xa
+ fo Qe exp(- <1)

f0<a+b-x)/u exp(= ) {(fo(N))x — T, 1) d7 (- 1<p<0)
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(Fs(/\/))(x, )

Aa+bex) [ w
J exp(~ T)(f,(N,)) (¢ = Tpp, p)dr (O<p<1),

+ (glN)) H)J

n jo(m)/uexp(_ (NN =7, p)dr (-1spup<0),
(2.3)

5? exp[— (a +x)/1)[exp(2a/1) (g2 (N)) (1

In the above expressions the functions g,(N,) and g,(N s
i=1, 2, 3, are given, respectively by

(&, D))

= foz‘/w) exp(- 7) (fi(IN N —a=Tu, widr (-1su<0),
(g (N ) (w)

‘Jza/“ (=) (AN a—Tu, pldT O<p<1), (2.4)
(g2(No) ()

Efbﬂ-wexp(— TV (FolN ) (a=Tp, w)dr (-1s p<0),

(gs(Ns))(H)
= [ explc NN ca=Tu, Wdr (0 <p 1),

From the integral equation (2.2), we can construct a
sequence { //®}={N,® N, ® N, ®} successively from
the recursion formula

N (x, p) = (F V), w), x€ (=1, 1], i=1,2,3,

(2.5)
by a suitable choice of the initial iteration A/(®
= (N, N, N, ‘0’) Assume there exists an upper
solutmn /\/ Nl, N,, N,) which is defined to be a con-

tinuous nonnegative function satisfying the inequality

Ni(x, e (Fi(/\/))()(, 1), xSl (1—[—1,1], i=1,2,3
(2.86)
Then starting from the initial iteration A/'® =/ and N©

=0, respectively, we obtain two sequences from (2.5)
whlch are denoted by {/‘®} and {/®}. 1t can easily be
shown that the sequence {N“"} is monotone non-increas-
ing while {//*®} is monotone non-decreasing and //
sN® for every k=1, 2, {cf. Ref. 10}, Here N/®
<N® means that N;®(x, p) < N;®(x, 1) for every
xel;, pel-1,1],i=1,2,3. Thus, if an upper solution
does exist, then {/\/”"’} converges to a “maximal” solu-
tion A/ and {/\/‘k’} converges to a “minimal” solution
and A/= N= 0. Since every nonnegative solution is also
an upper solution, it is clear that upper solution may
or may not exist depending on the physical quantities
0;, ¢;, a, b. In order to give some conditions on these
quantities so that Eq. (2.2) has a unigue or has no non-
negative solution, it is convenient to use the following
notations:

6i(H')ESuP{0i(x, My ) xEL, p& l." 1, 1]}’
“‘(‘:’ [—ly 1]}7

o, (u)=inflo,(x, u, 15 x €1,
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— 2.7
E;(IJ.') = ma'x{ﬁi(#"), ai (— su'}}’

Zy(w") =minfo, (1), 0,(- u)}

Before proving our uniqueness result, we state the
following existence theorem from Ref, 10,

Theorem 2.1: Assume that

cxfozl(u){l—exp[— (@+0)/ pldp <1, (2.8)

c,-fzi(u){l - z{exp{- (2a + b)/ pu]+exp(= b/uN}du <1,
(i=2,3).
Then for any nonnegative source ¢;, Eq. (2.2) has a

maximal solution // and a minimal solution /.
Furthermore,

Nz=N =0,

The above theorem has recently been proven through
the construction of an upper solution /\7 A novelty of
this theorem is the nonnegative property of the function
(/V—/V) which is crucial in the proof of our uniqueness
theorem,

Theorem 2.2: Assume that (2, 8) holds and that

e {21 - exp(= a/w))

+ 4T () + 20511 = exp(= 20/ u)}dpe = o, L, <1,
e {Za)(1 - exp(= b/20+ 31T )

+ 20q(1) exp(~ 20/ p)](1 - exp(~ b/ w)}du

(2.9)

=c,L, <1,
&) {Z(6)(1 - exp(= b/20))

#4000, 0) + Ty () exp(= 20/ 1))(1 ~ exp(- b/p))}ap

=¢,L; <1,
Then the maximal solution A/ = (N,, N,, N,) coincides
with the minimal solution /= (N, N,, N;). Moreover,

Eqg. (2.2) has exactly one nonnegative solution for
every nonnegative source g¢,.

Proof: Let N;=N, - N, >0 and set

¢i(x)5 j:lf,(p.)Ni(x, “)d}l, x &1, i=1, 2’ 3. (2.10)
Since N, satisfies Eq. (2.2) with ¢;=0, we have
6,0 = [ T F M, w)de, i=1,2,3, (211

where F,(/A) is given by (2, 3) with ¢;=0 and
Z(Nn Nyy Ny

Let x; €I, such that
¢ (x) =max{p(x); xc I}, i=1,2,3,
Then by (2.11) and the definition of F, (A,

byu)= [ expl= (a+x)/ T () g (N (2
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s [ LT ) exple MM -, )y

+f explo(am %)/ 115 (= )W) (= n)ds

1 ta=xy) lue

+ ffo 2o (= ) exp(= T f (N, +Tp, = )dr dis

=28, (0,) + 8,(x,) + s5(x,) + s,(x,), (2.12)

where s,(x,), j=1,...,4, denote the four integrals in
(2.12). In obtaining the above expression we have re-
placed u by (-u) in the last two integrals. Similar ex-
pressions for ¢,(x,), ¢,(r,) can be obtained from (2.11),
(2. 3). Since x, €1, and
—a<{x, ~Tp)sx, whenOsT<(a+ %)/,
2.13)

£, <x,+Tusa whenO0<7<(a-x)/u,

we see from (2.1) (with ¢;=0) and the nonnegative
property of N, that

(f;(Ni)){xz ‘7#3 p‘)é %Cl

Xﬁzx(H')Nﬂxl ~Tu, Wdp' s e, {,),

(fl(Nl))(xl +TU, - @) < % c
xf.iil(u')Nl(xl TTH, “')dli’S %Qd)z(x:)

for all 7 in the indicated intervals in (2.13), The above
inequalities imply that

$3(6) € £ €20,0) [ Ty (W)t - expl- (a+,)/ b T}dp
@2.14)
sutry) < @01 60) [ Ty ()L = expl= a - )/ g,
where we have used the fact that il(- u) =El(u). Simi-

larly, since (a+7Tp)E L, (—a-7Tp)EL for 0sTu<h,
we have

(fz(Nz))(a +TM; - “-)
<3 szolzz(u’)Nz(a FTh, pdp’ <4 cph,lx,),
(fg(Na))(‘ [ T“’r “)

s‘%csf:ES(u’)l\’g(— a-Ty, Wdu' < eadglxg)

for 0<7p < b. Hence by the definition of g,(N,), g,(N,),
we obtain

(22N~ 1) < 3 a0, (x,)][1 — exp(~ b/ 1))
O<u=l),

(gg(Ng))(u) = % Cg(bz(xs)[l - exp(-. b/#)]
1t follows from (2.12) that

S (xl) <3 C3¢3(x3)
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x [T (1) expl- (@ +x,)/ 1 ]lL - exp(= b/ p)]du,

0 (2.15)
Sa(x,) = 3 a9, (x5)

jof ()exp[— (a—x)/1 [1 - exp(= b/ p)]de
Application of the estimates given by (2.14), (2.15), in

{2.12) yields

( 1)s201¢1 X1 ,451

% {2 - expl= (a+x,)/ s - expl- (a = x,)/u jdy

et [ ) expl= (a=x,)/ 1 ][ - exp(= 0/ p)]dus

+2 cyg(x j T4 (1) expl= (a +x,)/p ][1 - exp(=b/ )] dps.
(2.16)
Since for each fixed p € (0, 1] the function
p,(x,) =2—exp[—(a+x,)/ pl-exp [-(a - x)/u]
(2.17)

is convex, its maximum value occurs at x, =0 and thus
plx) < 2[1 —expl(~a/u)]-

Hence

dylx) < ) (1))

x [ Th()[L - exp(= o/ p)Jdw

t+3 Cz¢2(x2)f: §1(ﬁ)[l - exp(- b/u)]du

1 6a(%) [ Tyl - expl(- b/ u)Jdu (2.18)

By an analogous argument for ¢,(x,), ¢,(x,), we obtain

B5(x5) < c30,(x,)
><j:§z(u)[1 - exp(- b/2p)]du

ey 050x0) [ Lol exp(= 20/ )1 - exp(= b/p) Jau

+%cl¢1(x1)Jolfz(u)[1 - exp(-2a/u)]dy, (2.19)
Ba(29) < C4(80) | 2 a(w)[L - exp(= 0/2u) )
eyt [ Do)l - exp(— 20/ 1) ldp
+5 oy, f T s(w)exp(= 2a/w)[1 — exp(= b/w)]dp
(2.20)

Addition of the inequalities (2,18)—(2.20) leads to the
relation

¢y xy) + b, ln,) + ¢3(x3) < CLL1¢1(XL)

+ 3Ly da(%5) + gLy dglny),
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where L,, L,, L, are the integrals appeared in (2.8).

It follows from the hypothesis that ¢, (x,) + ¢,(x,) + ¢, (x;)
=0. But ¢,(x;) = 0 we must have ¢,{(x,) = ¢, (x,) = ¢5(x;)
=0, that is,

f—
S 2 WIN (x, p)dp =0 for all x€1, i=1,2,38,

In view of (2.1) with (¢;=0), we see that (f,(N;)x, p)
=0 for xC1I,, p €[-1,1] and, in particular, (N D)
=0and (g, (N))p)=0,i=1, 2 3. It follows from (2. 3)
that (F,(NV)) = 0 and thus, by (2 2), N,(x, p)=0on I
x{=1, 1]6 This proves A/ = A/, Now if N* is any nonneg-
ative solution of (2.2). Then by definition it is also an
upper solution. The above-established conclusion shows
that A/*=A/. Therefore, Eq. (2.2) has only one nonneg-
ative solution. This completes the proof of the theorem.

If the two reflectors on the sides of the slab are identi-
cal, then ¢,=c, and ¢, =0,, In this case, condition
(2.9) reduces to

Cl‘jol[il(u)[l —exp(-— a/u)]+ 'iz“l,)[l - exp(_ 2(1/“)]‘1“<1,

02]0' [0, (W)L - expl=b/p)]

. 2.21)
+ 22,1 = exp(= b/2p)

+3exp(-2a/p)Jhdu <1.

In particular, if the slab and the reflectors are homo-
genoeus isotropic, then we may take o,=1 for each i.
In this situation, (2.9) becomes

clf1 [2 - exp(—a/1) - exp(- 2a/p)]du <1,

b/2u) (2.22)

o) 101 - expl-

+3 [1-exp(= b/p)(1 +exp(=2a/p)]du < 1.

In conclusion we have the following:

Corvollary: Let the two reflectors be identical and let
(2. 8) hold. Then the system (2.2) is subcritical if
(2.21) is satisfied. In case the slab and the reflectors
are homogeneous isotropic, then (2.2) is subcritical if
(2.22) holds.

Remark 2.1 When there is no reflector at the slab
faces, that is, when the slab is embedded in vacuum,
we may set Cz—Cs-—Z =y, =0 in (2.9) to obtain the
condition

) Jp—

crf Zawll —exp(~a/p)] du <1. (2.23)
Under this condition the requirement (2. 8) is also ful-
filled by letting b =0. In this situation, condition (2.23)
alone is sufficient to insure the subcriticality of the
system. This result coincides with the one obtained in
Ref. 6 for the slab problem without reflectors. Notice
that in the general case with reflectors the second term
in the first integral in (2.21) gives the effect of the re-
flectors on the subceriticality of the slab problem.
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3. NONEXISTENCE PROBLEM—SUPERCRITICALITY

It is seen from Theorem 2,2 that if (2.8), (2.9) hold,
then the system (1.1), (1.2} is subcritical. A natural
question about this system is that under what condition
on the same physical parameters the system has no
nonnegative solution. The purpose of this section is to
establish a sufficient condition for insuring the nonex-
istence of nonnegative solution. Specifically, we show
under a suitable condition on ¢, c¢;, a, b that the integral
equation (2, 2) has no nonnegative solution when the
sources g; are not all identically zero, and it only has
the trivial solution when ¢, are all identically zero. To
accomplish this, we first prepare the following lemma.

Lemma 3.1: Let A/ =(N,, N,, N,) be a nontrivial non-
negative solution of (2.2) and let 2,,(u)>0, where 2,
is defined by (2.7). Then the function _

3= [T JwIN G, wdp (€ 1) 3.1

is strictly positive on /; for each i=1,2, 3,

Pyoof: Let x, €I, such that y,(x,) =min{y,(x); x € I;}.
Then by (2.2), (3.1)

ul)= [ DAEM e, wdu, i=1,2,3. (3.2)

In view of (2. 3) the value of y,(x,) is given by the right
side of (2.12) except with 27, (u) replaced by 2, (1). We

again denote the four integrals in (2.12) by s,(x,), ...,
84(.961), that iS, @01(9(1) :Si(xt) +oree +s4(x1). Similar ex-
pressions can be obtained for ,(x;), ¥3(xs). It is easily
seen by a suitable change of the integration variable

7 that,

sabe)=[ [, () expl—(x, - £)/ 1]
X%clf_ioq(e,u,u’)NI(E,u')du’+ a,(¢, p)]deap
st = [ 5D, (- ) expl-(¢ =5/ )
X %clf_on(g, =ty BN (&, n' )L’ + gplE, —p)]dedp
(2 ()= )= [t exp [~ (- ]
(3.3)
X3¢, f_ivz(é,—u,u')Nz(s,u')du'
+ (8, - 1) ]de
(2 (N3))(u)=/:_bu" exp(¢+a)/u]
X%csf_iog(i,u,u’)Ns (&, p"ap’

+ g5, 1)]at.

Now if N,(x, £)#0 then since @1(;;)> 0 the first two in-
tegrals in (3. 3) imply that s,(x,) + s,(x,)> 0. Similarly,
if Ny(x, 1) £0 or Ny(x,u)50, then by the third and the
fourth integrals in (3.3), respectively, we have
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(22N (= 1) >0 or (g5(N)(p)>0 O<u<1)

and thence s,(x,) >0 or s,(x,) >0, In any case, we obtain
$.{x,) + °>° + 5,(x,) > 0, which shows that ¢, (x,) >0. There-
fore, ,(x)>0 for all x € I,. The proofs for y,(x,) >0

and i, (x,;) >0 are similar, and we omit the details.

It is interesting to note that the positivity of the func-
tion g, holds for every i= 1,2, 3 when at least one of the
solution components in A/ is not identically zero, More-
over, this property remains valid even if ¢,;=0 for all
f. This fact will be used in the proof of the following:

Theovem 3.1: Assume that 2, ,(u) >0 and that one of
the following conditions hold: —

(i) %clj:Z?_ ()1 - exp(-2a/p)ldp =1,

(i) §cf Sl -exp(=b/p)ldn > 1, (3.4)

(110) § ¢0f T oW1 - exp(= b/w)du > 1.

Then the system (2.2) has no nonnegative solutionwhen
g, is not identically zero for at least one i, and it only
has the trivial solution when ¢, is identically zero for
all 1=1,2,3. Thus in this case the system is
supercritical,

Proof: Assume by contradiction that A/= (N, N,, N,)
is a nontrivial solution of (2.2). Then, by Lemma 3.1,
$;{x)>0 on I, and satisfies (3.2) with y,(x,) =miny,(x)
>0 for some x, € I;. Consider the case for y,(x,).
Since for every £ €1;, -=1s <1,

flloi(gv Hy #')N,(é, ll’)dﬂ.'
) (3.5)
Zfiz_?i(u’)Ni(&, pdu’ =y, (&)= g, (x,).

We see from (3. 3) and the nonnegative property of ¢,
that

S(0,) = 3¢, wl(xl)fol 20, (W1 - exp[~(a+x,)/udu,

1
54(9(1) =z %Cl 1//1 (xx)‘/o 21(#){1 - exp[" (lZ -xl)/u- ]}duy
. (3.6)
(82N )= 1) = 2659, (x,)[1 - exp(= 3/p)],
(22N () = 3cqu,(x,)[1 - exp(= b/ )],
Notice that the above inequalities hold for every source
¢; 2 0 including ¢;=0. Now from ¢ (x,)=s,{x,) + - +s,(x,),

where s,(x,) are given in (2.12) (with 25 replaced by 2),
we obtain -

W0a)> Lah(n)f D. ()2 - expl- (a+ 5,/ u]
- exp[~ (a - x;)/uT}du
+3 czwz(xz)f:;?l(u) (1~ exp(-b/u)] exp[- (a~x;)/p]du

+§Cs</)s(x3)./:§1(“)[l - exp(- b/ u)]expl~ (a+x;)/p]dp.
(3.7
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Since, for each y € (0,1], the minimum value of the
function p,(x,) given by (2.17) occurs at x, =+ a, we
have

hn)> i) [ T30l - exp(- 2a/w)lde
+ deadaleg) fo 20) expl- 20/ )1 - expl= b/p)ldp

+hests (o)) Dy(w)expl= 20/ w1 - expl= b/ ) ldw
(3.8)

An analogous argument leads to

Palxy) > 3 Cxllll(ivx)folzg(ﬂ) exp(— b/p) [1 - exp(- 2a/p))du
+ %Czlpz(xz)j: zz(u)[l - exp(=b/p)]du

+3 Csws(xa)j: 22(#) exp[~ (2a+ b)/p)][1 — exp(~ b/ w ] du,
(3.9)

Yslrs) > %clwx(xl)f:_z_s(u) exp(— b/ p)[1 - exp(- 20/ p)]du
36 02(52) [ Do) expl- (2a+0)/ 1]
X [1 - exp(- b/H)]d“ +3 Csips(xs)J:Zg(U)

X [1 - exp{-b/p))du. (3.10)
It follows from y,(x;)> 0 that the inequality (3.8) is
impossible if condition (i) in (3, 4) holds, Similarly,
(3.9) [respectively, (3.10)] cannot be fulfilled if condi-
tion (ii) [respectively, (iii)] holds. In each case we
obtain a contradiction. Therefore, Eq. (2.2) has no
nonnegative solution when the sources g; are not all
identically zero. When ¢,=0 for every i=1,2,3, the
above argument shows that Eq. (2.2) cannot have non-
negative solution except the trivial solution A/ =0, This
completes the proof of the theorem,

When the slab is embedded in vacuum without reflec-
tors, the nonexistence problem is insured under the
first condition (i) in (3.4). This result together with
the conclusion in Remark 2.1 implies that the slab
problem is subcritical if (2.23) holds and is supercriti-
cal if condition (i) in (3.4) holds. In particular, if o, is
a constant (say o, =1), these conditions become,
respectively,

e, <[l - E{@)]* and ¢, >2{1 - E,2a)]",

where E, (z) is the nth-order exponential integral given
by (cf. Ref. 11)

1
E(2)= [ u™?exp(-z/p)du, n=1,2, «-. (3.11)
0

The above observation leads to the following conclusions
as those obtained in Ref. 6,7,

Corollary: The slab problem without reflectors is
subcritical if (2.23) holds and is supercritical if condi-
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tion (i) in (3.4) holds. Thus, if the critical value of ¢, is
denoted by ¢, then

[folil(“)[l —exp(-a/p)dp]* < ct

<2[ [ Tt - exp(- 20/ w)dp . (3.12)
In particular, if 0,=1, then ¢} is bounded by
1 -E,(a)]* <c*<2[1-E,(2a)]", (3.13)

where E,(z) is the second order exponential integral.

Remark 3.1: Since the values of the exponential inte-
grals E,(z) have been tabulized in standard handbooks
(e.g., see Ref. 11), numerical results for the subcriti-
cality can easily be obtained from the integrals in
(3.12) when the functions 7 (1) and 25, (1) are polyno-
mials in p. The same remark holds for the general
system (1.1), (1.2) when E,(u) and Z,(u) are poly-
nomials in . Some of the numerical results have been
given for the special case o, =1 (cf. Ref, 7),_ It is inter-
esting to note that if the difference between 2., (u) and
20,(w) is small, then (3,12) yields good estimate for
the critical value ¢} for small values of optical thick-
ness 2a.

The argument given in the proocf of Theorem 3,1 indi-
cates that it is possible to obtain a different set of con-
ditions for the nonexistence problem, Indeed, we have
the following,

Theorem 3.2: Let 25,(1) >0, If all the inequalities

Yoo f 11 - exp(= 20/ )L (1) + Zyls) exp(- b/ 1)
+25(n)exp(- b/ W) ldu=c, L > 1,
%czf; (1 - exp(= b/ ) ][ 2 (1) exp(= 2a/p) +25(n)  (3.14)
+23(n) exp[- (2a+d)/pla

=c,ly>1,

Seof (1 - exp(= b/ ) T (1) exp(= 20/ 1) + Zalut)
xexp[~ (2a+b)/p)+2L4(w)}dp=cgLi> 1

hold and at least one strict inequality holds, then the
system (2, 2) is supercritical; that is, the conclusions
in Theorem 3,1 remain true,

Proof: Let A/=(N,, N,, N;) be a nontrivial nonnegative

solution of (2.2). Then by adding the inequalities (3.8)—
(3. 10) established in the proof of Theorem 3.1, we obtain

P2 (00 + Ppl5) + 9ala) 2 € L{y; ()

+c, Lélpz(xz) + Cngwa(x3)° (3.15)
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But by the hypothesis (3.14) and the positivity of y,(x;)
the above inequality is impossible. This contradiction
leads to the conclusion of the theorem.
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Exact solitary ion acoustic waves in a magnetoplasma
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It is shown that finite amplitude ion acoustic solitary waves propagating obliquely to an external magnetic

field can occur in a plasma.

. INTRODUCTION

Sagdeev''? demonstrated that the equations governing
the dynamics of nonlinear ion acoustic waves can be
written in the form of the energy integral of a classical
particle in a potential well. By analyzing the behavior
of the potential one can show that finite amplitude
localized density humps with a speed V, for ¢, < V
<1.6 c., where c,=(T,/m;)"/? is the ion acoustic speed,
can occur, When the wave amplitude is small, and the
dispersion weak, the ion acoustic waves are described
by a Korteweg—de Vries (KdV) equation,® whose
localized solution is the well-known square hyperbolic
secant. Zakharov and Kuznetsov’ investigated the non-
linear development of small amplitude slow ion acoustic
waves in a magnetized plasma. Here, the dispersion
arising from charge separation as well as finite gyro-
radius effects can balance the nonlinearity. It is found
that these nonlinear waves obey a modified KdV equa-
tion, which admits stationary three-dimensional local-
ized soluticns.

In this paper, we show that exact stationary solutions
can be found for ion acoustic waves propagating ob-
liquely to a magnetic field. In Sec, II, we present the
basic equations and briefly review the linear wave
propagation problem. For obliquely planar propagation,
we solve the appropriate equations looking for station-
ary nonlinear solutions. An equation analogous to the
energy integral of a classical particle is obtained. The
potential is analyzed in Sec. III and the criteria for the
existence of localized solutions are presented. Section
IV contains a discussion of the small amplitude limit.
Our results and their applications are discussed in Sec.
V.

Il. FORMULATION

Consider a two-component (electron—ion) low-4
(8 =8mnyT,/B}) nonisothermal (7,> T;) plasma in the
presence of a constant magnetic field 5yZ. The wave
dynamics is governed by

B+ Ve(nv)=0, 1
atv+v-\7v=—§v¢+vxﬂ“ 2)
Vip=—dreln-n,), (3)
n, =ngexpled/T,), (4)

where n and v are the ion density and velocity, &;
=eBy2/m;c is the ion gyrofrequency, and ¢ is the
ambipolar field. Since the perturbations are of low fre-
quency (w < Q;), electron inertia is neglected and the
usual Boltzmann distribution (4) is assumed. The nota-
tions are standard.
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Linearizing Eqs. (1)-—(4), we find for w <, the
following linear dispersion relation:

e /(1IN ERRY, 6)

where R, =c,/Q;, Ap=vr,/w,,, and kK =k + ki When
the amplitude of the waves is sufficiently large, nonli-
near effects cannot be neglected. Zakharov and
Kuznetsov showed that when the nonlinearity and dis-
persion are weak, the wave propagation is governed by4

3,0, + 0,01 + 5 (RE+ADVE+ A 2ot +0,/2¢,]v,=0. (6)

They found that three-dimensional stationary localized
solutions of Eq. (6) exist. These solutions are stable
against perturbations.

In the following, we investigate finite amplitude slow
ion acoustic waves in a magnetized plasma, taking into
account exact ion and electron nonlinearities. All varia-
tions are assumed to be in the x—z plane, We shall
also assume charge neutrality, »; =n,, so that disper-
sion is solely due to gyroradius effects.

Nondimensionalizing #, ¢, x, z, v, and ¢ by ny, L/cg,

R, L, c,, and T/e, respectively, we obtain from Egs.

1)—@)

3+ (L/RJ)3, (ev,) + 2,(nv,) =0, M
v, = (R,/L)?,2,0, (8)
3,0, +(L/RJvd,v, +v,0,0,==- 02,0, 9)
7=, (10)
n, = expo, (11)

In obtaining (8) and (10), we have assumed R, Ap <L,
where L is the scale length of the solution.

Consider as solution a one-dimensional simple wave
propagating obliquely with respect to the external
magnetic field. The wave is assumed to be stationary
in the moving frame defined by

N=lx+ ko2 - Mt, (12)

where k, and k,= (1 — £2)!/? are the direction cosines.
The Mach number M= V/c, gives the velocity of the
wave along the n direction.

We are interested in the localized planar solutions of
Egs. (7)—(11). Thus, for n—+* we require

v=0, ¢=0,
and (13)
om=0, 9,6=0.

From Eqs. (7) and (9), using (12) and (13), one
obtains

n=1,
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FIG. 1. K%/M? vs N. This diagram shows the region of exis-
tence as well as the propagation characteristics of ion acous-
tic solitary waves in a magnetized plasma, See Eq. (21) and

the paragraph following it,

Mo, =knd, 0. (14)

This surprisingly simple result appears because the
factor (L/R,)k,v,+ kv, occurs in both Eqs. (7) and (9),
leading to a partial cancellation of the ion inertia terms
in the latter equation.

Substituting the expression (11) for ninto the above
equation and integrating, we get

Muv,=k,n-1). (15)
Combining (7), (8), and (15), one obtains
2mm) +b(r-1)+cr'-1)=0 (16)
where b= (k,/ME.)* and c =k2.

Multiplying throughout Eq. (16) by 3,(ln%) and integra-
ting, we obtain

@)+ 0n; M, k) =0, )
where
Pln; M, B)Y=bn® = (b—c? - cn— (b +c)nlnn, (18)

Equation (17) is in the form of the energy integral of a
classical particle in a potential well. In the next section,
we shall analyse the Sagdeev potential ¥(r) to determine
the existence conditions and the behavior of possible
localized solutions.

HI. ANALYSIS

We now discuss the conditions under which localized
solutions of Eq. (17) exist. From the analogy of the
motion of a classical particle in a potential well, it
follows that localized solutions are possible provided
that ¥(n) is negative between the point n=1 and a point,
say at n=N, which we choose to be at =0 without loss
of generality, corresponding to the maximum variation
of n. In order that the “particle” is reflected at n=N
and not reflected at n=1 (n =+ ), we also require
P(N)=1(1)=4'(1) =0 as the conditions for the existence
of solitary wave solutions. It is therefore necessary to
study the behavior of ¥() at n=1 and N.

Near the points #=1 and n=N, Taylor expansion of
Eq. (18) leads to

pm)=— e -0)n-1) for n=1, (19)
)= - (N-n){N-1)(bN~c) for n=N, (20)
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In deriving Eq. (20), we have used a relation which
emerges from applying the condition at the apex of the
electric field profile, namely 3,#=0 and n=N at n=0,
to Eq. (17). That is,

bk _1-N+NlnN (1)
c MY TN*_N-NIoN"

Equation (21) relates the Mach number M to N and #,.
That Eq. (21) does have solution also proves the exis-
tence of the maximum density N. Furthermore, Egs.
(19) and (20) show that in order for ¥(z) to be negative,
one should require N7' < (g,/M)? < 1. 1t is readily
verified that these conditions are satisfied for N> 1.,
Figure 1 exhibits a plot of ¥%/M? vs N. We note that the
dependence of the parameter k,/M on the soliton height
N is strongest for small amplitude solitons.

1V. SMALL AMPLITUDE LIMIT
For N=1, it is readily verified that
$(on) =5 (b = c)on® + (50 + c)on’, (22)

where tn=n-1=0(¢), e<<1, We have also assumed

b —c=0(€). The latter condition is equivalent to k= M,
so that sonic solitons propagates almost parallel to the
external magnetic field. For this case, one can write
down an explicit analytical solution

on = dNsech*{[6N(2b +¢)/6]1/*}, (23)

where 8N =3(c - )/2b, which can also be obtained from
Eq. (21) by letting N=1+ 0N, is the maximum for the
density. The projection of the solition width in the x
direction is L =kR,/[0N(2b +¢)/6]'”*, while that in the z
direction is k,L%/k.R,.

Equation (23) can be recognized as the expression for
the KdV soliton. Indeed, one can show that whithin the
approximation 6»=b - c, the set of equations (7)— (11)
can be reduced by means of a suitable perturbation
technique to a two-dimensional KdV equation, whose
localized planar solution in the n-coordinate is given
by Eq. (23). The corresponding linear dispersion is

w=k,e (1= L1ERY), (24)

which is simply the dispersion relation (5) in the limit
of weak dispersion and charge neutrality.

V. DISCUSSION

We have considered the problem of nonlinear ion—
acoustic waves in a magnetized plasma. It is found that
the waves can propagate as a soliton whose motion is
oblique to the external magnetic field, A relation is
found between the angle of propagation, the speed, and
the amplitude of the soliton. We have also presented an
exact analytical formula for the electric field in the
small amplitude limit,

We have assumed that the scale length L of the soliton
should be larger than the Debye length A, as well as the
gyroradius R;. This assumption, which allows us to use
charge neutrality and neglect some inertia terms in the
perpendicular ion momentum equation, is valid as long
as the soliton amplitude remains moderate, since the
width of the soliton decreases as its amplitude
increases.
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As we have used the ion fluid equations, individual
particle, as well as collective effects, such as ion
Landau damping, trapping, acceleration, and reflection
by the electric field potential are neglected. It is ex-
pected that such effects, which can lead to dissipation
of wave energy, may cause the solitons to evolve into
shock waves.® On the other hand, EX B, drift effects can
cause evolution of the soliton into the vy direction. The
latter effect is precluded in the plane wave solution pre-
sented here, and can be included only in a fully two-
dimensional analysis.

Although we have considered only localized solutions
here, our calculations can readily be extended to in-
clude nonlinear periodic solutions, such as conoidal
waves. For this purpose, one needs only to change the
boundary conditions.

Our results are applicable to any low 8 plasma in
which 7, > T;. The large amplitude ion acoustic waves
may stem from an external source such as a grid within
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the plasma, a linear instability such as the two stream
instability, as well as nonlinear instabilities such as
the parametric decay instability.
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The statistical properties of the eigenvalues of random unitary matrices may be determined from the joint
probability density function of the matrix eigenvalues. Earlier theorems have derived the density function
for the unitary and symplectic circular ensembles from that for the circular orthogonal ensemble. A
method is presented here for successively eliminating variables from the probability density function for
the orthogonal circular ensemble; the method generalizes an earlier result, and the resulting function
appears to represent the behavior of eigenvalues from a new series of matrix ensembles.

The statistical properties of the eigenvalues of ran-
dom unitary matrices, which have been studied by
Dyson and Mehta,! may be determined from the joint
probability density function of the matrix eigenvalues.
Such functions typically take the form

Py.g(6;, =+, 6y) =Cpug ] | exp(i6,)- exp(i6,) |?, (1)

where 8=1, 2, or 4, corresponding to matrices of the
orthogonal, unitary or symplectic circular ensembles.

The motivation for this discussion is the knowledge
that there are simple ways to transform the orthogonal
circular ensemble eigenvalue density into the circular
unitary or symplectic densities. These methods involve
eliminating eigenvalues, according to a particular pro-
cedure, from the orthogonal ensemble. Such procedures
can in principle be generalized, and this suggests the
possibility that there is some significance to be attached
to the density functions their application would deter-
mine. In what follows, we generate a class of functions
by generalizing one such procedure.

1. RELATIONS BETWEEN EIGENVALUE
DENSITY FUNCTIONS

The transformations referred to are two physically
meaningful and nontrivial methods of generating the
unitary and symplectic circular ensembles from the
orthogonal ensemble,

That is, one can perform operations D, G on the
eigenvalues of the orthogonal circular ensemble such
that

D: Py, (6,, w0, On) = Py (0, 0y, o= Byoy), (22)
. Two copies of
G.PN'I(BU ovo QN) "PN,Z(d_)“ ¢)2’ oo ¢N)‘ (2b)

These two transformations are defined by two theo-
rems, the former due to Mehta and Dyson, ? the lat-
ter suggested by Dyson® and proved by Gunson. *

The meaning of (2a) is that, given a sequence of 2N
eigenvalues belonging to the circular orthogonal en-
semble, one may pick N alternate eigenvalues from
that sequence; the N eigenvalues chosen will have the
same statistical properties as those of a naturally
occurring sequence of N eigenvalues belonging to the
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symplectic ensemble, That is, the eigenvalue density
functions of the former sequence (made by choosing
alternate eigenvalues) and of the latter sequence (be-
longing tothe symplectic ensemble) are of the same
form. The theorem is stated explicitly below [Eq. (7)].

The relationship (2b) means that if one takes two in-
dependent sequences of eigenvalues belonging to the
orthogonal ensemble, superimposes them (randomly),
and then picks from that mixed sequence N alternate
eigenvalues, the chosen eigenvalues will have a density
function which is the same as that for a unitary ensem-
ble of order N,

There are thus explicit relations between P,,,, and
P,.,, and between P,,, and £,,. Two obvious questions
may be asked: Can we find a similar relationship be-
tween P,,, and P, ,, and can either of the two relation-
ships in Eq. (2) be generalized, for 8 not restricted to
the values 1, 2, 4.

Both questions are reasonable, the first because we
would like to know whether the three ensembles are
symmetrical in their relationships to each other, the
second on the supposition that generalized eigenvalue
densities may have some statistical significance. Since
the functions Py, as given by Dyson are well defined
and properly normalized for all (complex) values of
B—and intuitively appealing generalizations of the
Mehta—~Dyson or Gunson theorems should involve re-
lationships between various Py, , with positive integral
B—the proposed generalizations should have at least
a mathematical interest.

In answer to the questions posed above, we may say
the following.

First, we have been unable to find a relationship be-
tween P,,, and P,,, with either physical or mathematical
interest. This is not to say that such a relationship
does not exist, but we are inclined to be doubtful. In
view of the ground fields underlying the various ensem-
bles, we note that (2a) implies in a sense a mapping be-
tween the real field and the quaternion field; (2b) is,
again in a sense, a mapping between the real field and
the complex field. A relation of the sort desired would
be a similar kind of mapping between the complex field
and the field of real quaternions.

As regards a generalization of (2b), the proper result
would be a theorem that could predict the properties of
a sequence of eigenvalues formed by superimposing two
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or more independent sequences, and picking N eigen-
values, according to a prescribed formula, from the
mixed sequence. If the probability density function for
the eigenvalues of the resultant sequence were similar
to P,,, for some integral 8, that might be a result of
physical interest, We have no reason to believe that
some such formula might not exist, but there is not one
available at the present time.

A generalization of the theorem indicated by Eq. (2a)

has been proved, and is given by Eq. (8) below. It depends

on the possibility of writing certain kinds of products
as confluent alternant® determinants.

With the exception of the above argument based on the
ground fields underlying the respective ensembles,
there exists, to our knowledge, no explanation for the
existence of the theorems implied by Egs. (2a), (2b).
However, Porter® has suggested the possibility of
restating (2a), (2b) for the Gaussian ensembles; if such
restatements are in fact possible, it would seem that
these theorems must be connected in a very powerful
way with the foundations of random matrix theory.

It is possible to state a number of theorems similar
to (8). Such a theorem must eliminate a particular num-
ber (BN - N) of arguments (eigenvalues) from Py, ,, and

must do so in a particular number of steps {integrations).

An essential element of the procedure, however, is
that the arguments—eigenvalues or dummy variables—
be maintained in a certain fixed relationship to each
other.

What (8) does is perform a series of integrations
over the eigenvalues to be eliminated, The limits of in-
tegration may be other eigenvalues (in the last set of
integrations), or dummy variables (in the preceding
sets of integrations).

The limits of integration in the earlier integrations
may, however, be other eigenvalues, provided that
they are chosen in a symmetrical way from among only
those eigenvalues over which the number of integrations
to be performed is exactly the same as is that for the
eigenvalues for which they will serve as limits; if any
other eigenvalues were to be chosen as limits of inte-
gration, the essential fixed relationship between the
arguments would be disrupted.

We have chosen the most general possible statement
of the theorem, using dummy variables as limits of in-
tegration, rather than choosing one of the many possi-
ble equivalent statements without dummy variables.

2. GENERALIZATION OF THE MEHTA-DYSON
THEOREM

The normalization constant Cy,, appearing in Eq. (1),
which is correct for all values of 3, is given by’
_ 1 [ra+zpl”"
—@2n¥ TA+3INp)

If we order the angles

3)

Cyeg

0<f,<6,<<0y= 27, 4)

we can use the identity
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lexp(i6,,) ~ exp(i6,) | =it exp[- 4i(8,, +6,)]
x (exp[i6,]- exp[i6,]), 6,<6,,
to write

Py {8y, o+, 8y) = Cy,, (0) N1 /2 det[exp(i6,) ], (6)

(=1 -(N-3)  +(No1)
1= 3 ’ 9 3> P00 P ’
s=1,2, =, N.

Theorem (2a), relating the orthogonal and symplectic
ensembles, is derived using the determinantal form (6)
of the orthogonal ensemble eigenvalue density. It is
given by

8, 62

b2 n
f dGzN—1 "’:[ d% d9xP2N,1(91,
fan-1 62 Jogn-2r

Coprs o229 N1V
= % (W) PN'4(92: Og5 00y 92N)7

L 6,0) (M

where we have neglected constant factors on the right-
hand side of (7) that result from the ordering (4) of the
eigenvalues.

Note that in (7), integrals are performed over the odd
numbered eigenvalues between the neighboring even
numbered eigenvalues; the results would clearly be
unchanged if instead we were to integrate over the even
numbered eigenvalues between the neighboring odd num-
bered eigenvalues.

As has already been indicated, the meaning of the
theorem is that N alternate eigenvalues, taken from a
series of 2N belonging to the orthogonal ensemble, are
distributed in the same way as N eigenvalues taken from
the symplectic ensemble of order N, An obvious ques-
tion to ask is, what will happen if instead of choosing
alternate eigenvalues, we choose instead every third
eigenvalue, or every fourth.

The confluent alternant determinant indicates how the
choices of eigenvalues (the integrations) should be made:
While the symplectic ensemble generated by (7) corre-
sponds to the simplest sort of confluent alternant,
generalizations of (7) {(for 8> 2) will generate ensembles
corresponding to confluent alternants of higher degree,

We are of course concerned with (eigenvalue density)
functions that are symmetric in all their arguments.
In general, a confluent alternant determinant can de-
scribe (symmetric) functions of the form Py, ,2 (for
A positive integral); these are the kinds of functions that
are produced by the theorem below.

Theorem: For N even, B8, N positive integers, N> 2,

B=2,
N=l -8(q1)8
B"((l[}l .gq; dg(q@l)ﬁ-l)]

83
[jhre-z' a0
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B=2 85 5-2 =1 9(0*1)5

[ot:l f&,vﬁ-zn d¢q a=1 f d¢qB’°‘)]

2 °< )8 4 P (q+1)8+
B e o]

aB+y
8
X (r de(N—l)Bw]}

X Py (01, e vy Byg)

3 01#1 427

Juper

4 (N-I)Bﬂ'

ole2r
d‘b(N-an) fy

OYUN1)B+y

[

(7)¥88-1)/2 (%% (i)-NB(NB-l)/Z[F(l) s e T(R))Y

[

X(i)zvezw-n/zz(3-1)(12)(3-1)(3-2)/2 /2

X Pyogt (655 By + o » Oyg). (8)
The constant K is given by
BN B8-1
Kz[p @) ©)
=1
where
. _—-(BN-1) . -(BN-=3) . _*(fN=1)
nh= g J2 = 5 » o 3 JNT 5 s
(10)
so that

= [(BN)!/ (2)8% (62_N> 1] o

We can then write the right-hand side of (8) as

2BN(BN/2)! 2(6-1)C " " D)
- et r e

XPyea2 (05, ag e o0 s Oyg)e (12)

In (8) and (12) the + sign is for N even, and the — sign
is for N odd.

Note that (8) reduces exactly to (7) in the case g=2:
the products over «, y, and 7 all vanish; the remaining
integrals are over 6,, p odd, and have the correct
limits. The constant, as can be seen in (12), also re-
duces to the proper form.

Note also the introduction of the (8- 2) series of
dummy variables, ¢j, where y labels each series
(1 <y < B~2); the subscript p of the dummy variables
will obey y<p<gB+y (¢g=0,1, ,N-1),

Proof of Theorvem (8): We can write
Pyig’ (05,645, 0.+, 8yg) as a confluent alternant

determinant
Pol= - CN'B2
N8 (i)ﬁzN(N'l)/Z[r‘(l) - T(R)
Xdet[exp(ijep), jexp(ijb,), ... ,j* " exp(i6,)], (13)
where the column index p takes the values B, 28,...,Nf,

and the row index j takes the values indicated in (10).

Similarly, we can order the eigenvalues, 0< 6, <4,
Se* <0y, <27, and use (5) and (6) to write as a
determinant
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Coys ..
PBN‘I(QU ) QBN) = (’t)B_N"KseﬁpﬁlfWE det[exp(tjes)]’ (14)

where j is given by (10), and s=1,2,...,N.

In the statement of the theorem we neglect constant
factors on the right-hand side of (8) that result from
the ordering of the eigenvalues leading to (14).

In order to transform the determinant in (14) into
the determinant in (13), divide the pN variables into
groups, with 3 variables in each group. Consider the
first set of 8 variables: 6,,6,,..., 6;. The first vari-
able— 6, —will be integrated a total of 8—1 times; 6,
will be integrated a total of 8- 2 times; the ¢th variable
(t=1,2,...,8) will be integrated - ¢ times.

Consider again the fth variable, The first s-f-1 in-
tegrations will transform 6, into a succession of dummy
variables—¢', %, ..., 5¢"1. The final, 8-¢, integra-
tion will transform ¢*t-! into 6,. In general, the first
8 variables of (14)—6,,6,,..., ,—are transformed
finally into 6,. The next set of 5 variables—

0413 Ogpas o « « 5 O5g—1is transformed finally into 6,,. The
final set of B variables—0 (y_ 5,15 ..., ys—1s trans-
formed finally into 0,,.

The integrations in (8), inside the product over v,
encompass all the integrations that are necessary to
transform any of the #’s into the dummy variables ¢!,
and to transform any set of the dummy variables ¢? into
the succeeding set of dummy variables ¢***,

The other factors in (8) (those outside the product
over y) do the final integrations, by transforming the
final sets of dummy variables into 6, 6,5, ..., Oy, Of
course, since there is only one integration to be per-
formed on each of 0,.), 055.,,..., 0y, these variables
are transformed directly into ,, 6,5, ..., Oy,
respectively.

The integrals in (8) are pertormed from right to
left. Begin by considering the integrations inside the
product over vy, which act on variables initially labeled
4.y, Where y' is a given, fixed value of y, and
¢=0,1,...,N~2, That is, consider

N-2 { B-3

n ol J (qd-l)BOY do”

ye
/ o(qfl)B'f)" a9
a=0 \ r=pr T} ¢

aB+r* ab+r?

QB+’ ad+y’

x 8-3 @r 0;’, +27
1 ./Mﬂ d¢(1v-1m~r' Jwy A (yo1) gay: 1(15)
r=v’ (N=1)Be7? (N=1) By’

acting on det[exp(ij6,)].

These integrals do the first 3—¢—1 integrations on
the ¢th variable of each set of 8 variables. The integrals
in the second line of (15) do these integrations on the
last set of B variables—0 y_;y5,1, & (y_13e2y » » o » Oyg—while
the integrals in the first line of (15) do these integra-
tions on all other sets of 8 variables. Of course, as
mentioned, the variables 6, 0,4,..., 6,, are not inte-
grated over at all, while the variables
Ogu1s Oagoty e o« » Oya., are transformed directly into
g5 bogs « -+, Oy by integrals not included in (15) [by inte-
grals in the first line of (8)].
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Now, write out (15) explicitly for the fixed value
r=y'. These integrals do not vanish for 3— 3= 1, and
are given by

rl
f °B+7'
o7+l o7+l
¥t B»r

. , ® , 4
¢r f 28+1 d¢[3+y .o f (Nal)ﬂwr de(N-z)Bw' f ‘;?w' dey:
e .

rl #
[ of,
X 28+7 19 oo N=1Ber
f@r, Ber! _/07. do (V=

2)B+y?
B+7 (N=2)8+y¢
o;{i’hz- v 0 ~2|'
XJ gt dé -1)s+r_/ 46 (v_1per (detlexp(ijo,)]).
W=-1)8+7 (N-l)liw

(16)

The integrations in (16) are performed only on the y’,
B+v',28+y", ..., (N=1)B+v' columns of the matrix.
The integrations over the ¢’s transform these columns
as shown: The columns

{eXp(iij:), exp(ijGB,,,,), ceey exp[ijg(N-l)Bw' ]} (17)
become
exp(ijoh.,) — expijol ) exp(ij¢ra.,. ) — exp(ijdL.,. )
ij ij ’
oo exlif(9F: +2m)] - explii¢irg,.] } 18)
ij ’

Since j is half-integral for AN even, explij(¢ +27)]
= - exp(ij¢), and we can add columns in (18) so as to
obtain

. {exp(ij@j) exp(ij oL, L UL ]}

ij ’ ij ij
(19)

where the + sign holds for N even, and the - sign for
N odd.

We can now perform the integrations over the ¢"’s,
as indicated in (16), and the integrations over the ¢***,
¥+, ..., until all of the B-y'+1 (with /=y') integra-
tions, over the ¢, B+¢, 28+¢, ---, columns have been
performed. All the integrations proceed in essentially
the same way as (17)—(19); when the integrations in
(15) have all been performed, the ', g+ ..., (N-1
columns will have been transformed into

(:t 2)3.7:-1 exP(i]'ngTz) eXp(lﬂPg:?: oo exp[l](b(N 1)B+y]
(ij)e-r'-l 3 (ij)B-y'-l ’ ’ (zj)ﬂ y -1 (20)

Since the integrals in (15) commute for different
values of y’, it is clear that once they have been per-
formed, in whatever order, we can perform all the in-
tegrals in (8) inside the product over y, for y=1,

B - 2. These integrals transform

det[exp(ij9s)]—~ (i 2)(3-1)(3-2) /2 det{%iﬁ@,

exp(zyqb,,m) exp (i ¢hars.)

G , oo, @) (21)

» €xp(2j0,5,5.1),
eXp[ije(pd)B]}’ , p=0,1, N-1.
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B+

Now consider the remaining integrals in (8); they are
outside the product over y [the first two brackets
(counting from the left)] and can be written

B 628 638 6
/ 0., feﬂ 4035 fe dOg5. oo fe e dgms-x
28

w21 (N-1)8

(22)

x[ﬁz <f:8 - 2f625d¢6+af636d¢26+a
a=1 N

28
N8
X oo
fuv 1)8 . ”‘“"‘)'

They operate on the determinant on the right-hand side
of (21); the result is evident, and (21) is transformed
into

(1 2)(8-1 (821 /2 d exp(ijf,) - exp[ZJ(GNB ‘277)]
] @GP
« EXP(176 5) — exp[ij(6y, — 27)]
(ij)B-z

(23)

exp(#j6,) — exp|ij(6 s — 2)]

o @

3

)

xexp(ijb,), }

Here we have written only the first 8 columns of the
determinant. The effect on the other (groups of B)
columns is exactly the same, except that 6, is replaced
by 8, (columns §+1 through 28), by 6, (columns
28+1 through 38), ++», 8y, [columns (N-1)3+1 through
NBL. If we let p=8, 28, -+, NB, we can add columns,
and rewrite (23) so as to obtain

det[exp(ij0,] — (x 2)8-1)(5-2)/2 38+ de t[e)(q;;tjf)‘z)
‘ (24)
e}(?;;pr) s °%% eXI()Lgl)JG ) exp(HG )]

Now multiply (24) by K as defined in (9). This in
effect multiplies the first row on the right-hand side of
(24) by (4j,)"*, the second row by (ij,)*,..., the gNth
row by (#,y)*-'. That is,

K det[exp(ijf,)] — (x 2)#-1) 8- /2 281 Get[exp(ij6,)
woo, (1)P-2 exp(ijf,), (i7)*" exp(ijb,)]
(25)

x (tj) exp(ij6,),
=(z 2)(6-1)(8-2) /2 2B-L<i)NB(B-1 )/2 det[exp(ij gp)’

xj exp(iif,), =+, j*exp(ij6,), ! exp(ijf,)].

This concludes the proof. The integrals on the left-
hand side of (8), operating on det [exp(ijf,)], produce
the confluent alternant in (25), which is identical to the
form (18) for Py.;%. The remaining constant factors in
(8) come from the definitions (13) and (14) of Pgy., and
of Py. ;2 as determinants,

Alternative forms of the theorem, with different lim-
its of integration, can easily be stated, but as indicated
above, the form in (8) seems most natural, The first
set of integrals in (8) [in the first square brackets in
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the first line of (8)], in their present form, reduce
exactly to (7) in the case B=2. The other integrals
largely involve dummy variables as limits of integra-
tion, and changes in these may be rather arbitrary.

Finally, we note that Py, ;2 might be interpreted as the
eigenvalue density for an ensemble of unitary matrices
with g% independent components in each off-diagonal
matrix element,

The application of (8) can be seen most easily in a
simple example, Let AN=6, =3, N=2, Then (8)
becomes

6 6 3 Y ole2r
./ ’ as, fﬁsdesf ’ d(})i] sdd)flj14d€1flld94P6,l(01,---,86)
Bgm2r 63 Gg=2% 03 LN Py (26)

2631)4 Cos
=22 25P,, (6., 6.).
(6! cz'g 2:9\"32 V6

The integrals in (26) can easily be performed in suc-
cession from right to left.

The statistical meaning of (26) can be seen in Fig, 1.
Two eigenvalues, 6, and 6,, are chosen by the first two
integrations, and allowed to move within the indicated
interval; this destroys their ordering with respect to
the other eigenvalues, but preserves it with respect to
each other,

The third and fourth integrations fix ¢} and ¢! in the
intervals 6, 6,] and [6,, 6,], respectively, but without
saying anything about the relation of ¢} to 6, or 6, or
about the relation of ¢} to 6, or 6,.

The last two integrations destroy the orderings of
8, with respect to 6, and 6,, and of 6, with respect to
6,and 6,: 6, and 6, are integrated out, just as the odd
variables are in Theorem (7).

Note that allowing N=2, 4, 6, **- (8N even) would make
no significant change in (26). This is clear from Fig. 1,
which for N>2 would simply be repeated horizontally,
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8 -2 6, 6, esW%
1 5.1 5 4! _
“——">¢1 ¢’4 + ¢1+2Tr
by 8, 85 by 85 9
FIG. 1.

From (26), the first integrations are performed over 6,
and ,, in the intervals [¢}, ¢;]and (¢}, o1 +27], res-
pectively; the second set of integrations is over qbi and
¢}, in the intervals [~ 27, 8,] and [8;, 6], respectively.
The final set of integrations, which may in fact be per-
formed at any time, is over 8, and f;, in the respective
intervals (84~ 27, 8,] and [6,, 8;]. With the final integra-
tions, the variables 6;, 0,, 8, and 8; have been
eliminated.

If we were to allow N=4, 6, 8, ---, the diagram in Fig.
1 would appear 2, 3, 4, ---, times.
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For any integer k> 1 let E =C**!', ' =C"™%, and G =Sp(k,C). If P,,(E) denotes the linear space
of all homogeneous polynomial functions of degree m on E, then the representation L, of G, obtained by
left translation on P, (E), is irreducible with signature (m,0,--,0). Similarly, P,(E’) and R, are

defined by replacing E by E', m by n, and left translation by right translation. In this article, an
explicit decomposition of the tensor product representation R,® L,, on P,(E’) ® P,,(E) is given in terms

of the solid symplectic Stiefel harmonics.

I. INTRODUCTION

Let & be an integer >1, and let 7, denote the identity
matrix of order k. In general, the transpose of a matrix m will
be denoted by m'. Set

0 -1,
”:[lk 0 ]

and define the complex symplectic group G by the equation

G={geGL(2k,C): gs .8 =5, 1.

SetE =C2* ' E'=C" 2k C*=C—{0};letP(E)and
P (E") denote the algebras of all complex valued polynomial
functions on E and E’, respectively. For non-negative inte-
gers m and n define

P, (E)={qeP(E)q(xc)=c™q(x), Y (x,c)eE X C*}
and

P (E")y={peP(E)p(c5)=c"p (&), V (c,6)eC* X E'}

If D, denotes the representation of GL(2k,C) obtained by
right translation on P, ( E'), then it is well known that D, is
irreducible with signature (#,0,...,0) (cf,, e.g., Ref. 1). Simi-
larly, the left representation T',, of GL(2k,C) in P,,(E) is
irreducible with signature (0,...,—m). If R , (resp. L ,,) de-
notes the restriction of D , (resp. T',,,) to G, then R ,, (resp.
L ,, remains irreducible with signature

(10...,00 [resp. (m,0,...,0)].

k factors

(In a more general context, the study of restrictions of ana-
lytic representations of GL(2k,C) to G was investigated in
Ref. 2. The above assertion is a special case of Theorem 2.1 in
Ref. 2, but the proofis much simpler by observing that G acts
transitively on the dense subset {£€E":£5£0] of E'.)

Now, define an action of GL(2k,C) on E' X E by

((.E:’x)!y)a(g’x)‘y = @y’y_lx)9
V (£,x)eE X E, ¥ yeGL(2k,C);

#This research was partially supported by NSF Grant NO. MCS876-07011,

"The author wishes to thank the referee for several helpful comments,
especially on the connection between the authors's work and the boson
calculus [cf. C. Quesne, J. Math. Phys. 14, 366 (1973)] and on the discus-
sion of the last equality in Eq. (3.2).
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and consider the tensor product representationD ,, @ T',, of
GL(2k,C) given by

(D, 8T, )y)peg)Ex)=[peql(Ex)y)
forallp ®geP ,(E")® P, (E), and yeGL(2%,C). Then, it
was shown in Ref. 3 (see also Ref. 4) that one has the follow-
ing decomposition.

PH(E’)®Pm(E)=_ > ophH" /., where

m —j’
r=min(m,n); p, is defined by p({.x)=2, o .. Z,&,x;,
and each subspace H :'n’_fj consists of elements fin
P, (EYeP, (E) which also satisfy the Hermite-La-
place equation

. Ff
Af=0, with Af (£,x)= —(&x).
f ith 41 (£,x) ,»:(J,Zf,zké'&ax,-(gx)

In addition, each subrepresentation of D, ® T',, on
p’H 7, (0<j<r) is irreducible with signature
[n—J,0,...,— (m—p].

With the exception of the case k=1 for which
G =SL(2,C), the restriction of D , ® T',,, to G does not de-
compose as simply as in Eq. (1.1) (the case k=1 was com-
pletely solved by H. Weyl in Ref. 5(a), p. 128). We shall give
an explicit decompositon of the tensor product representa-
tionR, oL, of GonP (E)®P,(E).Thesimple sub-
modules that occur in this decomposition consist of sym-
plectic Stiefel harmonics which are equipped with an inner
product invariant under the unitary symplectic group (cf.
Ref. 2 for details). This is a natural setting to study the
Clebsch-Gordan coefficients problem of these tensor prod-
uct representations which we shall discuss in another article.

In connection with this decomposition, we shall also
give an explicit description of the restriction of two classes of
irreducible analytic representations of GL(2k,C) to its sub-
group G (Theorem 2.2 and Theorem 3.2). To obtain these
results we must further our study on the £-covariant and p-
covariant polynomial functions that we first investigated in
Refs. 1 and 2.

There is an extensive literature on Clebsch-Gordan se-
ries. (A detailed and comprehensive bibliography on this
subject can be found in Louck’s article.®) Starting with the
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work of Brauer,” Weyl,>® Kostant,* and Steinberg® on the
relationship between the inner and outer multiplicity struc-
ture of complex simple Lie groups (or equivalently, their
compact real forms), Biedenharn established in Ref. 10 an
important lemma which, in turn, generated a very effective
method to compute Clebsch-Gordan series (see also Kli-
myk""). The explicit conditions for the validity of Bieden-
harn’s lemma for simple classical groups were derived by
MacFarlane, O’Raifeartaigh, and Rao'? and Beck." (Inci-
dentally, these conditions are not fulfilled in our problem
with the exception for the simple cases where k=1 or

m =n=0.) The relationship between inner and branching
(or restriction) multiplicities were also investigated by De-
laney and Gruber in Ref. 14 and by Stone in Ref. 15.

Il. THE &- AND p-COVARIANT SYMPLECTIC
STIEFEL HARMONICS

Let / denote an arbitrary integer satisfying 2</<k, set
V =C'*?*, and let m ; (1<i<!) be integers satisfying
m,>m,>-->m ,;>0. Let B denote the subgroup of lower tri-
angular matrices of GL(/,C) and define a holomorphic char-
acter £=£(m,,-,m ;) on B by setting

E(b)=bTy b}, Y beB.

A polynomial function fon ¥ will be called -covariant
iff(bX )=£(b)f (X Yforall(b,X )eB X V;furthermore, fwillbe
called symplectic Stiefel harmonic if p ;( D) f =0, 1<i <j<!/
[see Ref. 2, for the definition of the p ;(D)'s]. If H (V)
denotes the linear space of all £-covariant symplectic Stiefel
harmonics then it was shown in Ref. 2 (Theorem 2.1) that
the representation R , of G obtained by right translation on
H (V) isirreducible and its signature is
(m,,m,,...m ,;0,..,0).

Now, set
W ,={ f:C'*'-C: fpolynomial; f(ba) =£(b )f (a),
V (ba)eBXC' <)

and let p denote the representation of GL(/,C) obtained by
right translation on W . Then, according to Theorem 1.5 in
Ref. 1, p is irreducible with signature (m,,...m ;).

Set

P(V)={F:V—W,:Fpolynomial; F(aX)
~p(@)F (X),¥ (,X)eGLU,C) X V' }

and call an element FeP (V) symplectic Stiefel harmonic if
p ;(D YAoF)=0forall linear functionals 4 on W ,and for all
ij, 1<i <j<I. Let H ,(V') denote the subspace of P (V') con-
sisting of all symplectic Stiefel harmonics, and let R ,denote
the right shift representation of G on H (V). Then we have
the following:

Theorem 2.1: The representation R  is equivalent to the
representation R ..

The proof of this theorem is similar to that of Corollary
3.2 in Ref. 1. Thus, in our context we must show only that if
aeC' ! and 6, denotes the mapping X—a.X (XeV), then
o ;(D)f°8,)](X)=0forall feH (V) and all i;j
(i<i <j</). But an easy computation shows that
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[p4(DXf°0,)1(X)

= z (avjaui—aujaui)[puv(D)f](aX)’

l<u <u<d
which must vanish for every (a,X )eC' *! X V since
SfeH (V).

Henceforth, we shall assume that ¥'=C?*?* with k2.
Under this additional condition, our study of the symplectic
Stiefel harmonics in Ref. 2 can now be symplified and com-
pleted. In particular, to prove that the ideal J*S is prime it
suffices to observe that it is generated by a single irreducible
polynomial p;, defined by

k
P(X )= ZXI,z+kX21_X1:X2,t+k’

t=1

Xev.

Moreover, we have the following:

Theorem 2.2: The space P (., 0..0)( V') can be ex-
pressed as direct sum

ms

P om 0.0 V)= z @P'izﬂg(m ima—i 00y V)
where each p (3 H ¢y, im.—i0...0( V), is a simple G-mod-
ule with signature (m, —i,m,—i,0,...,0).

Proof: From Ref. 2 (Theorem 2.1) we know that each
Hy o _im,—i0..0(V) isasimple G-module with signa-
ture (m, —i,m,—1,0,...,0). Define a mapping from
He im,—i0..0V)INOP 0 oo (V) by

f_)plllf? vaHﬁm.fi,mzfi,O ..... 0)(V)'

Obviously this map is well defined since
PBX)=b"'b3p o X)f(X), V(bX )eB XV .

The fact that it is injective follows from Theorem 1.10in Ref.
2. Now since p,, is G-invariant

-----

=p 1, (X)f(Xg)
=P§2(X){R§(m.—1,m,-i,o ..... 0n(8)f}, V geG

(see Refs. 1 and 2 for notations). Thus the mapping f—p i, f
is also a G-module homomorphism. Since

Ps(m o m.0..0( V) is a semisimple G-module, and
PuH i —im—i0..00V WP 2H t(in _jom.—jo..p( V)
are nonisomorphic simple G-modules for i4j (0<ij<m,), it
follows from a well known fact (cf., e.g., Theory of Lie
Groups by C. Chevalley, Propositions 1 and 3, pp. 174-175)
that the sum of the simple G-modules

PH g imo—ip..0(V) (0<i<m,) is direct. Thus, to
achieve the proof of the theorem, we only need to show that

d°(m,ms0,..,00= S d%(mi—iym,—i0,...,0)
i=0
@1

ifd °(m,,m,,0,...,0) [resp. d & (m, — {,m, —i,0,...,0)] represents
the degree of the representation of GL(2k,C) (resp. of G)
with signature (m,,m,,0,...,0) [resp. (m,—i,m,—i,0,...,0)].
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According to Ref. 5(b) (Theorem 7.5.B, p. 201 and Theorem
7.8.C, p. 218), Formula (2.1) becomes

(my—m,+ D A(m, +2k— Dli(m,+2k—2)! }
(m,+ Dm, )2k — Q2L —2)!

=2 (m,—m,+ D(m+m,+2k—2i—1)

i=0

X {(m,+2k —i—=2))(m,+2k —i—3)}

X [(my 41— Dmy— D2k — D2k —3) 1.

(2.2)

which can be easily verified by induction on m,, or may be

deduced from a well-poised ;F;, series (cf. Ref. 16, p. 57). ]

lil. THE MAIN THEOREM

We shall now return to the main problem of this article.
Assume k>2 and preserve the notations introduced in Sec. I.

Theorem 3.1: The semisimple G-module
P, (E')Ye P, (E) can be represented as a direct sum

PEVSP (E)=5 'S epi(n+m—2-ip, (1)

j=0i=0

where in (3.1)

H, 7= i X (n+m —2j—Iii).
i =0
Morevoer, each subrepresentationof R, ® L ,, on
PphF(n+m—2j—i,i) is equivalent to an irreducible analyt-
ic representation of G with signature (n +m —2j—i,i,0,...,0).
From Eq. (1.1) we know that each subrepresentation of
D,®T, onp)H /, isirreducible, and since each H 7/, is
obviously a G-module, to obtain Theorem 3.1 it suffices to
prove the following:
Theorem 3.2: Under the restriction GL(2k,C) | G each
simple GL(2k,C)-module H :’n’jj(Ogj <r) is decomposed
into simple G-modules as

HiZ =S e (n+m—2j—ii).
i=0

Without loss of generality we may assume that n>m;
thus »=m. The proof of this theorem will be achieved via
several lemmas.

Fix i, and in Sec. Il let /=2, §=&(n+m —2j—i,i). This
character £ corresponds to the representation p of GL(2,C)
on the linear space W . Equip W , with the inner product

SFf>=IADIO)
(cf. Ref. 1, p. 31 for justification) for all £,/ in W ,.

Lemma 3.3: Let .3 be nonnegative integers such that
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a+p=n-+m—2/—2i and set

Cup= { uz% . (;)2(a+i— w)(B+ u)!u!(i_u)!} -172

,,,,, i

_ [i!a!/g’!(a +B+i + 1)!] e (3.2)

(@+B+1)!

For yeC?*? let [y denote the determinant of y and define

Pap(¥)=C oy 11y T
Then the system {@,4} (s is an orthonormal basis for W .
Proof: We have

¢711[)‘(y)
i : .
—co( S o Pt
w=0,...,0

it follows immediately from relation (2.2) in Ref. 1 that
{ @ap} (ap 1 an orthonormal system. Now, for

by O
b=|p, bn}

in B, we verify easily that
Pap(bY)=bT"" "2 b5, p5(y) forall yeC?=2.

The last equality in Eq. (3.2) is obtained by observing
that the normalization factor C ,; is the square root of the
measure factor M of the Young tableaux

L Ey B --7 TI »j a+p+iboxes

EI:;'_L_, g

filled in with @+ 1’s followed by S 2’s in row 1 and i 2’s in
row 2. It can also be derived from the formula defining the

basis of boson polynomials in the article by Baird and
Biedenharn, J. Math. Phys. 4, 1459 (1963):

;(m 12 m22)>:M*'/2(a } )m.zr—mn

my,

i boxes

X(a)™" "(aa3—a,ai)""|0).
The relations between notations are
my=a+p+i, my=i,my=a+i,
aj=y,;, 1<i, j<2.
But from Ref. 5(b) (Theorem 7.5.B, p. 201), we known that

W , has dimension 7 +n —2j—2i+ 1; so that {@,p) ap) is
indeed an orthonormal basis for ¥ .

To this Hilbert space W, we associate as in Sec. II the
representation R , on the linear space H o( V). Let G, denote
the unitary symplectic group corresponding to G. Set
U=U(2), and let p, and R ; denote the restrictions of p and
R ,to U and G, respectively. It follows from the “unitarian
trick” that p, and R © remain irreducible. If ] denotes the
dual of W, we define the linear space K by

K={A°F: AW, FeH (V)}.
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Define a representation of G, on K by the equation

[7(@)A ° F))(X)=(A © F)Xg)=[A°R J(g)F 1(X)
for all A © FeK, geG,, and XeV.

If {197} .5 denotes the dual basis for {@ 4} s We set
K z={APoF:FeH (V)}. Asin Ref. 1 (p. 31) we equip
H (V) and K 5 with appropriate inner products which
render R 2 and 7° unitary. Invoking Theorem 3.8 in Ref. 1

we obtain the following;:

Lemma 3.4: The Hilbert space K is decomposed into
primary irreducible components under the representation 7°
as

K= Z ®Kaﬂ7
(aB)

where the summation is taken over all nonnegative integers
a,f3 satisfying a +f=m +n-—2j—2i. Moreover, each sub-
representation 7o, of 7° on K «p 18 equivalent to the repre-
sentation R ).

Lemma 3.5: For fixed ij (0<j<m,0<i<m—j) if we let
a=n—j—iandB=m—j—i,thenthespaceK (, ; ;. ;
consists of symplectic Stiefel harmonics f which also satisfy
the condition

flaX)=ai7a7 f(X) (3.3)

for all

a_(al 0)
“\0  aq,

inU,and all Xin V.
Proof. For Fin H (V) write
FX)=Z2(pF*(X) Qo5 ,WwhereF*? =1 o FeK ,,,and
XeV. Thus, for all aeU and all yeC?*? we have
F@X)p)=Y FP@X)p ,50)
(af)
Since F is p-covariant, we must also have

FaX)p)=p@F (X D@)=[F X )](ya)

=Y FPX)pqa(pa)
(af)

Now, @.s(ya)=a " a%" @..(»). In conclusion,

> FP@X)p 0= Y ai af FPX)p 150
@F) (@F)
for all y eC?>2, It follows that

FGB(GX)ZG (11+ia£3+iFaB(X)

for all (a,X )eU (2) X V. In particular, when @ =n—j—i,
B=m —j—i we obtain
F(n*j*ﬂ',mfjfi)(aX):a rltvja ;n—jF(n—j~i,m~j—t)(X)‘

]
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By an easy argument involving analytic continuation,
one can strengthen Relation (3.3) to

Alg 4 Jx)=srsriren (3.4

for all b,,b,cC*. Also, it follows from the “unitarian trick”

that if we denote by 71'%,',’,:’] the representation of G which
is obtained by right translatlon onkK, ; ;. ; ,thenitis
irreducible with signature (m +n — 2j —1,5,0,...,0).

Let 42/, denote the representation of Gon H }, m?;. Fix
iandj,and con51der thelinear spaceK (, ;_;,, ; ; as glven
in Lemma 3.5.

Let & denote the linear map defined by

rien=r({°))

forallfinK, ; ,, ; ,andall [ g’s] in V. For all b,b,eC*
x
Eq. (3.4) implies

orvecanr-A(2]14)
=b7 b7 [PLUEX).

Also, by a simple computation we see that

@ En=a) (| £ })

since feK (, _; ;. ;_; it follows that A(®f)=0. Hence @f
belongsto H /..
By definition, geG implies (g"')'s=sg; it follows that

(27, 2,@)Pf 1¢Ex)

=Pf(£g.87'x)

_f( 134

el ]~ ([5))

i@ 2 ])=te enemen.

Thus, @ is an intertwining operator. Since @ is obviously
injecive, if we denote by #'(n +m — 2j —i,i) the image of

K i j—im—j—i under @, then #(n+m—2j—i,i)] is a sim-
ple G-submodule of H /!, "‘f . Since for different ; (0<i<m —))
the F ' (n+m—2j—i, l)] are nonisomorphic simple G-mod-
ules, by the same argument used at the end of the proof of
Theorem 2.2, we see that it suffices to verify that the dimen-
sionof H" /. ; is equal to the sum of the dimensions of the
Z(n+m—2j—i,i)’s to achieve the proof of Theorem 3.2.
According to Ref. 5(b),
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_ Ckt+(n—p+m—p)—1) [Qk+(n—))~DQk+(m—j)—2)! ]
(2k — D2k —2)Y(n —)(m —))!

dim(H :'n__f)
and

(n4+m—2—=2i+\)n+m—2+2k—1) [(n+m—2j—i+2k—2)(i+2k—3)! |

dim(F (n+m —2j—ii)) =
Qk—-DI2k -3 +m—2j—i+ 1D

Thus, if we set u=n—j, v=m—j, then u>v>i>0, and we must establish the following relation:

(3.5)

Qk+u+v—1) [Qk+u—)Qk+v-2) ] _ $ U+v—2i+ D +v+2k—1) [(u+v—i+2k—2+2k—3)! ]
2k — D)2k —2)lulv! <6 2k — D2k — 3w +v—i+ DIt

Remark 3.6: Explicit decompositions of the restriction of representations of several classical groups to their various
subgroups, similar to our result in Theorems 2.2 and 3.2, were investigated in Refs. 14, 15, 5(b), and 17. In Ref. 5(b), Weyl gavea
general formula which, in principle, would allow us to compute the multiplicity of each equivalence class of irreducible analytic
representations of G that occurs in the restriction to G of an analytic representation of GL(2k,C). In the appendix we perform

such a computation for a simple case (k=2); however, this technique doesn’t seem tractable for more complex cases.

APPENDIX

In this appendix we will utilize the notations and results
in Ref. 5(b) Sec. 8 (pp. 216-222), especially Theorem 7.8.G.
Let 7(e,,...,e5;) [resp. mg(my,...,m,)] denote the representa-
tion of GL(2k,C) (resp. of G) of signature (e,,...,e,,) [resp.
(my,...,m,)]. Our objective is to investigate the decomposi-
tion of the representation 7(n,0,...,0,—m) when restricted to
G. Since G is a subgroup of SL(2k,C), this is equivalent to
studying the restriction of 7(n +m,m,...,m,0) to G.

ll:k|

If z,,...,z,, are 2k complex variables, let |z*,....z
denote the determinant of the matrix of order 2k having

(z7",....z;" 1, (1<j<2k), as the jth row. Set
L n+m7i,i,0’..-,0(z ,,...,Z k)

n+m—1+2k—1 _i+2k—2 ,2k—3
4 ,

=|z z -
Xkl g k=2 gk k=3 kel |y g%

then by virtue of Theorem 7.8.G in Ref. 5 one has the follow-

ing formula:

L, iio, o@y2Z w)/ H (1 —Zz,z 1)

1<j < 1<2k

_ (l]...,le )
s 1A;}o'u n+m—i,i0,..,0

X |zh v @D 2, (A1)

where

( Il o )
a n+m—1i,0,...,0

represents the multiplicity with which the irreducible repre-
sentation 7 (n+m—1i,1,0,...,0) occurs in 7w( /,,..., { 5, ) .
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Clearly, we have

L,, mfi‘f,o,“.,o(zl’---xz )

ntm+2k—i -1 i+2k -2 2k -3
s s

=(]z z z ooy 2,1

+ lzn+m+2k~—i\]

L]

i+2k—2 ,2k—3

z z w2 Z KV e (=2 2)

Suppose n>m and k==2. A moment’s consideration will
show that, for this particular case,

( n+m,m,...,m,0 )
M n+m—ii0,..0,0

represents precisely the coefficient of the polynomial

z +m +3zm+ 2z m+1in the expression of the left side of For-
mula (A1). A simple argument shows that this coefficient
represents the number of solutions of the equation

3 2 1
z7+m+ 2'277+ zrln+

:zrl:+m+3\i(z;+223) [zz,) “(2:2,) “(z225) ]

for all nonnegative integers u,v,w. This leads to the unique
solution u =0, v=i, and w=m —i. Further systematic use of
Formula (A1) for more complex cases leads to unmanage-
able calculations.
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The point form of quantum dynamics and a 4-vector
coordinate operator for a spinless particle
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We construct the analog in the quantum mechanics of a free spinless particle, of Dirac’s formula for the
generators of space-time translations in his point form of classical dynamics, where one takes as
fundamental variables the generators of homogeneous Lorentz transformations and the coordinate 4-vector
of the point where the world line of the particle meets one sheet of a two-sheeted hyperboloid in
space-time. A 4-vector coordinate operator is determined for such a particle, with commuting Hermitian
components. The corresponding observable is the analog of the coordinate 4-vector of the point on the
hyperboloid. This operator bears the same relation to such a surface as the Newton-Wigner operator

does to an instant.

1. INTRODUCTION

Dirac! has shown that in classical mechanics there
are many ways to set up a dynamical discription of a
free point particle with nonzero rest mass, consistent
with the requirements of the special theory of relativity.
An observer in any inertial frame of reference need
make use only of variables specifying the condition of
the particle at the point in space—time where its world
line crosses an arbitrarily chosen spacelike surface.
(Even a surface on which every two points are separated
by either a spacelike or a null interval may be chosen, )
These dynamical variables will include the energy—mo-
mentum 4-vector for the particle, P,; the relativistic
angular—momentum tensor J,, (=-4J,,); and three co-
ordinates specifying the location of the particle on the
surface.

A Poisson bracket (A,B) must be introduced for every
pair of dynamical variables A, B in such a way that

(Pbpu):O’ (Ph,Juv)=gXMPu—g)\VPu) (1)
(Jku:va) =Luhrg + &2V uv = &uohrw = & s

in order that the ten variables P, and J,, will generate
a group of transformations isomorphic to /2, the inhomo-
geneous Lorentz group.

If the observer adopts a system of space—time coor-
dinates x,, an obvious choice for the spacelike surface
is an instant, say x,=0. The three coordinates ¢, for
the particle may then be taken to form a 3-vector. Fol-
lowing Dirac, one may choose to regard this as the 3-
vector part of a 4-vector ¢, associated with the particle,
and subject to the constraint g,=0; and one may further
suppose the existence of a 4-vector p, conjugate to g,,
so that one has the Poisson bracket relations

(thIu):O:(pl’pu.)’ (p)uqu,):gku.- (2)

However, the constraint g,=0 is required to be in-
variant under canonical transformations generated by all
dynamical variables of physical importance—called phy-
sical variables by Dirac—and it follows that these can
be functions only of the g, and p,. In particular, Dirac
argued that P, and J,, are given by

Pr =Dy Jrs:qrps_ CIspr;
Py=(p,p, +mict)/?

(3a)
(3b)
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Jro=psps +micHq,, (3c)

where m is the rest mass of the particle, and ¢ the
speed of light. It is well known that these definitions
lead, in consequence of (2), to the required relations (1),
as well as to the relations

PP =m?c?, (4a)
P, Znc, (4b)
€ruvy JHVP° =0, (4c)

which characterize a system with rest mass m, positive
energy, and no internal angular momentum. As Dirac
pointed out, the choice of the surface x;=0 singles out
the Euclidean subgroup of /7, because coordinate trans-
formations in that subgroup leave this surface invariant,
Some consequences of this are the relatively simple ex-
pressions for the associated generators P, and J, in (3)
as compared with those for P, and J,, and a complicat-~
ed transformation law for ¢, with respect to Lorentz
boosts. ?

Dirac called this the “instant” form of dynamics, and
presented corresponding results for two other forms of
classical dynamics:

(I) The “point” form, in which the selected surface is
taken to be one sheet of a two-sheeted hyperboloid or
cone, such as xx*=F, x, 2k 20,

(I1) The “front” form, in which the selected surface is
a plane light wave front, such as xy=x;,

We are concerned with the point form of relativistic
quantum dynamics (in the case k> 0) for a free, spinless
particle with nonzero rest mass and positive energy, in
particular as it bears upon the much-discussed question
of the definition of position operators for such a particle.
We do not consider the special limiting case #=0, which
has been discussed from a slightly different viewpoint
by Peres,® and when we speak of the point form below,
we shall generally be referring to the case &> 0.

In order to establish the line of our argument, we de-
scribe briefly in Sec. 2 the familiar instant form of
quantum dynamics for such a particle. The operator
analog of the classical coordinate 3-vector g, is easily
seen to be the Newton—Wigner operator!, which there-
fore corresponds to the measurement of the position of
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the particle on an instant. The complicated transforma-
tion properties of this operator in respect of Lorentz
boosts are from this point of view not to be regarded as
a defect when this operator is used to define the concept
of localization of the particle (on an instant). On the con-
trary, they are a necessary consequence of the fact
that an instant is not a Lorentz-invariant surface, and
they are quite analogous to the transformation proper-
ties of the classical 3-vector g,. (See however the rele-
vant discussion in Ref. 2.) When the papers of Dirac!
and Newton and Wigner? are studied side by side, one’s
initial reaction may be that the question of localization
of an elementary particle (or system) on an instant has
been resolved, at least in the spinless case, in a per-
fectly satisfactory way with due regard for the corre-
spondence principle. One may feel less sure when one
remembers that “manifestly covariant” descriptions of
particles apparently need to be used if a (field) theory
of local interactions is to be developed. Associated with
such descriptions one has conserved current densities,
which seem to point the way to other concepts of locali-
zation. (See for example Barut and Malin®, )

In Sec. 3 we review Dirac’s formula for the genera-
tors of space—time translation in the point form of clas-
sical mechanics and formulate the problem of finding the
analog of this formula in quantum mechanics. We find
that a mathematically equivalent problem can also be
formulated—that of finding in terms of the group gener-
ators an expression for a 4-vector operator which is the
analog in quantum mechanics of the coordinate 4-vector
of the point where the world line of the classical parti-
cle meets the hyperboloid sheet described in (I) above.

Some of the properties of this 4-vector coordinate
operator have been summarized by us elsewhere® with-
out proof, It has commuting, Hermitian components,
and bears the same relation to the surface described in
(I} as does the Newton—Wigner operator to the instant;
and just as the latter transforms simply under the Eu-
clidean group, but not under Lorentz boosts, so the for-
mer transforms simply under the homogeneous Lorentz
group (as a 4-vector) but not simply under translations
in space or time. No doubt this explains why it does not
seem to have been mentioned in the extensive literature
on the localization of elementary particles. (See for
example Refs. 4, 5, 7-11 and references therein. )

In Sec. 4, we solve the problem formulated in Sec. 3,
relegating some proofs to two Appendices. Our conclu-
sions are summarized in Sec. 5.

Notation: In what follows, we use the same symbol to
denote a classical variable and its operator counterpart
in quantum mechanics, relying on context to distinguish
the two. Greek indices run over 0, 1, 2, 3 and Latin over
1, 2, 3. The metric tensor is diagonal with goy= - g¢;
== gy = - g33=1, and the alternating tensor is defined
with €95 =1,

2. THE INSTANT FORM OF RELATIVISTIC QUANTUM
DYNAMICS

We proceed by analogy with the development of the
classical case in Egs. (2)—(4) now taking p, and ¢, to be
operators in a suitable vector space, and replacing the
Poisson bracket relations (2) by commutation relations
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[q)u qu]:0=[p>wpu]’ [phs qu]:iﬁgxu (5)

The constraints ¢, =0 must now be interpreted as an
operator equation valid in the physically relevant por-
tion of the vector space, and it again restricts the phy-
sical variables to be functions only of the p, and ¢,. In
gquantum mechanics one also requires that physical
variables be Hermitian operators in Hilbert space.
Thus ¢, should be taken to be Hermitian, and the as-
sumption that p, also is Hermitian guarantees the her-
miticity of P, and J,, if we take over the classical for-
mulas (3a) to define these variables, Moreover, P, as
defined in (3b) will then also be Hermitian provided the
operator square root is suitably interpreted. However,
the formula (3c) for J, is then not consistent with the
hermiticity requirement, and in order to obtain Her-
mitian J,, without violating the correspondence princi-
ple, we are naturally led to adopt instead the symme-
trized expression

Tio= b0,y t M+ L bt N Y ()

It is then readily checked that with these definitions, P,
and J,, satisfy the required relations

[PM Pu]:()’ [PM Juu]:iﬁ(ngv—gMPu),

X (7)

{Jm H Jva] = lﬁ(guv‘]ha + gkau- v gupJAu - g).VJup):
as well as the “representation relations” (4), now inter-
preted as operator equations.

As g, and p, are by assumption Hermitian operators
satisfying the canonical commutation relations, one may
take the Hilbert space to be that of square-integrable
functions &(py, pq, p3) with scalar product

@, W)= [ [ [ a*(ps, poy p3)¥ (b1, o, p)d®p,  (8)

and take g, =% 2/3p,. It is well-known (see, for exam-
ple, Foldy'®) that in this space the operators P, and  J,,
defined above generate the unitary representation (mzcz,
0, +) of P, apprpriate to the description in the Heisen-
berg picture of a positive-energy spinless particle with
rest mass m. The operators ¢, are seen to form the
Newton—Wigner 3-vector position operator (at x =0),
which is thus revealed as the analogue in quantum me-
chanics of the position vector of the classical particle
where its world line meets an instant.

Since the operators P, and J,, do generate an irredu-
cible representation of / one may hope that any given
operator on the Hilbert space can be expressed in terms
of those generators. This is true for the operator q,: It
can be seen from (3a), (3b), and (8) that

4y ="J0(Po)™ + Ll P (Py)2. ®

Moreover it is not hard to see that if one takes (9) as a
definition of ¢,, assuming the commutation relations (7)
and representation relations (4), then one can deduce
the relations

[qn qs] =0, {(],-, Ps] =il 5rs’ s =@, P — 4P,
and (10)
Jro =3¢, PP+ e ' PR+ it e Y,

From this point of view, it is the group generators
which play the more fundamental role, the variables g,
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being derived quantities. In such a formulation one does
not need to introduce the unphysical variables p, and g,.

3. THE POINT FORM OF RELATIVISTIC DYNAMICS

The preceding discussion should have its counterpart
for each of the other forms of classical dynamics de-
scribed by Dirac— and in principle, for the form cor-
responding to an arbitrary choice of spacelike surface.
Fleming!! has found the counterpart for the case of a
general spacelike hyperplane, in which case the con-
straint ¢, =0 is replaced by

g1 =T,

where 7 and * are real constants, with n,7* =1, In the
case of a nonplanar surface, such as that defining the
point form, the counterpart is more difficult to discover.

In the point form, the three coordinates specifying the
point at which the world line of the classical particle
meets the surface x,2* =k?, x,Zk =0, may be written as

a 4-vector g, subject to the constraints
g =K, (102 k. (11)

Again introducing variables p, conjugate to ¢, as in (2),
and noting these constraints, we expect that in this case
physical variables can be functions only of g, and I,,,
where

hu =y = dubre
Dirac argued that P, and J,, in particular have the forms
S =hy
P, = ks +au{ [0ua*) - P pub* = m*eH]? - pg*}
o b a2 = L, BN, (12)

which one readily checks imply the required relations
(1) and (4).

One then sees that
0P, - quPr=dy, (13)

and that the Poisson bracket (g,, P,) [ = - aP,/3p"] has
the form

(g, Pu) == @au + P @, P, (14)
so that
(g, PY) =-3. (15)

There is a remarkable symmetry between the roles of
the timelike 4-vectors P, and g, in this form of dyna-
mics. Apart from Eqs. (13— 15), ones sees that as a
result of Eqs. (4a), (11), (12), and (13)

ksz — quu +q>‘(m202k2 - LJWJuv)t /2

’lecqu :unpu +Px(m202k2 _ %Ju-l/Jup)t /2

(18)
amn)

All equations in the point form of dynamics, such as
(13)— (17) above, can be expressed in a manifestly co-
variant way using four-dimensional tensor notation. As
Dirac stressed, this reflects the special role chosen for
the homogeneous Lorentz subgroup of /2 by the observ-
er’s choice of a special surface which is invariant under
Lorentz transformations of his coordinate system. It is
this feature of the point form, and the associated fact
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that this subgroup is simple in the mathematical sense,
which makes it attractive and will be responsible for any
advantages it may have over the other forms,

Turning now to the point form of quantumdynamics
for a spinless particle, we proceed initially as in the
case of the instant form (Sec. 2), introduce a set of
operators gq,, p, satisfying the commutation relations
(5), and impose the operator constraints

0 =k, qyZ2k>0, (18)

now to be satisfied by Hermitean operators ¢, on a Hil~-
bert space /.

We also take I, (=q¢,p, — q,p,) to be Hermitian opera-
tors in #/, and identify J,, = },,. Then we wish to find the
analog in the quantum theory of the formula (16), defin-
ing Hermitean P, in terms of ¢, and Jy, in such a way
that the P, and J,, satisfy the relations (4) and (7).

A suitable realization of the space # is that of func-
tions ®(qq, 4, 45, 45) defined on the sheet g, =% >0 of the
hyperboloid ¢,¢* =%?%, with scalar product

(@, %)= [ ©*(70, 41,y 43) ¥ (@0, 91, G2> 45)AR,

where the integral is over the whole sheet, and dQ(=dq,
dqqu3/q0) is the Lorentz-invariant volume element on
the sheet. Then g, and also [,,, which is now given by

Ly, =ii(g,2/3q" - q,3/2q"), (19)

are Hermitian as required. In these terms, the problem
is to exhibit the unitary representation (n*c?,0, +) of P
in this function space, with generators

Jy, =11(g,3/0¢" = q,3/34") (20)

and P,, defined in such a way that the classical formula
(13), and consequently (16), can be recovered in the
clagsical limit,

Peres® has solved the corresponding problem in the
limiting case k=0 (for particles with spin 0 or 5.) How-
ever, his solution is not expressed in a manifestly co-
variant way, so that the peculiar advantage of the point
form is to some extent lost in his treatment. While
Fubini, Hanson, and Jackiw, 13 Sommerfield, ! and
Gromes, Rothe, and Stech'® have considered the initial-
value problem for quantum or classical fields with the
surface xu* =k?, xp 2k >0 as Cauchy surface, no one
to our knowledge has tackled the specific problem posed
above, although Fubini et al. make passing reference to
its difficulty.

Supposing that a solution P, exists, it is clear that
P, - q,P, and P,q, — P,q, can differ from J,, only by
terms which in some sense vanish in the classical limit.
We shall see that it is possible to find a solution P, with

J)‘u. :%(q)‘Pu - qupx) +’;"(Pu(h— quu))
but not with J,, equal to either of the asymmetrical
forms. The solution is uniquely determined if we require
in addition the analogue of (15), viz.

[ar, P == 3i7,

In the representation space // the P, and J,, must sat-
isfy the repres